A Probabilistic Modeling Approach to Hearing Loss Compensation

Abstract

Hearing Aid (HA) algorithms need to be tuned (“fitted”) to match the impairment of each specific patient. The lack of a fundamental HA fitting theory is a strong contributing factor to an unsatisfying sound experience for about 20% of HA patients. This paper proposes a probabilistic modeling approach to the design of HA algorithms. The proposed method relies on a generative probabilistic model for the hearing loss problem and provides for automated inference of the corresponding (1) signal processing algorithm, (2) the fitting solution as well as (3) a principled performance evaluation metric. All three tasks are realized as message passing algorithms in a factor graph representation of the generative model, which in principle allows for fast implementation on HA or mobile device hardware. The methods are theoretically worked out and simulated with a custom-built factor graph toolbox for a specific hearing loss model.

Publication
IEEE/ACM Transactions on Audio, Speech, and Language Processing
Thijs van de Laar
Thijs van de Laar
Assistant professor

I am an assisant professor at BIASlab, where I work on artificial agents that learn to control themselves in uncertain environments. I take inspiration from physics and neuroscience, and develop theory and (software) tools that allow for efficient, real-time interaction.

Bert de Vries
Bert de Vries
Professor

I am a professor at TU Eindhoven and team leader of BIASlab.