A Gaussian process mixture prior for hearing loss modeling

Abstract

Machine learning approaches to hearing loss estimation can significantly reduce the number of required experiments, but require a good probabilistic hearing loss model. In this work we introduce such a model, obtained by fitting a mixture of Gaussian processes to a vast database containing audiometric records of around 85k people. The learned model can be used as a prior distribution for hearing loss, and can be conditioned on age and gender. Evaluation on a test set shows that our model outperforms an optimized Gaussian process model in terms of predictive accuracy.

Publication
Belgian Dutch Conference on Machine Learning
Marco Cox
Marco Cox
Former PhD student

Former researcher at BIASlab.

Bert de Vries
Bert de Vries
Professor

I am a professor at TU Eindhoven and team leader of BIASlab.