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Summary

Towards Universal Probabilistic Programming with Mes-
sage Passing on Factor Graphs

This thesis presents efficient and automated probabilistic inference algorithms for
intelligent system design. An intelligent system is a decision-making agent that can
take reasonable and reliable actions in uncertain environments. Probability theory
and Bayesian inference constitute the theoretical framework for intelligent system
design. Hence, probabilistic modeling and inference are of great importance in
building intelligent agents and applications. Modeling a real-world phenomenon
with the language of probability theory is often intuitive, and hence it can be car-
ried out by experts in the application field. In contrast, the inference part often ne-
cessitates expertise in Bayesian statistics and precludes experts and scientists from
diverse application fields from utilizing probabilistic modeling.

This thesis focuses on automating Bayesian inference procedures to make prob-
abilistic modeling more accessible for non-experts of Bayesian statistics. The works
presented in this thesis can be subsumed under the umbrella of probabilistic pro-
gramming. Probabilistic programming is a programming paradigm that automates
inference procedures in probabilistic models. Unlike most of the existing proba-
bilistic programming tools, which follow Monte Carlo sampling approaches and
stochastic optimization for universality, the algorithms in this thesis strive to utilize
deterministic message passing approaches at the utmost level. Deterministic mes-
sage passing algorithms are often faster than Monte Carlo algorithms and hence
preferable in real-time applications, e.g., robotics.

Deterministic message passing algorithms are fast and efficient, but automating
them in a universal way is more challenging compared to Monte Carlo algorithms.
The main reason is that, unlike Monte Carlo algorithms, which are simulation-
based approaches, message passing algorithms require custom analytical rules for
the components of probabilistic models. The algorithms in this thesis aim to cir-



cumvent this issue by hybrid approaches that combine the best of Monte Carlo and
message passing approaches.

In general, the contributions of this thesis are twofold. First, we present a
generic framework to incorporate Monte Carlo or other approximation approaches
like Laplace approximation into message passing procedures by proposing fully au-
tomated hybrid algorithms. Next, we demonstrate how to cast some well-recognized
stochastic optimization-based methods as probabilistic programming algorithms with
message passing on factor graphs. The resulting methods realize distributed proba-
bilistic inference by sticking to deterministic approaches if possible and resorting to
Monte Carlo, Laplace, or stochastic optimization approaches only when necessary.

This thesis provides a generic framework for hybrid, efficient and automatable
Bayesian inference on factor graphs. The presented algorithms achieve hybrid infer-
ence by interfacing Monte Carlo, Laplace, and stochastic optimization approaches
with deterministic message passing algorithms.
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Chapter 1

General Introduction

1.1 Motivation

The world has been witnessing immense advances in science and technology
since the establishment of the scientific method. From the electromagnetic radi-
ation theory to the laws of thermodynamics, a considerable amount of these ad-
vances relate to mathematical modeling. Mathematical modeling is the projection
of real-world processes to the realm of mathematics, where we can perform ana-
lyzes, run simulations and make predictions. Mathematical modeling is examined
under two categories: deterministic modeling and probabilistic modeling. We get
familiar with deterministic models in the early years of our education. However, we
all probably remember our teachers were warning us that these models and govern-
ing equations are valid under some strict assumptions in perfect conditions. Indeed,
deterministic models provide us with the fundamental theories required to under-
stand real-world processes better. However, they are too delicate to be useful in
many real-world applications. This is because real-world applications are subject to
multifarious imperfections and outliers, which are too diverse to be fully addressed
by manually derived deterministic processes.

An alternative approach to manually developing deterministic models is ma-
chine learning. Data-driven machine learning algorithms aim to build determin-
istic models by recognizing the patterns in vast amounts of data. As data comes
directly from real-world, e.g., self driving car sensors [1], social networks [2], e-
commerce [3], online entertainment platforms [4], scientific experiments [5], etc.,
it is assumed that data consist of the imperfections that can occur in the real world
and hence can be learned during the training phase. Although it has been proven
useful in many practical application areas, data-driven machine learning algorithms
are notorious for being data-hungry methods. Even if the machine learning algo-
rithm is trained with vast amounts of data, it is still quite likely to encounter new
types of imperfections and outliers in action since the world is a complex environ-
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ment full of surprises [6, Section 3.1.4].

In the other branch of mathematical modeling, namely probabilistic modeling,
we tend to model real-world processes with the means of probability theory as it
provides us with a formal language for plausible reasoning under uncertainty [7].
In probabilistic modeling [8, 9], we work with generative models consisting of ran-
dom variables and functions of the random variables. A generative model is a prob-
abilistic description of our beliefs and assumptions about the true data generating
process. Generally, a generative model is specified by two functions: a sampling
distribution of the data, given the latent variables, and a prior distribution on the
latent variables. Once observations are substituted in the sampling distribution,
this function turns into a likelihood function for the latent variables. Given prior
and conditional distributions along with data, probability theory describes how to
reason rationally by manipulating probability distributions through the sum and
product rules [10]. This process of updating probability distributions by sum and
product rules when new information becomes available is known as Bayesian infer-
ence.

Probabilistic modeling has unprecedentedly changed our lives over the last cou-
ple of decades. For example, probabilistic interpretation of matrix factorization
methods have led to practical recommendation systems [11,12] and efficient signal
processing algorithms [13, 14]; probabilistic topic models [15-17] have analyzed
large corpora of digitized text and compiled information for us; Bayesian time se-
ries models [18, 19] have yielded successful smart applications in a wide variety
of areas ranging from finance [20-22] to audio processing [23-25]; probabilistic
relational learning models have adaptively detected the clusters in networks [26]
and allowed nodes to be a member of multiple clusters as in the real-world [27].

Probabilistic modeling has transformed the robotics [28], control [29,30], plan-
ning [31,32] and decision making fields [33] as well. From self-driving cars [34] to
cleaning robots [35], intelligent agents that are equipped with probabilistic models
have been becoming an indispensable part of our lives. But, what is it that makes
probabilistic modeling and Bayesian inference so unique in intelligent system de-
sign?

The world is a complex environment in which living organisms, as the agents
of this environment, interact with each other and surrounding non-living objects.
Succeeding in such a complex environment as an intelligent agent requires more
or less reliable and reasonable decision-making abilities. The adverb more or less
is intentionally written to account for humankind’s biases in its decision-making
mechanism under uncertainty [36]. An inevitable part of complex environments as
the agents act not in an entirely predictable manner; uncertainty needs to be taken
into account while making decisions and taking actions. Considering that there are
other sources of uncertainty such as perceptual uncertainties [37] and uncertain-
ties due to inductive biases [38] as well, it becomes even more pivotal to quantify
uncertainty in intelligent agent design. At this point, probabilistic modeling and
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Bayesian inference come to the rescue by providing us with the tools to represent
our beliefs on random variables with probability distributions that inherently quan-
tify uncertainty.

So far, we have endorsed probabilistic modeling and Bayesian inference, but the
reader is probably wondering: where is the catch?

The catch is that Bayesian inference is only computationally straightforward for
carefully designed, simple models. However, many real-world processes require
complex functional dependencies between random variables with structured model
specifications. While designing models, we are supposed to keep the inference
phase in the corner of our minds. Therefore, conventional probabilistic modeling
necessitates expertise in Bayesian inference by precluding the experts in their own
fields from fully utilizing the probabilistic modeling paradigm.

A popular subfield of machine learning, deep learning [39], has passed through
a similar path. The training phase in deep learning models is predominantly per-
formed by an algorithm called backpropagation [40]. Implementation of the back-
propagation algorithm is tedious as it requires the calculation of the partial deriva-
tives with the chain rule formula. Recent advances in automatic differentiation
tools [41] gave birth to deep learning packages and libraries [42-46], and facili-
tated the research and engineering activities in the deep learning field. Nowadays,
hardly a day goes by without news of a breakthrough deep learning achievement.
Inspired by the impact of deep learning packages on the deep learning field, a new
programming paradigm called probabilistic programming strives to make a similar
impact on probabilistic modeling.

1.1.1 Probabilistic Programming

The term Probabilistic Programming Language(s) (PPL) is an umbrella term that
refers to programming languages, libraries, and packages to support the automa-
tion of inference procedures in probabilistic models [47]. PPLs aim to allow end-
users to focus only on (probabilistic) model specification without worrying about
the inference phase. Below we list some desired functionalities for a PPL:

* Precision: Precision in inference can be vitally important as probabilistic
models are often incorporated into decision-making systems in real-world ap-
plications.

* Performance metric: An end-user should be able to track the performance of
the model and the inference process, for model comparison and diagnosis.

* Speed: A self-driving car should be able to make decisions right away; an
algo-trader bot must exploit the opportunities in the market before the oppor-
tunities disappear. Therefore inference procedures are desired to be fast.
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* Universality: A PPL must support inference in a broad range of probabilistic
model types to let end-users fully reflect their domain knowledge in the model
specification phase.

* Scalability: In the era of big data, PPLs should possess inference engines that
scale to terabytes of data.

* Full automation: Inference algorithms must be hyperparameter-free to the
furthest extent to relieve end-users from hyperparameter selection.

In this dissertation, we study two categories of Bayesian inference algorithms:
deterministic methods and stochastic methods. We shall talk about deterministic
methods in a short while, but let us first introduce stochastic methods. The most
popular Bayesian inference algorithms for probabilistic programming fall under the
category of stochastic methods. Among them are Hamiltonian Monte Carlo (HMC)
[48], No-U-Turn Sampler (NUTS) [49], Automatic Differentiation Variational In-
ference (ADVI) [50] and Black-Box Variational Inference (BBVI) [51]. Whereas
HMC and NUTS are pure instances of Monte Carlo methods, ADVI and BBVI are
instances of variational methods sticking to the Monte Carlo sampling procedure.
Monte Carlo methods and sampling procedures [52] are popular in probabilistic
programming because they yield broadly applicable Bayesian inference engines.
However, loosely speaking, generic purpose Monte Carlo-based algorithms can be
prohibitively slow to be practical for real-world applications, especially in state-
space and time series models that are often used in robotics, control, and decision-
making fields. Moreover, generic purpose Monte Carlo-based algorithms perform
approximate inference even if the model allows for analytical marginalizations. Re-
cent works in the probabilistic programming field [53-55] strive to alleviate these
shortcomings of generic purpose Monte Carlo-based algorithms by exploring and
exploiting the conjugacy structures in probabilistic models. In this dissertation,
we focus on an alternative probabilistic programming formulation that is based on
message passing inference on Forney-style Factor Graphs (FFGs) [56,57].

1.1.2 Forney-style Factor Graphs and Message Passing

We briefly mention deterministic inference algorithms and Probabilistic Graphical
Models (PGMs). PGMs are visualization tools that depict the (in)dependency struc-
tures between random variables in probabilistic models [58,59]. The most popular
PGM types are Directed Graphical Models (DGMs), representing random variables
with nodes in the graph. In DGMs, random variables are connected through di-
rected edges, representing the direction of the generative model. Learning DGM
structures from data is an active research area in the PGMs field [60,61]. In this
dissertation, however, we focus on the automation of Bayesian inference algorithms
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by means of message passing on fixed factor graph structures. Factor graphs are an-
other class of PGMs that visualize the functions of random variables with factor
nodes alongside the random variables. Factor graphs are particularly devised to
reflect the factorizations in factor graphs. In signal processing applications, Forney-
style Factor Graphs (FFGs) [56,57] are widely used, and we also work with FFGs in
this manuscript to particularly facilitate the design processes of probabilistic signal
processing algorithms [62]. In an FFG, factor nodes relate to the factorized function
of random variables, while edges that connect the factor nodes to each other are
associated with the random variables in the probabilistic model specification. Since
an edge can be maximally connected to two factor nodes, FFGs employ equality
nodes to branch out the random variables. For example, consider an FFG visualized
in Figure 1.1. This FFG is a graphical representation of the following factorized
function

3
p(zy1v2,u3) = p(2) [ [ pwil2) -
—_— =~ S~——

Feanyes)  fa(2) T folyi)

Factor graphs differ from DGMs in that DGMs are meant to be visualization tools
while factor graphs are computational graphs. Let us detail what we mean by the
computational graphs.

In FFGs, Bayesian inference is customarily performed through distributed, de-
terministic inference algorithms that are termed message passing algorithms. Belief
Propagation (BP) [63,64], Variational Message Passing (VMP) [65, 66] and Expec-
tation Propagation (EP) [67] are well known examples of deterministic message
passing-based Bayesian inference algorithms. VMP and EP are approximate infer-
ence algorithms similar to the aforementioned Monte Carlo-based methods. On the
other hand, BP is an exact inference algorithm in tree-like FFGs. In loopy graphs,
however, running BP in a loopy manner also leads to an approximate inference pro-
cedure [68]. It has been shown in previous works [69-71] that the message passing
algorithms BP, VMP, and EP refer to a constraint optimization of an objective func-
tional called (variational) free energy. Changing the constraints on approximating
distributions in the free energy optimization and deriving the stationary point equa-
tions analytically, one can recover different known or novel message passing algo-
rithms [69]. Hence, message passing algorithms are almost hyperparameter-free,
except for the number of iterations in iterative settings', given that the inference
steps are calculated in closed form. As the message passing algorithms implicitly op-
timize the free energy functional, the free energy inherently arises as a performance
metric for the message passing algorithms. Therefore, we will be working with min-

! Assuming a default automation process that initializes beliefs with specified or noninformative priors
and updates the beliefs following the graph structure. In Loopy BP, the initial messages are customarily
set equal to 1 [70].
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Figure 1.1: A Forney-style Factor Graph (FFG) representation for a coin tossing model. Mes-
sages propagate towards the edge associated with the random variable z and
collide to generate the posterior distribution p(z|y1, y2,ys)-

imization of the free energy functional as the computational objective throughout
the dissertation.

In comparison to the stochastic methods for probabilistic programming, message
passing algorithms are often faster, especially in signal processing applications such
as state space model variants. Moreover, in contrast to the stochastic methods
for probabilistic programming, message passing algorithms are able to exploit the
factorizations and conjugacy relations in probabilistic models to perform analytical
calculations.

Message passing-based inference has an elegant interpretation in both the ma-
chine learning [64, 72] and the computational neuroscience [73] literature. In this
interpretation, factor nodes collect messages propagating on the edges that are con-
nected to themselves. The messages inform the factor nodes about the rest of the
graph. As computational units of FFGs, factor nodes then calculate outgoing mes-
sages using incoming messages and the functional relationship between the random
variables defined on the nodes. When two messages meet on the edge, they col-
lide and give us the marginal belief of the variable that is associated with the edge.
Hence, collision refers to the product operation followed by normalization.

Consider once again the FFG given in Figure 1.1. This FFG depicts a coin-tossing
experiment with three tosses. The probability of heads is denoted by the random
variable z, which is shared across tossing events through equality nodes as the
coin is the same in all three tossing events. The messages coming to the variable
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z carry the information about the rest of the graph. The message on the left is
customarily called the forward message as it follows the direction of the sampling
distribution and carries our prior belief on z. The message on the right, which we
call the backward message, is the collective information coming from tossing events.
As customary in the message passing framework, the messages carry probability
distributions.

In FFGs, factor nodes are locally isolated computational units, given the incom-
ing messages. This local feature of FFGs is useful in probabilistic modeling as it
allows us to build a library of reusable components. Having designed a set of factor
nodes with message passing rules for a model, we can employ these nodes over
and over again in different model specifications. Therefore, the FFG framework is
time-saving for personal usage, but the question is if can we develop a universal
PPL that renders inference in a broad range of probabilistic model types based on
the plug-in-type architecture of FFGs for common usage?

. Method Message Passing Monte Carlo Stochastic VI
Criteria
Precision
Performance metric
Speed v X X
Universal X v v
Scalable X X v
Full automation

Table 1.1: A superficial comparison table of message passing, Monte Carlo (like HMC and
NUTS) and stochastic VI (like BBVI and ADVI) algorithms for probabilistic pro-
gramming. We want to combine the best of the algorithms in a unified framework
built upon FFGs.

Message passing algorithms are fast and seamlessly interface with the plug-in-
type architecture of FFGs, but they require manually derived inference rules. There-
fore, message passing algorithms are hard to generalize and violate the universality
criteria for PPLs. In contrast, stochastic methods are broadly applicable, but all are
approximate and often run slowly. A comparison of the three most widely used
probabilistic programming algorithm classes is given in Table 1.1. This comparison
superficially reflects the characteristics of the inference classes, and of course, there
are attempts to mitigate these shortcomings, e.g., [74] aims to address scalability
issues in Monte Carlo methods. Nevertheless, we focus on the conventional impres-
sions of these three inference classes. In addition, though not widely employed in
the probabilistic programming context, deterministic approximation methods such
as Laplace approximation [75, Section 4.4] [6, Section 7.4.3] [76, Section 28.2]
and sigma-point methods [77] [19, Chapter 6] form an alternative class of infer-
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ence methods. These methods are not as universal as stochastic methods, yet they
are flexible to carry out inference in those models that are challenging for the con-
ventional message passing algorithms.

In Table 1.1, we abstain from assessing the three popular probabilistic program-
ming inference classes in terms of precision, performance metric, and full automa-
tion, for now, to avoid reducing the discussion to a rather controversial present -
absent sort of classification. Nonetheless, we mentioned that the free energy ob-
jective is a natural candidate to be a performance metric in message passing-based
PPLs. We also bridged a connection between the constraint free energy optimization
by deterministic message passing algorithms and hyperparameter-free Bayesian in-
ference in probabilistic models. In fact, free energy forms the objective to be min-
imized in the aforementioned Monte Carlo-based variational inference algorithms,
too. Oftentimes, they also use factorized distribution families to approximate pos-
terior distributions, similar to VMP. Whereas the minimization of the free energy in
VMP is based on the analytical execution of the coordinate descent, Monte Carlo-
based variational inference algorithms employ free energy gradient estimates in
stochastic gradient descent, and hence they are often referred to with the generic
term stochastic variational inference (vi) algorithms. This stochastic optimization
setting allows stochastic vi algorithms to scale almost universally [78, 79]. How-
ever, the costs of the scalability and universality features for stochastic vi algorithms
are slower convergence and more hyperparameter-dependent inference procedures
compared to the message passing algorithms. Throughout this dissertation, we shall
also build a more detailed intuition about the nature of the inference algorithms in
terms of precision, performance metric, and full automation criteria.

We summarize the discussion so far:

* Probabilistic programming (PP) is a programming paradigm that aims to make
probabilistic modelling accessible to end-users with varying degrees of back-
ground in Bayesian inference and probabilistic modeling.

* Monte Carlo-based probabilistic programming algorithms have gained a rep-
utation for their generality, i.e., they are very broadly applicable. There-
fore, the bulk of the inference engines in PPLs are comprised of Monte Carlo-
based probabilistic programming algorithms. However, they are slow to be
employed in certain model specifications, especially the ones concerning the
signal processing applications such as state space model variants and time
series models.

* Message passing algorithms are efficient. By efficiency, we imply that (i) mes-
sage passing algorithms are fast; (ii) given the inference steps are analytically
executed, message passing inference steps refer to the stationary point equa-
tions of the free energy manipulated by constraint specifications [69]. We
also briefly discussed why message passing algorithms can be claimed to be
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hyperparameter-free algorithms except for the number of iterations. Unfor-
tunately, many probabilistic models of interest do not allow analytical calcu-
lations; hence, message passing can not be applied in closed form. Further-
more, it is not viable to register message passing rules manually such that the
inference can be executed universally.

* There are alternative deterministic approximation methods such as Laplace
approximation, which are not widely used in probabilistic programming. Laplace
approximation is not entirely universal. Nevertheless, it is flexible to be em-
ployed in the approximation of the marginals for real-valued variables.

* FFGs constitute a unified framework for probabilistic modeling with message
passing algorithms. As to be demonstrated, the plug-in-type architecture of
FFGs is not only useful to automate message passing algorithms but also to
formalize hybrid and black-box inference procedures.

1.2 Research Questions

We have discussed Monte Carlo simulation-based and message passing-based infer-
ence algorithms by emphasizing that the former is more broadly applicable while
the latter is faster in general. Based on the foregoing considerations, the main
theme of this thesis can be described as follows:

In this thesis, we are in pursuit of a PPL framework that combines the
advantages of both sampling-based and message passing-based inference
without taking over the downsides of both frameworks.

In particular, this work is driven by the following concrete research questions:

RQ1. How can we automatically execute Bayesian inference in an efficient manner?

FFGs have been formalized as a PPL framework in [62,80] and implemented
as a Julia language package, called ForneyLab.jl. ForneyLab employs the FFG
formalism of the standard message passing algorithms such as BP [57, 72],
VMP [66], and EP [81] to execute Bayesian inference, efficiently. To be able
to build a universal PPL framework that is fast and efficient, we first need to
review FFGs and standard message passing algorithms. Then we can assess
the standard message passing algorithms on FFGs regarding the universality
criteria. Can we combine the factor nodes seamlessly? Deterministic mes-
sage passing update rules need to be derived for each and every new factor
node. Does this not impede the design of a universal PPL built upon the FFG
formalism?
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RQ2.

RQ3.

RQ4.

How can we automatically combine the generality of Monte Carlo sampling and
flexibility of Laplace approximation with the efficiency of message passing algo-
rithms?

Bayesian inference by means of message passing is a distributed operation
that exploits the conditional independence relations between variables in the
FFG. How about foregoing a subset of analytic operations complicating the
overall inference procedure in favor of more generally applicable approxima-
tion methods, e.g., importance sampling and Laplace approximation? How
can we make sure that importance sampling and Laplace approximation are
automated in the PPL and functioning in concordance with the message pass-
ing procedures?

Having developed a hybrid Monte Carlo - message passing inference procedure,
is it possible to improve the accuracy of Monte Carlo estimates within message
passing in an automated way?

The above research question RQ2 yields a hybrid Monte Carlo - message pass-
ing inference procedure. The performance of this hybrid Monte Carlo - mes-
sage passing inference procedure should be investigated. For those cases
where the precision of Monte Carlo estimates is not satisfactory, is it possi-
ble to improve estimates without requiring additional hyperparameters in the
overall inference procedure?

How can the free energy gradient estimates help us for scalable and universal
variational inference?

The main difficulty in Bayesian inference is intractable integrals. Variational
inference methods transform the probabilistic inference task into an opti-
mization problem with a surrogate objective function called the (variational)
free energy, which is an upper bound to the negative log-likelihood objective
that we originally wanted to minimize [82]. Stochastic variational inference
methods employ noisy free energy gradient estimates in the optimization pro-
cedure, which paves the way for scalable and broadly applicable inference
procedures. How can we formulate these methods in the message passing
framework? Do we gain over raw stochastic variational inference methods by
combining them with message passing procedures?

1.3 Summary of Contributions

Below, we list the contributions of this thesis to the machine learning and proba-
bilistic programming fields.



1.4 Outline 11

* In Chapter 2, we give a concise review on Forney-style Factor Graphs (FFGs)
and message passing interpretation of deterministic Bayesian inference algo-
rithms such as Belief Propagation (BP), Variational Message Passing (VMP),
and Expectation Propagation (EP). We explicitly specify the problems to be
addressed to build a broadly applicable probabilistic inference engine in the
FFG framework.

* In Chapter 3, we introduce a novel inference algorithm called Extended Varia-
tional Message Passing (EVMP). EVMP interfaces particle methods and Laplace
approximation with message passing algorithms to estimate approximate pos-
terior marginals and expectation quantities that are arguments to VMP mes-
sages.

* In Chapter 4, we propose an automated stochastic optimization-based adap-
tive particle method to improve the precision of Monte Carlo estimates in the
EVMP algorithm.

* In Chapter 5, we reformulate two well-known variational inference methods,
namely Stochastic Variational Inference (SVI) [83] and Conjugate-computation
Variational Inference (CVI) [84], as probabilistic programming algorithms in
a message passing framework on FFGs. We show, in general, how to combine
stochastic approximation methods for variational inference as local operations
that interface with message passing algorithms.

* The majority of the proposed algorithms have been implemented in an FFG-
based PPL called ForneyLab.jl > [62]. ForneyLab aims to facilitate intelligent
agent design cycles by automated message passing algorithms [80]. The ex-
periments in this dissertation are all available online®. We also provide an ad-
ditional Julia package called LargeMessageCollider* to prove the usefulness
of some of the ideas presented in this dissertation that are not implemented
in ForneyLab, yet.

1.4 Outline

The proposed automated inference algorithms in this thesis are developed within
the FFG framework. Therefore, in Chapter 2, we address RQ1 by reviewing FFGs
and the standard message passing algorithms while introducing the notation of this
manuscript. In tree-like factor graphs, inference can be performed exactly as long as
we are able to calculate integrals (or summations in discrete cases) in closed form

2https://github.com/semihakbayrak/ForneyLab.j1/tree/dev
Shttps://github.com/semihakbayrak/UniPPLuMP
“https://github.com/semihakbayrak/LargeMessageCollider. j1/tree/UniPPLuMP


https://github.com/semihakbayrak/ForneyLab.jl/tree/dev
https://github.com/semihakbayrak/UniPPLwMP
https://github.com/semihakbayrak/LargeMessageCollider.jl/tree/UniPPLwMP
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(or in a reasonable amount of time in discrete cases). The algorithmic formulation
of exact Bayesian inference by message passing is called Belief Propagation (BP).
We give a review of the BP algorithm together with intuition on how to represent
messages with probability distributions. We also review the popular approximate
inference procedures, namely Variational Message Passing (VMP), structured VMP,
and Expectation Propagation (EP) for those models that are not amenable to exact
inference. When executing VMP and EP, two concepts in probability theory deserve
special attention: the exponential family of distributions and conjugacy. We also
define these terms within the context of factor graphs and message passing. Having
provided a technical review of the standard message passing algorithms on FFGs,
we explicitly describe the problems to be addressed in the next chapters.

Message passing update rules for VMP in factor graphs are functions of cer-
tain expectation quantities. These expectation quantities are available for conju-
gate factor pairs as the gradient of the log-normalizer in the exponential family of
distributions. Otherwise, when connected factors are not conjugate pairs, we can
still estimate them numerically and approximate VMP messages. In Chapter 3, we
show how to estimate these expectation quantities with importance sampling. In
FFGs, forward messages arise as normalized proper distributions, which constitute
the proposal distribution in the importance sampling procedure. Therefore, pro-
posal distribution design can be delegated to the model itself. As a special case,
we approximate the posteriors with Laplace approximation in those cases where
the forward message is a Gaussian distribution. The resulting method is called Ex-
tended Variational Message Passing (EVMP) and addresses the RQ2. We introduce a
pseudo-distribution representation called a “List of Weighted Samples” to represent
marginal distributions and messages. In this chapter, we cast deterministic factor
nodes as the tools that enable end-users to specify a broad range of probabilistic
models. We preserve this casting in later chapters as well. To keep the chapter con-
cise, we only provide the reader with the inference rules in Chapter 3. Nevertheless,
the reader can find the reasoning behind the rules in the Appendixes.

In Chapter 4, we demonstrate that the EVMP algorithm might not be a viable
solution in those model specifications that priors are not good representatives of
posteriors. We, therefore, propose an Adaptive Importance Sampling (AIS)-based
solution to improve the Monte Carlo estimates and address RQ3.

In Chapter 5, we address RQ4 by focusing our attention on the already existing,
well-known methods that are optimizing the free energy objective using stochas-
tic optimization methods. We especially focus on natural gradient descent-based
Stochastic Variational Inference (SVI) and Conjugate computation Variational Infer-
ence (CVI) methods. We demonstrate that it is easy to formulate these methods as
probabilistic programming algorithms in the message passing framework on FFGs.
We also show efficient realizations for Black Box Variational Inference (BBVI) and
reparameterization-based stochastic variational inference methods [85-87] as local
approximation techniques in the message passing framework.
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Chapter 6 reflects a final discussion and concludes the dissertation.







Chapter 2

Automating Bayesian Inference
with Message Passing

Parts of this chapter are published in the original works referenced below.

e Semih Akbayrak, Ismail Senéz, Alp Sar1 and Bert de Vries, Probabilis-
tic Programming with Stochastic Variational Message Passing, Interna-
tional Journal of Approximate Reasoning, 2022

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

Abstract

This chapter introduces the notational convention of this manuscript, closely ad-
hering to [69]. We also provide a background on Forney-style Factor Graph (FFGs)
[56] and message passing algorithms commonly used for Bayesian inference on
FFGs. We start with Belief Propagation (BP) [52,63] on tree-like factor graphs to
show how to perform exact inference efficiently with a set of distributed opera-
tions (see [57,72] for BP on FFGs). Then, as exact inference is not applicable in
many model specifications of interest, we provide an overview of distributed ap-
proximate inference methods, namely Variational Message Passing (VMP) [65] and
Expectation Propagation (EP) [67,88] (see [66,81] for VMP and EP on FFGs, re-
spectively). In conjunction with VMP and EP, we briefly mention the exponential
family of distributions [89] and moment matching. We also provide the intuition
behind automating these algorithms for probabilistic programming on factor graphs
throughout the chapter (see [62] for a formal FFG formulation as a probabilistic
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Figure 2.1: A sub-graph G ({a,b},j). The edge j is connected to factors a and b, which
implies that z; is an argument to functions f, and f. We denote the message on
edge j from f, and f, with mq;(z;) and ms;(z;), respectively.

programming language framework). Finally, we conclude the chapter by pointing
out the shortcomings of these algorithms from a probabilistic programming point
of view. We refer the interested reader to [64,69,72] for a detailed treatment of BP,
VMP, and EP.

2.1 Introduction

In a dynamic world with full of randomness and uncertainties, we tend to define
real world processes by functions of random variables, in which learning takes place
as a probability distribution estimation over the variables rather than point esti-
mates. Given a function of random variables, a Forney-style Factor Graph (FFG)
[56, 57] depicts the independency structure between random variables together
with existing factorizations in the function. Consider a factorized function f(z) =

I fa(z.) of a collection of random variables z, where z, stands for the subset
acVy
of random variables that are arguments of f,. Specifically, an FFG is a graph

G = (V,&), where V stands for the set of factor nodes and £ C V x V denotes
the set of edges. The edges connected to a node a € V are denoted by £(a). Simi-
larly, V(i) denotes the two factor nodes an edge i € £ is connected to. We associate
the indices a, b, ¢, d with nodes and ¢, j, k,l with edges. As we shall detail, it is
often sufficient to focus on sub-graphs in FFGs to formulate inference operations.
We refer to the sub-graph around a node a € V by G(a) = (a,&(a)). In a similar
vein, G(i) = (V(i),4) denotes the edge ¢ and the factor nodes it is connected to. We
also introduce G(a,i) = (V(i),€(a)) and G({a, b} ,i) = (V(i),E(a) UE(D)) to allow
larger sub-graph specifications (see Figure 2.1). We sometimes index sub-graphs to
differentiate them, e.g., G,(Vp,&p).

In theory, the factors in an FFG can encode any functional relationship between
random variables. However, in practice, we tend to associate the factors with prior
and conditional distributions to build probabilistic generative model hypotheses for
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physical phenomena. Consider the following hierarchical Markov model:

T

p(y,%,2) = p(z0)p(1|21)p(ui 1) [ [ p(zlz0)p(@ele, z0)p(yelz),

where p(z¢|zi—1,2t) = [ p(xe|ze—1, w)d(we — g(2¢)) dwe. The corresponding FFG
representation of this model for one time step is visualized in Figure 2.2. Note that
the random variables in the model specification are associated with edges in the
FFG. Notice that we introduce auxiliary random variables on the FFG that does not
exist in the original model specification such as 2}, 2}, z;, «. In FFGs, random vari-
ables are branched out to more than two factor nodes through equality constraints.
This is achieved by introducing an “equality” node 6(z; —z})d(2; — 2} ) that generates
the copies of z; as z; and z}'.

8z — 2)d(21 — 2)

£ : N I

Zt—1 24 Zt

p(z|-1) 2
plwilz) | fa
wy §(z — z,)0(xs — )

fo

Tt—1

fe = p(@|zi1,2,) fc p(ytlz;)

“yt

Figure 2.2: An FFG representation of one time step of a hierarchical Markov model. In FFGs,
factors represent (conditional) distributions. Here, f,, f» and f. are soft factors
that each represent a distribution. On the other hand, f; = d(w: — g(2¢)) repre-
sents a deterministic factor, where g(-) is a deterministic function. It is possible
to compose factors and consider them as a single unit. In this example, f., visu-
alized by a dashed box, stands for the composition of f; and f,. It is a notational
convention to visualize observed values (y:) by a small black node.
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An equality node is an instance of deterministic factor nodes. Deterministic
factor nodes represent deterministic conditional distributions such as p(w¢|z;) =
d(ws — g(z¢)) induced in the FFG with the factor f; in Figure 2.2. Here §(-) is
the Dirac delta in continuous domain and Kronecker delta in discrete domain.
We use the term soft factor nodes to denote probability distributions other than
Dirac delta and Kronecker delta. An interesting property of FFGs is the hierarchi-
cal composition: we can create new higher level nodes by enclosing a set of con-
nected nodes in a box and integrating out the internal variables in the box. We
call these types of nodes composite factor nodes. For instance, p(x¢|zi—1,2;) =
J p(xe|ze—1,w)0(wy — g(2¢)) dw, that is visualized with a dashed-box in Figure 2.2
is a composite node.

So far, we have treated FFGs as visualization tools. Besides visualizing the factor-
ization properties of probabilistic models, FFGs also provide a formal framework for
message passing-based inference in probabilistic models. Next, we shall overview
message passing algorithms on FFGs.

2.2 Exact Marginalization and Belief Propagation

Inference in FFGs, such as marginal calculations like f(z;) = [ f(z)dz;!, is car-
ried out by a distributed set of operations. As an example, consider the sub-graph
G ({a, b}, j) given in Figure 2.1. Suppose we are interested in obtaining the marginal
for z;, which amounts to computing

f(z5) = / fa(Za)dza / Folzw)dzy, - @.1)

maj(2;) mp;(25)

In this notation, m,;(z;) and my;(z;) denote the messages on edge j propagating
from f, and f, respectively. Once the messages m,;(z;) and m;;(z;) have been
calculated, the marginal distribution calculation refers to multiplication of the mes-
sages followed by a normalization:

G fG) L mag(z)me(2)
o) JF(z)dz; [ mag(zi)me;(z;)dz; (2.2)

This exact inference procedure in tree-like FFGs is known as Belief Propagation
(BP) [57,63,64,72].

IThroughout the manuscript, we use integral operator to denote integration in continuous domain
and summation in discrete domain.
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It is customary to normalize messages mg;(z;) and m;(2;) for numerical stabil-
ity and to parameterize the messages with standard probability distributions:

m (z):m m .(Z.):M
e ffa(za)dza ’ bi\g ffb(Zb)de '

Normalizing the messages and parameterizing them with standard probability dis-
tributions does not affect the result of the marginal distribution as marginal distri-
bution calculations (2.2) already involve a normalization procedure. However, it
paves the way for the automated BP.

Incoming Outgoing

Factor Message Message

Mg (2;) Mq;(25)
G fo =% & —75) mi=Ga(a,) my =Galra,p)

my; () My (21)
m— fb 2k Po(zk;zj) Mpp = 5(Zk — 72k) My = ga(ﬁk + 1, 1)

Figure 2.3: Example BP rules around a deterministic factor f, and a soft factor f,. The rules
are defined locally, which facilitates automated BP and equips FFGs with a plug-
in-type structure.

Consider Figure 2.3, where we define example BP rules around a deterministic
factor f,(z;,z;) = 8(z; — vz;) and a soft factor fy,(zx, z;) = Po(zk; 2;) standing for
Poisson distribution. Notice that the rules are defined locally around the factors,
which facilitates automated BP and equips FFGs with a plug-in-type structure. As
the rules are defined locally around factors, we introduce a new notation for the
messages: m;,(2;). Recall that we have already distinguished indices for factors
and edges: we tag factors with a, b, ¢, d and edges with i, j, k,l. Therefore, m,,(z;)
denotes the message on edge i propagating towards factor a, whereas my;(z;) de-
notes the message on edge ¢ propagating from factor a. This notation enables us to
work around factor nodes and derive message passing rules locally.

Having defined the BP rules around the nodes f, and f,, we can connect them
as in Figure 2.1 to construct a sub-graph. To complete the marginal distribution cal-
culation in an automated manner, we should define message collision rules. Recall
from Section 1.1.2 that the collision of the messages is the product of the messages
followed by normalization. For example, the collision rule that calculates (2.2) for
Gamma messages mq;(2;) = Ga(z;; aq, Ba) and my;(z;) = Ga(zj; ap, Bp) is

p(25) X maj(z5)mpi(25) = Ga(zj; e+ — 1, Ba + Bp),
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where Ga(a, ) is a Gamma distribution with shape « and rate 3. By defining these
rules, we lay the foundations of a modular plug-in-type FFG-based probabilistic
programming language (PPL). We can enhance the capabilities of our PPL by intro-
ducing more factors like Figure 2.3, BP message passing rules around these factors
and message collision rules that realize marginal distribution calculations.

To sum up, BP formalism perfectly aligns with the plug-in structure of FFGs.
However, unfortunately, the integrals for computing messages in BP rarely have
analytical solutions. A similar issue arises in the discrete domain as the number
of random variables to be marginalized out increases, resulting in intractable sum-
mations. Next, we shall overview Variational Message Passing to address these
shortcomings of BP.

2.3 Exponential Family of Distributions and Variational
Message Passing

The integrals for computing messages in BP rarely have analytical solutions. Instead
of calculating the marginals exactly, Variational Message Passing (VMP) [65, 66]
iteratively approximates them by introducing additional factorizations in joint dis-
tributions and minimizing a variational objective called free energy.

Consider a sub-graph G (b). The joint distribution of z; in the sub-graph G (b)
under marginalization and normalization constraints is given by [69]

p(z) - S
/ f(zo)dzs

where f(zy) = fy(zb) H miy(2;) - (2.3b)

i€E(b)

(2.3a)

We approximate this joint distribution by a factorization q(z,) = q(z\ ;)q(z;) by
minimizing the free energy

q(z)
f(zs)

which is an upper bound to the negative log normalizer in (2.3a). ¢(z ;) may
comprise further factorizations that are not explicitly stated. Keeping only the terms
with z; in (2.4),

F ]E(I(Zj) [IOg q(zj)] - J—Eq(zj) [IOg mjb(zj)} - Eq(zj) [Eq(zb\j) [IOg fb(zb)]] ) (2.5)
we find that the stationary points of F w.r.t. ¢(z;) are (Appendix A)

]:[q(zbﬂ = IEq(zb) |:10g :| > _IOg/f(Zb) dzy, (2.4)

o mgp(z)me(z) (2.6)

Q(ZJ) - f'rrLJb(Zj)TrLbj(ZJ)d'ZJ7
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where my;(z;) is a VMP message calculated by

maj(23) o exp (Eyga,, ) l0g fol2)]) 2.7)

VMP provides a distributed algorithm for coordinate-descent optimization of
the free energy by iteratively updating the variational factors one at a time while
keeping the other factors fixed [75,82,90]. Let us investigate the VMP algorithm by
imposing two types of prevalent factorization constraints on ¢(z;): mean-field and
structured mean-field.

2.3.1 Mean-field Assumption

In mean-field assumption, we assume a fully factorized recognition distribution
q(ze):

a@) = [ (=) (2.8)
)

ic&(b
which leads to the following recursive algorithm in FFGs [66]:
1. Choose a variable z; from the set z;.
2. Collect the message m;;(z;) and compute my;(z;) by (2.7)
3. Update the approximate marginal ¢(z;) by (2.6)
4

. Update the local free energy (for performance tracking), i.e., update all terms
in F by (2.5) that are affected by the update of ¢(z;).

VMP with mean-field assumption is often easy to execute and amenable to au-
tomation as the message and the free energy calculations amounts to calculation
of individual random variables’ expectation quantities (we shall elaborate on this
in Chapter 3). Unfortunately mean-field is a naive assumption that is insufficient to
result in satisfactory estimations in highly structured model specifications such as
state space models.

2.3.2 Structured Mean-field Assumption

For many model specifications, it is desirable to retain certain dependency struc-
tures in the recognition distribution ¢(z):

q(zv) = q(zj)q(2p\5), (2.9)

where we do not assume further factorization in ¢(z ;). This structured mean-field
assumption leads to the following recursive algorithm in FFGs [66]:
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1. For z;, run steps 2,3,4 defined above for mean field.
2. Collect the messages m;,(z;) for all i € £(b),i # j.
3. Update the approximate joint distribution ¢(zy ;) by
q(zp\j) o exp (Eq(z,) [log fo(zs)] H mip(2;) (2.10)
i€E(b)

i#]

4. Update the local free energy, i.e., update all terms in F that are affected by
the update of q(z ;):

F < Eqay ) log q(zpn )] = > Eya,)[log fa(za)]. 2.11)

a€ U V(i)
ic&(b)
i#£]

Note that we are often interested in approximate marginals of random variables,
which can be calculated by marginalization, e.g.,

q(zi) = /q(Zb\j)de\{i,y‘}-

Similarly, the joint distribution of the subset of z;, ; can be calculated by marginal-
ization, e.g.,

q(zi, 2) = / q(zp\ ;) dzp) (35,1} -

2.3.3 Exponential Family of Distributions

The generic VMP message formula is given in (2.7), which involves an integration
operation as in BP. Compared to BP, however, the integrand in VMP messages is
more amenable to analytical calculations for a certain type of functional form f;,
possesses:

So(zp) o< exp (¢5(25)T A (z4y5))

This functional form relates to exponential family of distributions [89] [91, Chapter
8] (Appendix B) as we shall detail in Chapter 3. Substituting the above f;, in (2.7)
yields the VMP message

My (25) o< exp(@;(2) T Eg(ay, ;) [ (Z014)])-

Mvj
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Notice that VMP preserves the functional form of f; in the message ms;(z;). If the
messages m;y(z;) and my;(z;) take the functional forms (with identical sufficient
statistics)

m;p(zj) o< exp(¢;(z5)Tnjp) (2.12a)
my;(z5) o< exp(o;(2;)Tm;), (2.12b)

then the factors in V(j) are called conjugate factor pairs [92, Chapter 2.4]. Conju-
gate factor pairs allow the approximate marginal ¢(z;)* in (2.6) to be analytically
evaluated in the exponential family of distributions

q(z5)" = hj(z;) exp(d;(z;)T (njp + mwj) —A;(0;))- (2.13)
—_———

nj

Above h;(z;) is a constant base measure, ¢;(z;) is a vector of sufficient statistics, 7;
is a natural (canonical) parameters vector and A;(n;) is the log-normalizer

Aj(nj) = log (/hj(zj)eXp(¢j(Zj)Tnj)de) : (2.14)

2.4 Moment Matching and Expectation Propagation

Now, we present a message passing interpretation for another popular approximate
inference method, namely Expectation Propagation (EP) [67]. Similar to VMP, EP
proposes an iterative approach for approximate Bayesian inference. As opposed
to VMP, which minimizes the KL divergence D [q(z;)||p(2;)] through free energy
minimization, EP carries out approximate inference through minimization of the
reverse KL divergence Dxr[p(z;)||¢(z;)]. Minimizing this reverse KL divergence
refers to moment matching [75, Chapter 10.7]. Before diving into details of EP, let
us explain moment matching.

Consider ¢(z;) in the exponential family of distributions given in (2.13). In
(2.13), ¢(z;) is parameterized with natural parameters 7;. Alternatively, we can
parameterize ¢(z;) with the expectation of sufficient statistics, otherwise known as
moment parameters [91]:

G =Y;(n) = Eq(z)[0(25)]- (2.15)

Notice that (2.15) introduces a link function ¥;(#;) as a mapping from natural pa-
rameters to moment parameters. Indeed, such a mapping is possible in exponential
family of distributions and defined as the gradient of the log-normalizer [91] (find
derivation in (B.14)):

GG = Vi, Aj (). (2.16)
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Figure 2.4: An equality node f; is visualized together with sub-graphs it is connected to. At
an EP iteration, f3 collects approximate messages from all the edges but the edge
k and send a message vy, (21) towards zx. In return, f, collects an approximate
message vis (25 ) to be used in message calculations towards other variables.

We want to find such a ¢(z;) in the exponential family of distributions with suf-
ficient statistics ¢;(z;) that minimizes Dy [p(z;)||¢(z;)]. This can be achieved by
setting the moments ¢; of ¢(z;) equal to E,(, [#;(z;)], which refers to the following
distribution

q(zj) = hj(z;) exp (65 (z) O (B 65 (2)]) — 4 (‘I’fl(Ep(zj)[¢j(Zj)]))()2- ”
The EP algorithm realizes this moment matching scheme in an iterative manner
to approximate marginal distributions. The message passing interpretation of the
EP algorithm, which we will make in a short while, inspired some approaches pre-
sented in this manuscript. The crux of the EP algorithm from the message passing
point of view is to replace messages with approximate messages that ease calcu-
lations in later steps. For example, consider a normalized message m;(z;) that is
not in the exponential family of distributions. The EP algorithm allows us to re-
place it with an approximate message v;,(z;) that is in the exponential family of
distributions and more amenable to analytical calculations in the later stages of the
message passing procedure. This approach of exchanging messages is valuable from
the probabilistic point of view, as well. Recall that building a message passing-based
PPL necessitates manually registered inference rules: collision rules on edges and
message passing rules around factor nodes, which substantially restrict the capabili-
ties of the message passing PPL. Nevertheless, we can harness the existing inference
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rules in the PPL by exchanging m; (z;) with v;;(z;) for which the inference rules are
defined. Hence, EP can considerably extend the inference capabilities of a message
passing-based PPL.

The EP algorithm around an equality node f; is summarized below. We approx-
imate p(z;) with ¢(z;) having the functional form proportional to exp(¢;(z;)77;).
Thus we want to find the optimum 7; that minimizes Dg,[p(z;)||¢(z;)]. The equal-
ity node f;, and the sub-graphs that are connected to it are visualized in Figure 2.4.

* Initialize v;;(2;) o< exp(¢;(2;)Tnip) for all i € £(b)
* Until convergence repeat the following steps

1. Choose an edge k from the set £(b)

2. Calculate mkb(zk) and ka(zk H f 5 I/lb(zl) dz;
i€E(b)
i#£k

mi (25 )Vok (25)
J mus (zr)ver (z1) dzg

Calculate ¢ = Eg(.,)[#;(2x)]
Set q(z1) o< exp(¢; (1) Tk ), where my, = U (Cr)

Find vy (21,) oc ;2205 oc exp(@; (21) T (m — k)

Calculate g(zy) =

A

Above steps can be executed in practice if muy(2x), §(2x) and Eg.,)[¢;(2r)] are
amenable to analytical calculations, which is not the case for many models of in-
terest. Nevertheless, we still can run EP by approximating E;.,)[#;(2x)] through
Monte Carlo sampling methods. We refer the reader to [88] for an overview of
Monte Carlo approximations in EP. Similarly, the inverse link function \11;1 (¢x) may
not sometimes be available in closed form [93]. Alternatively, we will sometimes
use central moments instead:

Vi) = [Eq)[25]s Vo 23]l (2.18)

where V,, )[z;] is the variance of the distribution ¢(z;). Finding 1/)]._1(-) is often
easier than finding the inverse link function \I/j_l() Note that (2.18) consists of
two central moments. This is just to convey the idea of central moment matching.
In general, the number of central moments that has to be calculated must be equal
to the number of elements in 7;.

2.5 Problem Specification

By defining message calculation rules on node level and message collision rules
on edges as previously described, a modular, automated message passing-based in-
ference engine can be developed. The modularity of the inference engine can be
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enhanced further by registering new type of computational units, such as single
input/single output factor blocks for discrete variables, and unified learning algo-
rithms around them [94]. In Figure 2.5, we list the potential difficulties a message
passing-based inference engine may encounter:

* Non-conjugacy: Non-conjugate factor pairs yield messages with different suf-
ficient statistics, shown in Figure 2.5a, which preclude analytical marginal
calculations.

* Generality: Deterministic message passing algorithms such as BP and VMP
necessitate message passing rules to be defined around factor nodes in ad-
vance, which hinders custom model specifications.

* Scalability: It is known that the variational inference may not be feasible in
real-world applications when the data set is received in sequential order or is
just too large to be processed at once due to memory limitations [83,95,96].
On FFGs, we encounter this shortcoming of the variational inference around
equality nodes, e.g., in Figure 2.5c the equality node f, needs to collect VMP
messages from all the dashed sub-graphs to calculate the message my;(z;).

2.6 Conclusion

The aim of this thesis is to alleviate the above shortcomings of message passing
algorithms. In the upcoming chapters, we present our solution proposals.

| exp(¢;(2) ) | exp(¢;(2) )
Zj Zj
1 exp(¢u(25) my) K
fo fo
(a) Non-conjugacy (b) Generality (c) Scalability

Figure 2.5: Three possible issues a message passing-based PPL may encounter are visualized.
On the left, ms;(z;) and m;,(z;) differ in sufficient statistics, which preclude an-
alytical marginal calculations. In (b), f, is a custom factor node defined by the
end-user. The message my,;(z;) is not available in the PPL due to a missing ana-
lytical solution or message passing rule. On the right, the equality node requires
VMP messages from all the dashed sub-graphs to calculate my;(z;), which might
not be feasible for large N.



Chapter 3

Particle Methods and Laplace
Approximation within Message
Passing

This chapter is based on the original work referenced below. The optimizer used for
the Laplace approximation is replaced by an L-BFGS optimizer from the Julia pack-
age Optim.jl. The experiments are run in a different machine. The main results are
not affected by these changes.

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

Abstract

Variational Message Passing (VMP) provides an automatable and efficient algorith-
mic framework for approximating Bayesian inference in factorized probabilistic
models that consist of conjugate exponential family distributions. Automation of
Bayesian inference tasks is very important, since many data processing problems
can be formulated as inference tasks on a generative probabilistic model. However,
accurate generative models may also contain deterministic and possibly nonlinear
variable mappings and non-conjugate factor pairs that complicate the automatic
execution of the VMP algorithm. In this chapter, we show that executing VMP in
complex models relies on the ability to compute expectations of statistics of hid-
den variables. We extend the applicability of VMP by approximating the required
expectation quantities in appropriate cases by importance sampling and Laplace
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approximation. As a result, the proposed Extended VMP (EVMP) approach sup-
ports automated efficient inference for a very wide range of probabilistic model
specifications. We implemented EVMP in the Julia language in the probabilistic
programming package ForneyLab.jl and show by a number of examples that EVMP
renders an almost universal inference engine for factorized probabilistic models.

3.1 Introduction

Probabilistic Programming Languages (PPLs) [47] have gained strong popularity
over recent years since they support fast algorithm development through automat-
ing Bayesian inference in probabilistic models. Many of these PPLs [97-100] are
based on numerical approximation methods, which leads to inexact inference re-
sults even if the model comprises conjugate factor pairs and exact inference is
achievable. Moreover, although a majority of popular PPLs scale well to process-
ing large data sets due to their stochastic inference settings [87], they tend to ex-
ecute very slowly for certain types of structured dynamic models, such as state
space models. Alternatively, some PPLs that execute inference by message passing
in a factor graph [62,101] provide efficient inference performance by exploiting
factorization and conjugacy between exponential family-based distribution pairs in
the model. In particular the Variational Message Passing (VMP) [65,66] algorithm
has gained a good reputation as it supports efficient inference for conjugate fac-
tor pairs in factorized probabilistic models. Unfortunately, non-conjugate factor
pairs complicate automated estimation of posterior distributions due to intractabil-
ity of normalization constants. Likewise, non-linear deterministic relations between
model variables often create non-conjugate pairings and thus obstruct the message
passing-based inference mechanism.

We propose an Extended VMP (EVMP) algorithm to support automated effi-
cient inference on a wide class of models that contain both non-conjugate relations
between factor pairs and deterministic, possibly non-linear factor nodes. In our
solution proposal, the regular VMP rules construct the functional forms of the mes-
sages. These functional forms contain expectations of functions of hidden variables.
In case these expectation quantities can not be evaluated to a closed-form expres-
sion, we estimate them by Importance Sampling (IS) [102], which is a well-known
Monte Carlo method that approximates intractable posteriors by a set of weighted
samples and estimates expectations over this sample set. We also make use of the
Laplace approximation [75, Section 4.4] with support by automatic differentiation
(autodiff) [41] and optimization [103] tools in appropriate cases to approximate
posteriors by Normal distributions, which allows us to calculate the expectations
over the approximating Normal distribution. Our proposal leads to an efficient
automatable message passing framework that removes most model specification
limitations.



3.2 Specification of EVMP Algorithm

29

In Section 3.2, we specify the proposed Extended VMP algorithm. In order to
keep the chapter readable both for the advanced researcher and someone who just
needs the results, we defer detailed discussions and derivations of the key equations
in EVMP to Appendices B and C. We implemented EVMP in the Julia package For-
neyLab.jl [104] [62]. In Section 3.3 we present several comparative experiments
of EVMP in ForneyLab vs Turing.jl, which is an alternative state-of-the-art Julia-
based PPL that focuses on Monte Carlo methods for inference. We show that EVMP
transforms ForneyLab into an almost universally applicable inference engine while
retaining computational efficiency due to its library of closed-form message passing
rules. An extensive comparison to related work is presented in Section 3.4.

3.2 Specification of EVMP Algorithm

Variational Message Passing is a fast, efficient and deterministic approximate in-
ference algorithm. However, the applicability of VMP heavily relies on connected
factors being conjugate pairs (see Appendix B). In contrast, Monte Carlo meth-
ods (see [105] for message passing interpretation) are applicable to a wider range
of models with non-conjugate factor pairs. Unfortunately, in comparison to VMP,
Monte Carlo methods are considerably slower since they rely on stochastic simula-
tions. As we shall elaborate on in Section 3.4, the recent efforts to combine the best
of Monte Carlo methods and variational inference predominantly focus on noisy
gradient estimation of the free energy through Monte Carlo sampling and do not
take the full advantage of deterministic message passing steps in inference.

In this section, we specify the EVMP algorithm, which combines the efficiency of
VMP with the flexibility of the Laplace approximation and the universality of Monte
Carlo methods. In the proposed EVMP algorithm, VMP constructs the functional
forms of the messages while importance sampling and Laplace approximations are
used to estimate the required expectations of statistical quantities if they are not
available in closed-form. We first specify the range of probability distribution types
for factors, messages and posteriors. These different types are used to identify the
specific calculation rules for updating the messages and posteriors. We refer the
interested reader to Appendix C for detailed derivations.

As for the notation in this chapter, we shall use m,;(z;) and m;(z;) from Fig-
ure 2.1 to respectively denote the forward and the backward messages. Forward
messages in a factor graph refer to the messages that follow the data generating
direction. Backward messages, on the other hand, follow the reverse direction.

3.2.1 Distribution Types

We consider the following representation types for probability distributions in fac-
tors p(z;), where z; holds a variable.
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(1) The standard Exponential Family (EF) of distributions, i.e.,

p(25) = hj(2;) exp (¢5(25)™n; — Aj(n5)) (3.1

where h;(z;) is the base measure, ¢;(z;) is the sufficient statistics vector, 7; is
the natural parameters vector and A;(;) is the log-partition function.

(2) Distributions that are of exponential form

p(25) ocexp (¢i(g(z5)) ;) , (3.2)

where g(z;) is a deterministic function. The key characteristic here is that
¢i(g(#;)) is not recognized as a sufficient statistics vector for any of the stan-
dard EF distributions. We call this distribution type a Non-standard Expo-
nential Family (NEF) distribution. As we shall show in Section 3.2.6, this
distribution type arises only in backward message calculations.

(3) A List of Weighted Samples (LWS), i.e.,
N) (N
p(zj) = {(wé”,%”) ey (wj( ),zj( )>} . (3.3)

(4) Deterministic relations are represented by delta distributions, i.e.,
p(zilz;) = 0(zi — 9(z5)) - (3.4)

Technically, the equality factor f(z;, z;, zi) = 0(2; — 2;)0(2; — 2 ) also specifies
a deterministic relation between variables.

3.2.2 Factor Types

Factor types f,(z,) are represented by EF and delta distributions.

In a VMP setting, as discussed in this and previous papers on VMP, conjugate
soft factors from the exponential family enjoy some computational advantages. As
an extension to VMP, the EVMP algorithm inherits the same computational advan-
tages for conjugate factor pairs. In order to automate and generalize the inference
to custom non-conjugate soft factors, we compose a generic soft factor by a delta
distribution (to describe a non-linear deterministic function) and a standard EF dis-
tribution. This decomposition relieves us from manually deriving VMP messages for
each different soft factor specification. For a given composite node (delta + stan-
dard EF), the EVMP algorithm uses the predefined VMP messages for the standard
EF component to compute messages around the composite node. As we will see,
this formulation yields an almost generic inference procedure.



3.2 Specification of EVMP Algorithm

31

3.2.3 Message Types

Forward messages carry either an EF or an IWS distribution. Backward messages
carry either an EF or an NEF distribution. This is an arbitrary choice in the sense
that we only make this assignment to indicate that in the EVMP algorithm two
colliding messages in marginal calculations will not be both of IWS type nor both
of NEF type.

3.2.4 Marginal Types

The marginals! ¢(z;) are represented by either the EF or LWS representations.

To summarize the terminology so far, we defined four distribution types: stan-
dard EF (EF), Non-standard EF (NEF), List of Weighted Samples (LWS) and delta
distributions. The end user of our algorithm can design a model by using EF and
delta distributions. Under the hood, messages may carry EF, NEF or LWS distribu-
tions to render the inference. As the output, the end user is provided with either
the EF or LWS marginals (posteriors). Next, we discuss how marginals, messages
and free energies are computed in the EVMP algorithm. The different types can be
used to identify which computational recipe applies. As an aside, Julia’s support
for multiple dispatch in functions [104] makes this a very elegant mechanism that
requires almost no if-then rules.

3.2.5 Computation of Marginals

Here we discuss how EVMP updates the marginals in (2.6). In an FFG, computa-
tion of the marginal ¢(z;) is realized by a multiplication of colliding forward and
backward messages on edge j, respectively m,;(z;) and ms;(2;), followed by nor-
malization. We distinguish four types of updates.

(1) In case the colliding forward and backward messages both carry EF distribu-
tions with the same sufficient statistics ¢,(z;), then computing the marginal
simplifies to a summation of natural parameters:

Maj(25) o< exp (¢5(2)a;)
my;(25) o< exp (¢ (2) ;)
q(z5) o< maj(z5) - mp;(2;) o< exp (B5(2)T(Mag + mj)) -

In this case, the marginal ¢(z;) will also be represented by the EF distribution
type. This case corresponds to classical VMP with conjugate factor pairs.

LGiven the observations, in probabilistic models, marginals refer to posterior marginal distributions.
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(2) The forward message again carries a standard EF distribution. The backward
message carries either an NEF distribution or a non-conjugate EF distribution.

(a) If the forward message is Gaussian, i.e., mq;(z;) = N(2; piaj, Vaj), We
use a Laplace approximation to compute the marginal:

pj = argmax (log ma;(z;) + log my;(2))
Vj = (=V3, (logma;(u;) +logmy; (1)) "
q(zj) o ma;(z;) - mui(z5) = N(z5; i, Vj)

(b) Otherwise (m,;(z;) is not a Gaussian), we use Importance Sampling (IS)
to compute the marginal:

&)

(N)
2RETRNNY >
w

") — g (2 forn =1,..., N
3 5 = M 2 orn=1,...,

N
wj(") = ~§")/Zﬁ;§s) forn=1,...,N
s=1

1 1 N N
q(25) o< maj(z;) - muj(z;) = {(wg ), 2, )) yee (wg( ), 2 )>}
(3) The forward message carries an IWS distribution, i.e.,

mai () = { (0, 2") o (00,400 ]

and the backward message carries either an EF or NEF distribution. In that
case, the posterior computation refers to updating the weights in m,;(z;) (see
Appendix F):

@\ = w{my; (V) forn =1,..., N

N
w =@\ /N B forn=1,...,N
s=1

i =
q(zj) o< maj(z;) - mui(z;) = {(wﬁ-”,zﬁ”) ey (w;N),zj(,N)>} .

3.2.6 Computation of Messages

Here we discuss how EVMP compute the messages around a factor f. visualized in
Figure3.1. We specify different message calculation rules depending on the type of
the factor f..
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N

Ze\j fe
'/

Figure 3.1: A generic node f. is visualized together with the edges £(c) connected to f..

(1) If factor f.(z.) is a soft factor of the form?
fe(@e) = p(2j2e\;) = hj(2) exp (¢5(27)TAcj (2e\5) — 0g Zj(25))

then the outgoing VMP message to z; is the following EF-distributed message:

mcj(zj) X hj (Zj) exp (Qsj(zj)TEq(zC\j)[)‘cj (Zc\j)]) . (38)

If rather z;, € z.\; than z; is the output variable of f,, i.e., if

fe(ze) = p(zk|zevk) = hi(2k) exp (o (2) T Ack (2o k) — 108 Zi(2ovi)) -

then the outgoing message to z; is either an EF or an NEF distribution of the
form

me;(2;) o exp (Eq(zk) (D1 ()] "Eg (20, (.4 [Pk (Zerk)] = Eq(a (.00 [108 Zi (Zc\kﬂ) :
(3.9

Note that the message calculation rule for m.;(z;) given in (3.8) requires
the computation of expectation E, . ,)[Acj(zc\;)]. For me;(z;) in (3.9) we
need to compute expectations Eqq ., ., )[Ack(Zevr)s Eqz (;10)[108 Zk(2Zo\k)]
and E,.,)[¢x(2x)]. In the update rules to be shown below, we will see these
expectations of statistics of z. appear over and again. In Sec. 3.2.8 we will
detail how we calculate these expectations and in Appendix B we will further
discuss the origins of these expectations.

(2) In case f. is a deterministic factor

fe(ze) = p(zjlze\5) = 0(25 — 9(2e\;))- (3.10)

2Check Appendix B to see how this representation relates to the EF functional form previously intro-
duced in (3.1).
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then the forward message from f. to z; is of LWS type and is calculated as

mess) = { (@) ) oo (00) ) @y

where ng\)] = U zl-(s) for zi(s) ~ Mie(2i).

i€€(c)
i#J

If rather z;, € z.\; than z; is the output variable of f, i.e., if

c\j
fe(ze) = p(2k|Zo\k) = 6(2x — 9(Zerk))s (3.12)

then for the computation of the backward message towards z; we distinguish
two cases:

(a) If all forward incoming messages from the variables z,, are Gaussian,
we first use a Laplace approximation to obtain a Gaussian joint posterior
4(ze\k) = N (2w 11, V), see Appendix C.2.2 and Appendix C.1.2 for de-
tails. Then, we evaluate the posteriors for individual random variables,
e.g. q(z) = [q(ze\i) dZe\gr,j3 = N(2j;p5,V;). Finally, we send the
following Gaussian backward message:

M2, (25) o< q(25)/mje(2))- (3.13)

(b) Otherwise (the incoming messages from the variables z.,; are not all
Gaussian), we use Monte Carlo and send a message to z; as a NEF dis-

tribution:
mej(z) = — kac c\{j k},zj)) (3.19)
where z(\){ = U zi(s) for zi(s) ~ Mie(2i).
i€€(c)
i£j
itk

Note that if f. is a single input deterministic node, i.e., f5(z;,2r) =
p(zk|2;) = (2, —g(z;)), then the backward message simplifies to m.;(z;) =
mic(g(z;)) (Appendix C.1.1).

(3) The third factor type that leads to a special message computation rule is the

equality node. The outgoing message from an equality node

fc(zj7ziazk) = (S(ZJ — ZZ)(S(ZJ — Zk)
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is computed by following the sum-product rule:

me;j(z;) = /5(Zj — 2)0(25 — 21) Mic(2i)Mie(2x) dzidzy,
node function incoming messages

= Myc(2j)Mie(25)- (3.15)

Note that EF and NEF distributions are closed under multiplication.

3.2.7 Computation of Free Energy

Here we discuss how EVMP computes the FE update. We again focus on Figure 2.1
and assume the approximate factorization

4(Za\;)q(25)q(Zp\;)-

Note that the FE in the sub-graph G ({a, b}, j) can be decomposed into a subtraction
of energy and entropy terms:

Fi = —Eqzy) [EQ(za\j)[log fa(2a)]] = Eq(zy) [Eq(zb\j)[log Fo(@)]l] = Eq(z) [~ log a(z)],

(average) energy U, +U entropy H ;
(3.16)

These energy and entropy terms can be evaluated because f,(z,), f»(2;) contains
only factors that have been defined in the generative model and ¢(z,\ ;)q(2;)q(zs\ ;)
is also accessible as the result of variational inference. Thus we evaluate the FE by
evaluating the energy and entropy terms separately.

For an EF-encoded soft factor

fa(2a) = p(25120\5) = Nj(2;) exp (65(2))T Aaj(Za\ ;) — log Zj(2a\5))
the energy over the factor f, evaluates to
Ua = —Eq(z)[log(h;(2)))] = Bqz) 05 (25)] Eq(za ) [Aai (Zarj)] + Eqagy ;) [l0g Z; (2a\5)]-
We calculate the entropy of ¢(z;) as follows:

1. If ¢(z;) is a represented by a standard EF distribution, i.e.,
hij(z;) exp (6;(z;)Tn; — A;j(n5))
then

Hj = —Eq(z)) [log(hy(2)))] — Eq(z) 05 ()] ™05 + Az (ny).
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2. Otherwise, if ¢(z;) is represented by a LWS, i.e.,

q(z;) = { (w§1), z§1)) e (wlgN), ZJ(N))} ,

then
H; = 7:[; + 7:[3,

where 7:[; and 7—1? are evaluated as discussed in (D.4) and (D.6).

3.2.8 Expectations of Statistics

In many of the above computations for messages, posteriors and free energies, we
need to compute certain expectations of statistics of z;, e.g., the computation of the
forward message in (3.8) requires evaluation of Ey(,, )[Acj(2c\;)]. Here we discuss
how EVMP evaluates these expectations. Let us denote a statistic of random variable

3 z; by ®(z;) and assume we are interested in the expected value E, . )[®(z;)]. The
calculation rule depends on the type of ¢(z;):

(1) We have two cases when ¢(z;) is coded as an EF distribution, i.e.,
q(z) = hj(z;) exp (¢;(z;)Tn; — A;(n))) :

(@) If ®(z;) € ¢j(#), i.e., the statistic (z;) matches with elements of the
sufficient statistics vector ¢;(z;), then E,(, ) [®(2;)] is available in closed-
form as the gradient of the log-partition function (this is worked out in
Appendix B.1.1, see (B.14):

Eqz)[®(25)] € Vip; 45(nj).

(b) Otherwise (®(z;) ¢ ¢;(2;)), then we evaluate

where z{§s) ~ q(zj).

(2) In case g(z;) is represented by a LWS, i.e.,
1) (1 N) (N

then we evaluate
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3.2.9 Pseudo-code for the EVMP Algorithm

Sections 3.2.1 through 3.2.8 provide a recipe for almost universal evaluation of
variational inference in factor graphs. We use classical VMP with closed-form solu-
tions when possible, and resort to Laplace or IS approximations when needed. We
now summarize the EVMP algorithm by a pseudo-code fragment in Algorithm 1.
We use the following notation: V =V, UV, UV, is the set of factor nodes (vertices),
where V,, Vs, V. stand for the subsets of soft factor nodes, deterministic nodes and
equality nodes, respectively. £ is the set of edges that connect the nodes. G = (V, £)
represents the entire factor graph. h = z U x is the set of hidden variables, where
x are the variables at the output edges of deterministic nodes. z are also associated
with edges in &, but in contrast to x, z are not output edges of deterministic nodes.

Algorithm 1 Extended VMP (for Mean-field assumption)

Require: G = (V7 5); h, Niterationss Qinitial
forj=1.../h|do
initialize posteriors ¢(h;) using ginitial
end for
for i:]-mNiterations do
Set Free Energy 7 =0
forj=1...|/h|do
Get factors a,b € V(j)
Calculate messages mq;(h;) and my;(h;) using Sec. 3.2.6
Calculate posterior ¢(h;) using Sec. 3.2.5
if hj € z then
Calculate entropy #; using Sec. 3.2.7
Update Free Energy F = F — H,
end if
end for
foralla €V, do
Calculate energy U, using Sec. 3.2.7
Update Free Energy F = F + U,
end for
return ¢(h) forall h € hand F
end for

Algorithm 1 is given for a mean-field assumption. For the mean-field assumption
to be satisfied in EVMP, the deterministic nodes in the graph G must be single-input
- single-output mappings. The overall structure remains the same for structured
factorizations, but messages and posteriors are calculated for sub-graphs instead
of single random variables. EVMP automatically realizes structured variational in-
ference for the variables that are input to a multiple-input deterministic node. In
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this case, the free energy calculation requires the entropy of the joint distribution
of input variables [69]. The joint distribution is available in closed form if all the
incoming messages to input variables are Gaussian, and hence joint entropy calcu-
lation is straightforward. Otherwise, on the contrary, the joint distribution is rarely
available in closed form and EVMP should resort to joint entropy estimation with
Monte Carlo (See Appendix D).

3.3 Experiments

We illustrate EVMP-based inference on three different applications. For each ap-
plication, we show the favorable features of EVMP together with its shortcomings
in comparison to Turing [100], which is a general purpose Julia probabilistic pro-
gramming package.

3.3.1 Filtering with the Hierarchical Gaussian filter

The Hierarchical Gaussian Filter (HGF) [106, 107] is a popular generative model
in the neuroscience community. The HGF consists of a Gaussian random walk
model, where the variance of the Gaussian is a nonlinear function of the state of
the next higher layer, that in turn evolves according to a Gaussian random walk,
an so on. Due to the nonlinear link between the layers, classical VMP rules do not
have a closed-form solution. While in principle variational updates through Laplace
approximation can be manually derived for the HGF model [106], automatically
generated EVMP update rules alleviate the need for cumbersome and error-prone
manual derivations.
The 2-layer HGF model is defined as

2o ~ N(24-1,02) (3.17a)
wy = exp (2¢) (3.17b)
xp ~ N(xp_1,wy) (3.17¢)
yr ~ N(ze,07) . (3.17d)

For this experiment, we generated 7' = 400 data points by the following process.
First, we generated noisy hidden states using z, ~ A (sin (Z&t),0.01) ,¢ = 1...400.
Next, we generate observations following model (3.17) with 05 = 0.1. The gener-
ated data set is visualized in (the lower subgraph of) Fig. 3.2.

Next, we filtered the data set by a second HGF, also given by (3.17) with priors
z ~ N(0,1), 2y ~ N(0,1) and parameters 02 = o, = 0.1. We used EVMP to
track the hidden states z; and x;. All inference steps including the message passing
schedule for filtering in the HGF are detailed in [106]. For each time step, EVMP
was run 10 iterations at each filtering step.
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Figure 3.2: Above: Hidden states z1.400 and their estimates (ribbon is one variance). The
estimates of ForneyLab’s Extended VMP are designated by blue while the
estimates of Turing’s ADVI and SMC are marked by red and purple, respectively.
Below: Observed synthetic data.

For comparison we implemented a similar filtering procedure by Automatic Dif-
ferentiation Variational Inference (ADVI) [50], executed by Julia’s Turing.jl [100]
package. At each time step ¢, the priors over z;_; and z;_; are set to Gaussian
distributions, the mean and variance parameters of which are determined by sam-
pling from the variational posteriors at ¢t — 1. The only difference between the
ForneyLab and Turing implementations, in terms of posterior distribution factor-
ization, is that in Turing’s ADVI we posit a fully factorized posterior distribution.
This assumption decreases the number of parameters to be estimated via automatic
differentiation and speeds up the inference procedure. On the other hand, pre-
defined message passing rules in ForneyLab enable us to retain the dependency
structure between z;_; and z; at time step ¢ in exchange for almost no run-time
loss. To be more precise, at time step ¢, we run inference on the following model:
qr(zi-1)p(zt|2e-1)0(wi — exp(2¢))qf (T1—1)p(@e|Te—1, Wi )p(ye|7:) Where gy (z;—1) and
gr(x¢—1) are the posterior approximations from the previous time step. In For-
neyLab, we run the inference with variational distribution q(z:—1)q(2¢)q(z¢—1,2¢)
with ¢f(z¢) = [ q(z¢—1,2¢)dz,—1. We plot estimations for gs(z;) in Fig. 3.2. In
ADVI, the variational distribution is ¢(z;—1)qs(2¢)q(z¢—1)gys(z;). Once inference has
completed, Turing allows for drawing samples from the variational distribution. We
then calculate the mean and variance of these samples to fit Gaussian distributions
on qy(z) and gy (w¢).

We also tested the Sequential Monte Carlo (SMC) engine of Turing on this
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model. To our knowledge, Turing does not possess a recursive estimation pro-
cedure. In order to execute the SMC engine in a recursive manner, we updated
Gaussian priors on x and z at each time step by estimating mean and variance
parameters from the previous time step’s samples.

The estimated tracks of z; are visualized in Fig. 3.2. For both EVMP and ADVI,
the estimated hidden states largely coincide. We observe that both methods capture
the periodic character of the true hidden states z1.4990 With a delay. We believe that
there are two plausible explanations for the delayed estimations: i) in the model
specification, we assume that the data generative process is not known fully. The
variables z1.499 are originally generated from a sinusoidal function of discrete time
steps. However, in the model specification, we do not use this information; ii)
in the model specification, we define a random walk over hidden variables z3.499
that posits the mean of z, as z;_;. Elaborating the latter factor, the random walk
avoids a hidden variable z; to change drastically compared to z;_; while z, forces
z; to explain the volatility in the process. Reconciling the beliefs from z; and z;_1,
both Extended VMP and ADVI estimate z; with a delay. The SMC estimates, on
the other hand, differ substantially from the EVMP and ADVI estimates. In SMC,
the consecutive estimates are not as smooth as EVMP and ADVI. Nevertheless, the
SMC estimates are sometimes more favorable than the EVMP and ADVI estimates,
especially between the time steps 300 and 400.

In Turing’s ADVI procedure, we used 10 samples per iteration for gradient esti-
mation and set the maximum number of iterations to 4000 per time step to be able
to capture this periodic behaviour. The overall inference is completed in roughly
104 seconds®. SMC with 1000 samples at each time step is completed roughly in 88
seconds. ForneylLab’s EVMP procedure, on the other hand, is able to perform infer-
ence around 2.5 seconds on this time series, see Table 3.1. The speed of ForneyLab
stems from the hybrid inference nature of EVMP. EVMP resorts to gradient-based
optimization only to infer ¢(z;) and the sampling procedure is required only to
estimate statistics related to w; to be used in the update steps of ¢(z:—1,z:). In
contrast, ADVI requires sampling and employs noisy gradients in the estimation of
all the components of the variational distribution. Similarly, estimations in SMC
is solely based on sampling. This experiment validates EVMP as a fast automated
variational inference solution for filtering in hierarchical dynamic models.

3This and further experiments in this chapter were carried out on a machine with following specs:
Julia 1.5.3, Turing v0.19.5, 7 GHz Quad-Core Intel Core i7 CPU, 6 GB 2133 MHz RAM.
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Algorithm Run time (sec)
EVMP (ForneyLab) 2.508
ADVI (Turing) 104.575
SMC (Turing) 88.289

Table 3.1: Run-time comparison of EVMP (in ForneyLab.jl) vs ADVI and SMC (in Turing.jl)
for the hierarchical Gaussian filter model.

3.3.2 Parameter Estimation for a Linear Dynamical System

In this experiment, we focused attention on a system identification task in a Linear
Dynamical System (LDS) [76,108]. An LDS is generally defined as

mtlmt—l ~ N(A.l?t_l, Q) (3183)
Y|z ~ N (Bxy, R) (3.18b)

where y; are observations and x; are hidden states.

In this experiment, we are interested in inferring the transition matrix A to-
gether with the hidden states from a set of observations. Manually derived closed-
form solutions for the system identification task are available both in maximum
likelihood estimation [109] and a variational Bayesian approximation [92] con-
texts. Nevertheless, the goal in this and other papers on probabilistic programming
packages is to automatically infer posteriors over the hidden states and parame-
ters without resorting to manual derivations. In principle, EVMP supports to infer
the hidden states, A, B, Q and R concurrently. Of course, depending on specific
circumstances such as system identifiability and richness of observed data, the per-
formance may vary.

In order to execute our experiment, we first extend (3.18) with a prior on A as
follows:

a~N(ta, Va) (3.19a)

A = reshape(a, (m, m)) (3.19b)
zglri_1 ~ N(Azi_1,Q) (3.190)
yilzy ~ N (Bzy, R) (3.19d)

In (3.19), a holds the vectorized representation of the transition matrix A. Note
that (3.19b) can be written as

p(Ala) = 6(A — reshape(a, (m,m))),

and through this manipulation we identify reshape(a, (m,m)) as the deterministic
factor in (3.10). As a result, ForneyLab’s EVMP works out-of-the-box for inference
of the transition matrix in (3.19).
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We first generated a data set of 7' = 40 number of samples by running model
(3.18) with parameters @ = 0.01 X Isx2, R = 0.1 X Iyx2, B = Izx2 and A =

1.0 0.2
—-0.5 0.8]°
Next, we presented the data set to a second LDS model and aimed to infer
posteriors over hidden states and transition matrix A. The prior on a was set to

a ~ N(04,I4x4) and all other parameters were set to the same values as in the data
generation process.
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Figure 3.3: Free energy tracks for EVMP on the LDS transition matrix identification task.
Left: (a) Mean estimate EVMP for the transition matrix A after 50 iterations, (b)
mean estimate after 300 iterations, (c) true transition matrix A that was used
to generate synthetic data. Right: Free energy tracks by ForneyLab’s EVMP and
Turing’s ADVI procedures.

We compared the performance of ForneylLab’s EVMP with Turing’s ADVI and
NUTS (No U-Turn Sampler, a Hamiltonian Monte Carlo sampling-based inference
method) [49] engines, see Figure 3.3. Both EVMP, ADVI and NUTS successfully
converged to almost coinciding estimates of the transition matrix (no notable dif-
ference when visualized). We also show free energy tracks for EVMP and ADVI
in Figure 3.3. In this experiment, Turing’s ADVI outperformed ForneyLab’s EVMP
in terms of total execution time and the free energy minimization. As a mitigat-
ing factor in this analysis, the pre-compilation of the message passing schedule in
ForneyLab took about 25 seconds. Execution time details are shown in Table 3.2.
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Algorithm Free energy Total time (sec)
EVMP (ForneyLab) 112.13 77.265
ADVI (Turing) 90.285 26.514
NUTS (Turing) - 28.109

Table 3.2: Run-time results for transition matrix estimation in the LDS model.

3.3.3 EVMP for a Switching State Space Model

In this experiment, we go beyond models that only contain continuously valued
variables and inquire the capabilities of EVMP on a Switching State Space Model
(SSSM) [110], which consists of both continuous and discrete hidden variables.
The assumption of constant model parameters in the LDS of Section 3.3.2 does not
account for regime changes that occur in many dynamical systems of interest. The
SSSM does allow for modeling parameter switches and in this experiment we used
the following model:

3
= [[ Pix(A[:, Bl; ax) (3.20a)
k=1
3
plalza) =[] HAM L (3.20b)
k=17=1
3
p(xi|xe_1, 2¢) = H./\/'(;vt\xt_l,vk)z““ (3.200)
k=1
p(yelze) = N (yelae, 1) (3.20d)

In this system, y; € R are observations, x; € R is a continuously valued hidden state
and z; is a one-hot coded three-dimensional selection variable, i.e., z;, € {0,1}
and Zzzl ztr = 1. The parameters of the system are the state variances v, and
concentration parameters «;. The elements of o, are all 1, except the k™ element
which is set to 100 to disfavor frequent regime switches, e.g., as = [1,100, 1]T.

We generated 7' = 120 data points from a random walk process (3.20c) and
(3.20d) with process noise variance parameter v = [v1,v9,v3] = [10,4,1]. From
time stept = 2to ¢t = 25, we set z; 1 = 1 and consequently p(x¢|z;—1) = N(z;_1, 10).
From time step ¢t = 26 to t = 75, we set z, o = 1 and between ¢ = 76 to t = T' = 120
we set z; 3 = 1. The generated time series is shown in Figure 3.4.

The main difficulty in state inference for the SSSM stems from the coupling
between x and z. This is because the variational message passing rules around
the node p(x¢|x:—1, 2¢) are not pre-defined in ForneyLab, although technically they
can be worked out to closed-form expressions [110]. If EVMP were not available
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Figure 3.4: Performance results for automated inference in SSSM. Top: generated data set.
Bottom 3 subgraphs: posterior for regime selection variable z; by Mean Field -
EVMP, Structured Mean Field - EVMP and HMC procedures respectively. In the
Turing HMC simulation, the number of particles in the Particle Gibbs sampler
was set to 50. We use step size 0.2 and leapfrog step number 20. HMC is run for
1000 iterations and convergence diagnosis is performed with the Heidelberg
and Welch test [111,112].

either, then a ForneyLab end user would be expected to manually derive closed-
form update rules and implement these rules in an additional ForneyLab node. This
type of manually assisted inference by end user calculations is what we try to avoid
with EVMP and with probabilistic programming packages in general. EVMP enables
the user to compensate for the lack of stored message passing rules by introducing
an auxiliary variable s in the model with a deterministic relation between s and z:

3
9(z) = zuk - vk (3.21a)
k=1
p(selze) = 0(st — g(zt)) (3.21b)
p(xelwe1,80) = N(2g5 201, 5¢) (3.21¢)
p(xe|Ti-1,2) = /p(l't\l't—hSt)P(8t|Zt)dSt. (3.21d)

After we extend model specification (3.20) by (3.21), then ForneyLab can run
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EVMP-based inference out of the box. Note that there is no need for manual in-
ference calculations, but rather a simple manipulation of the generative model that
makes the system suited for automated inference.

We tested the performance of two different constraints on the posterior distribu-

T
tion: (i) a mean-field assumption, i.e., ¢(z1.7, z1.7) = [] ¢(x+)q(z:); (ii) a structured
t=1

T
mean-field assumption, i.e., ¢(x1.7, z1.7) = ¢(x1.7) [ ¢(2t), see Figure 3.4 and Fig-
t=1

ure 3.5. We observe that the structured factorization, being a less stringent con-
straint on g, yields a slightly better performance than the mean-field factorization,
in particular in estimating the length of the regime 1.

We also compared the performance of ForneyLab’s EVMP method to Turing’s
inference methods. As opposed to the previous two experiments, we can not use
solely ADVI, nor Hamiltonian Monte Carlo (HMC, [48,113]) and NUTS samplers in
this experiment since these procedures do not allow inference for discrete random
variables. Turing does provide the option to use a Particle Gibbs (PG) sampler [114,
115] for the estimation of the discrete random variables (z1.7) in conjunction with
the estimation of the continuous random variables (z1.7, A) by HMC. Performance
result for HMC-PG is shown in Figure 3.4. The performance of the HMC-PG sampler
in estimating the correct regimes is far below the EVMP results, although it correctly
identified the third regime. Run-time scores are shown in Table 3.3. For HMC, we
use reverse-mode automatic differentiation [116] setting of Turing.jl. We also tested
Sequential Monte Carlo (SMC) engine of Turing on this model. Unfortunately, we
could not get satisfactory estimates and hence did not visualize it. The reader can
reach the SMC test in the Github repository.

Algorithm Free energy | Total time (sec)
EVMP (Mean-field) 283.991 79.590

EVMP (Structured) 273.596 87.949
HMC-PG (Turing) - 1565.279

Table 3.3: Experimental results for switching state space model

3.4 Related Work

Hybrid Monte Carlo - variational inference techniques have been studied prior to
our work. However, mainstream research predominantly consists of variational
methods within Monte Carlo techniques as opposed to Monte Carlo methods within
a variational inference approach.
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Figure 3.5: Free energy estimates for mean-field and structured mean-field over iterations.
We observe that the structured mean-field slightly performs better than the mean-
field factorization. Notice that as opposed to vanilla VMP, the free energy do not
decline steadily over the iterations. This is due to two reasons. Firstly, the exact
VMP steps are approximated in the Extended VMP. Therefore convergence to the
stationary points at each iteration is not guaranteed. Secondly, the free energy is
not analytically calculated but estimated.

For instance, [117] casts variational distributions as proposal distributions in
a Markov-Chain Monte Carlo (MCMC) procedure. Similarly, [118] employs varia-
tional methods to design adaptive proposal distributions for Importance Sampling
(IS). In [119], gradient estimates of a variational objective are used to tune the pa-
rameters of the proposal distributions for MCMC. On the other hand, Monte-Carlo
Co-Ordinate Ascent Variational Inference (MC-CAVI), proposed in [120], differs
from the aforementioned methods in that it uses MCMC in the calculation of expec-
tations required within the fixed-point iterations of Coordinate Ascent Variational
Inference (CAVI).

In this paper, we follow a similar approach as [120], but we use IS to estimate
the expectation quantities required in VMP. Both MCMC and IS have their own
merits. IS smoothly interfaces with the message passing interpretation of Bayesian
inference, which further leads to automated design of proposal distributions. We
use Laplace approximation for Gaussian posteriors for variables with Gaussian pri-
ors. In the context of dynamical systems, this approach notably overlaps with Gaus-
sian filtering techniques [19, Section 6] that is often achieved by Assumed Density
Filtering [121, Section 8.4].

As we show in Appendix F, in the approach that we propose, it is also possible to
run automated Bootstrap particle filtering [19, 122] rather than Gaussian filtering
methods. As show in [105], particle filtering can be also be framed as message pass-
ing on a factor graph. The connection between the particle filtering and variational
optimization was introduced in [123]. Their formalism is based on an extension
of Particle Belief Propagation [124] to Tree-Reweighted Belief Propagation [125]
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while ours revolves around VMP. Similar to our approach, Particle Variational In-
ference (PVI) [126] aims at optimizing a variational objective by successive IS ap-
proximations to true posterior distributions. While PVI applies well to inference
for discrete random variables, our EVMP proposal applies to both continuous and
discrete random variables.

Variational inference in the context of deterministic building blocks in proba-
bilistic models was studied in [127]. Wheras [127] allows non-linearities to be
placed only after Gaussian nodes, the proposed EVMP method generalizes this con-
cept to EF distributed factors.

Non-conjugate Variational Message Passing (NC-VMP) [128] addresses the non-
conjugate factor issue in VMP. Assuming that the posterior distribution is an EF dis-
tribution, NC-VMP projects the messages to the distribution space of the posterior
by equating their sufficient statistics. Thus NC-VMP tunes the natural parameters
of the messages in such a way that they converge to the stationary points of the KL
divergence between the approximated and true posteriors. [128] also reports that
the algorithm necessitates damping for convergence in practice. In response, [84]
presents Conjugate-computation Variational Inference (CVI) as a universal infer-
ence method that is based on stochastic optimization techniques. As opposed to al-
ternative stochastic variational inference techniques, such as Black-Box Variational
Inference [51] and Automatic Differentiation Variational Inference [50], CVI ex-
ploits the conjugacy structure of the probabilistic models, which leads to faster
convergence. In CVI, non-conjugate factors are incorporated into coordinate ascent
steps of mean-field variational inference (with ELBO objective) through a stochas-
tic optimization procedure to form compact posterior approximations with standard
probability distributions. In our EVMP approach, the Laplace approximation entails
a similarly nested optimization procedure to form compact approximations with
Gaussian distributions. Nevertheless, our particle approximations to the true pos-
teriors obviate the need for additional gradient-based optimizations to estimate the
parameters of the posteriors.

Finally, the original VMP paper [65] itself briefly mentions sampling methods to
overcome the issues with non-conjugate priors. However, they do not extend this
idea to deterministic nodes and rather present it as a fallback method whenever
soft factors are tied to non-conjugate soft factor priors. Inspired by their vision of
approximating the expectation quantities by sampling techniques, we introduced
here a fully automated, very broadly applicable extended VMP procedure.

3.5 Discussion

In this chapter, we presented a method for almost universal variational inference
on factorized probabilistic models. The core of our method is the locality feature
of VMP: the messages at a soft factor are functions of expectations related to argu-
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ments of the factor. We employ IS to estimate these expectations or directly approx-
imate posteriors by Laplace approximation if a Gaussian posterior is reasonable.
We also extended the Julia package ForneyLab with the proposed EVMP method.
In contrast to many alternative PPLs that are solely based on Monte Carlo methods,
ForneyLab allows end users to take full advantage of closed-form message passing
rules while resorting to small-scale numerical approximations only when needed.
We showed that ForneyLab provides an efficient automated variational Bayesian in-
ference tool that in some instances may be preferable to the state-of-the-art Turing
package, especially for tasks that include filtering in dynamical models or discrete
variables in state space models.

While the experiments support the notion that EVMP is a promising method for
inference in non-linear and non-conjugate models, we have not tested our method
yet in high-dimensional problems. It is well-known that importance sampling is
not efficient in high dimensions [52]. Therefore, we anticipate that for high-
dimensional inference tasks with continuous random variables, Hamiltonian Monte
Carlo-based methods could outperform EVMP both in terms of run-time and quality
of the estimates. Nevertheless, it should be possible to alleviate the deficiencies
of EVMP in high dimensions by replacing IS and Laplace approximations by HMC
samplers. In essence, HMC is an MCMC method and [120] shows the efficiency of
MCMC methods in estimation of the expectations that are required in variational
inference. Yet, in lower dimensions, we favor IS and Laplace approximations both
because of their promising performance scores in the experiments and also because
EVMP relieves users of choosing hyperparameters for the best performance. Re-
call that in the SSSM experiments in Section 3.3.3, we tested HMC with various
hyperparameters to attain the best performance, and yet EVMP was more success-
ful in detecting the hidden regimes. Moreover, in contrast to EVMP, plain HMC is
not applicable to estimate discrete variables and needs to be combined with other
samplers to run inference on the models with discrete and continuous variables.

In Appendix D, we introduce a variational free energy estimation method that
resorts to approximations only if the closed-form expressions of the information-
theoretic measures are not available. This differs from alternative automated varia-
tional inference techniques, such as Automatic Differentiation Variational Inference
(ADVI), which estimates the entire free energy over Monte Carlo summation. More-
over, like HMC, the applicability of ADVI is also limited to continuous variables.

In EVMP, proposal distributions for importance sampling are automatically set to
forward messages. Although it is a practical solution with an elegant interpretation
in a message passing context, forward messages do not carry information regarding
observations. Therefore, we may not acquire useful samples from forward messages
if the observations lead to peaky backward messages. In future work, we aim to
investigate the effects of alternative proposal distribution design methods.

One major drawback of our ForneyLab implementation is that ForneyLab does
not allow loops during the inference procedure. We rarely encounter this problem
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with soft factors since the mean field assumption breaks the loops by imposing
additional factorizations in variational distributions. However, this may not be the
case with deterministic nodes. This is because the input and the output variables
of deterministic nodes are tied to each other through a deterministic mapping even
after the mean field assumption. For example, consider the following mixture model
specification: p(z) = Ber(p),p(z|z) = é(x — g1(2)) with g1(2) = p1z + p2(l — 2),
p(wlz) = §(w — g2(2)) with ga(z) = w1z + wa(1 — 2) and p(ylz, w) = N(z,1/w).
Although it is a valid model specification with properly defined message passing
rules, the EVMP algorithm is precluded due to the loop: the variable z is connected
to two deterministic nodes (p(w|z) and p(z|z)) the outputs of which are connected
to the same node p(y|z,w). Belief propagation (BP) [63, 64] faces with a similar
problem on loopy graphs. Nonetheless, it has been proven that iteratively running
BP on loopy graphs often yields satisfactory approximations though the convergence
is not guaranteed [121, Section 22.2], [75, Section 8.4.7]. Therefore, it is worth
investigating the performance of EVMP executed in a loopy setting.

There are similarities between EVMP and Expectation Propagation (EP) [67] in
the sense that both methods estimate the moment parameters of posteriors. In con-
trast to EP, which approximates belief propagation (BP) [63, 64] messages, EVMP
approximates VMP messages, which is applicable to a broader range of model spec-
ifications. In future work, we aim to investigate and exploit this relation.

3.6 Conclusion

We developed a hybrid message passing-based approach to variational Bayesian
inference that supports deterministic and non-conjugate model segments. The pro-
posed Extended VMP (EVMP) method defaults to analytical updates for conjugate
factor pairs and uses a local Laplace approximation or importance sampling when
numerical methods are needed. EVMP has been implemented in Julia’s ForneyLab
package (see Appendix E) and a set of simulations shows competitive inference per-
formance on various inference tasks, in particular for state and parameter tracking
in state space models.







Chapter 4

Adaptive Particle Methods within
Message Passing

This chapter is based on the original work referenced below. An additional illustra-
tive example is provided in the experiments.

 Semih Akbayrak, ismail Sendz, Bert de Vries, Adaptive Importance
Sampling Message Passing, 2022 IEEE International Symposium on
Information Theory (ISIT 2022) - Proceedings

Abstract

The aim of Probabilistic Programming (PP) is to automate inference in probabilistic
models. One efficient realization of PP-based inference concerns variational mes-
sage passing-based (VMP) inference in a factor graph. VMP is efficient but in prin-
ciple only leads to closed-form update rules in case the model consists of conjugate
and/or conditionally conjugate factor pairs. In Chapter 3, Extended Variational
Message Passing (EVMP) is proposed to broaden the applicability of VMP by im-
portance sampling-based particle methods for non-linear and non-conjugate factor
pairs. EVMP automates the importance sampling procedure by employing forward
messages as proposal distributions, which unfortunately may lead to inaccurate esti-
mation results and numerical instabilities in case the forward message is not a good
representative of the unknown correct posterior. This paper addresses this issue by
integrating an adaptive importance sampling procedure with message passing-based
inference. The resulting method is a hyperparameter-free approximate inference
engine that combines recent advances in stochastic adaptive importance sampling
and optimization methods. We provide an implementation for the proposed method
in the Julia package ForneyLab.jl.
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4.1 Introduction

Inference is often considered the challenging stage of probabilistic modelling as it
requires expertise in (approximate) Bayesian inference methods. Probabilistic Pro-
gramming Languages (PPLs) [47] aim to automate the inference stage so that end-
users can focus only on model development [49-51]. However, achieving this goal
is also challenging as it necessitates automatable and broadly applicable inference
algorithms that are hopefully hyperparameter-free, too.

This chapter proposes a broadly applicable, hyperparameter-free inference algo-
rithm called Adaptive Importance Sampling Message Passing (AIS-MP). AIS-MP is
a hybrid Monte Carlo message passing-based inference approach that combines the
efficiency and the speed of rule-based message passing algorithms , such as Belief
Propagation (BP) [63,64], Variational Message Passing (VMP) [65,66], and Expec-
tation Propagation (EP) [67, 88] with the generality of Monte Carlo sampling on
Forney-style Factor Graphs (FFGs).

Our work closely relates to the Extended Variational Message Passing (EVMP)
algorithm, which extends the applicability of VMP to non-conjugate and non-linear
models. EVMP achieves this through estimation of analytically intractable expecta-
tion quantities in VMP message calculations, either through a Laplace approxima-
tion [75, Section 4.4] or through importance sampling (IS) [102,129]. To reduce
the burden on PPL end users to specify hyperparameter values and proposal distri-
butions, EVMP casts so-called forward messages as proposal distributions in IS. This
method coincides with the popular Bootstrap particle filtering approach [19, 122],
but unfortunately, the method suffers from imprecise expectation estimations and
numerical instabilities if the forward message is not a good representative of the
correct posterior distribution.

AIS-MP approaches the above shortcomings of EVMP with an adaptive IS [130]
procedure. Specifically, AIS-MP initializes the proposal distribution with a forward
message and runs a stochastic optimization to tune this distribution iteratively until
the number of efficient samples exceeds a certain threshold. In the stochastic opti-
mization procedure of the proposal distribution, we use an approach introduced in
Stochastic Gradient Population Monte Carlo (SG-PMC) [131], by generalizing it to
the exponential family of distributions, similar to [132], with an a-divergence [133]
cost function, where o = 2. We provide an implementation of AIS-MP in a Ju-
lia [104] language-based PPL, ForneyLab.jl [62]. We demonstrate its performance
on a conjugate model first as a show case and on a non-conjugate Gamma state
space model later.
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4.2 Recap

In this section, we give a quick recap on Variational Message Passing (VMP) and Ex-
tended Variational Message Passing (EVMP). Assume a probabilistic model f(y, z)

for a given set of observations y = {y1, y2, ..., yv } and hidden variables z = {z, 22, ..

In case exact inference is intractable, the variational inference method approxi-
mates the exact posterior p(z|y) by a “recognition” distribution ¢(z) through mini-
mization of the (variational) Free Energy

Flq(z)] = Eq(z) [log q(z) — log f(y, 2)] , (4.1)

where E,(,)[-] refers to expectation with respect to ¢(z). To cast the free energy min-
imization as an iterative coordinate-descent optimization procedure, ¢(z) is often
chosen among factorized distribution families [75].

5‘ Za\j | fa fb !

; \ Maj Zj Mpj / i
L 2b\j

me; my;

fa : - fc A fb

()

Figure 4.1: (a) A sub-graph with factor nodes f, and f, connected through z;. (b) A deter-
ministic node f. = §(z; — g(z;)) allows us to specify complex models.

Consider the sub-graph given in Figure 4.1a with a recognition distribution con-
sisting of factors ¢(z;)q(2,\;)q(2p\ ;). Coordinate-descent optimization of the free
energy in this factorized graph is achieved through a distributed inference proce-
dure, called Variational Message Passing (VMP) [65]. In an FFG setting, the VMP

. Z]V[}.
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update for latent variable z; is described by [66]

Maj (ZJ) X €xXp (Eq(za\j) [1Og fa (za)D (423)
mp;(z5) oc exp (Eq(zh\_ﬁ[log fb(zb)]) (4.2b)
q(zk) = maj(zj)mbj(zj)/ / M (25)mp;(z5)dz; (4.20)

where z, denotes the arguments of the factor f,, z,\; stands for all the arguments
of f, but z;, and m,;(z;) and my;(z;) are respectively forward and backward mes-
sages.

In practice, one has to specify the probabilistic model carefully such that the
messages in (4.2) and the marginal posterior in (4.2c) can easily be calculated.
A natural way of satisfying these conditions is to choose factors as conjugate (or
conditionally conjugate) pairs that leads to following messages

Maj(25) X exp (Paj(25)T - Naj) (4.32)
my;(25) o< exp (u;(25)T - 1Mbs) 5 (4.3b)

where ¢4;(z;) = ¢p;(2;) = ¢;(z;) since f, and f; are conjugate factor pairs. Substi-
tuting (4.3) in (4.2c), the approximate posterior turns out to be

q(z) = hj(z;) exp (6 (25)T - (ag + 15) —Aj (1)),
%

which is a member of exponential family of distributions [89] with constant base
measure h;(z;), sufficient statistics ¢,(z;), natural parameters 7; and log-partition
function A;(n;). If the underlying graph consists of conditionally conjugate factors
then VMP is a very efficient algorithm for approximate Bayesian inference. The
presence of non-conjugate factor pairs often prevents efficient realization of VMP in
practice.

Extended Variational Message Passing (EVMP) removes the limitations of VMP
by estimating the expectation quantities that appear in VMP messages by impor-
tance sampling (IS) in an automated way. Consider Figure 4.1b. This time we
insert a deterministic mapping f. = d(z; — g(z;)) between the factors f, and f,,
which enables the end-user to specify more complex models using deterministic
functions g(z;). In this sub-graph, the message from the deterministic node to z; is

mes(es) = [ a3 — 9(2))ds
= muag(z3)) o oxp (@1(9(z)T - ma) 4.4)

which often leads to a backward message m.;(z;) that differs from the forward
message mg;(z;) in its sufficient statistics. In this case, we are often prevented
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from calculating the approximate marginal ¢(z;) analytically, since the normaliza-
tion factor in (4.2c¢) is not available in closed form. As a remedy, EVMP introduces
an additional approximation in the calculation of the posterior p(z;|y), leading to

N
q(z) = G(z) =Y w{(z - 2

s=1

—
3
—
~—

(4.5)

where zj(-s) ~ma;(z),w;” =

Similarly, q(z;) is represented by

a(z) = G(z) = S wiV6(z — g(47)).

s=1

The above approximations follow from IS with a proposal distribution mg;(z;).
Once ¢(z;) and ¢(z;) are represented with weighted samples, EVMP estimates the
expectations, such as E,(. )[®(z;)] and E,.,)[®(z;)] for an arbitrary function ®(-),
that are required in calculation of VMP messages around f, and f;, with Monte
Carlo summations, e.g.,

given that the support of m,;(z;) encapsulates the support of ¢(z;) [19, Page 118
1. Casting m,;(2;) as the proposal distribution for IS obviates the need for pro-
posal distribution specification and hence allows EVMP to be automated in message
passing-based PPLs. However, this automated process sometimes entails imprecise
estimations when the proposal distribution is not a good representative of the un-
known posterior. Next, we will improve the performance of EVMP by adaptively
adjusting proposal distributions in IS.

4.3 Adaptive Importance Sampling Message Passing

In the previous section, we showed that EVMP employs the pre-defined functional
forms of the VMP messages for inference and fills in the expectation quantities re-
quired in message calculations with their estimates calculated via IS. In this section,
we present Adaptive Importance Sampling Message Passing (AIS-MP) that aims to
improve the IS procedure of EVMP by using better proposal distributions.
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4.3.1 Adaptive IS with Stochastic Gradient Descent

Consider Figure 4.1 again. We define a weighted particle approximation §(z;) as

N
q(z) = d(z) = > wio(z; — 2), (4.6)
s=1
where
me (25" )me; (28)
s s TF(ZJ(-S))
ZJ(»)Nﬂ'(Zj),wJ(-): ~ .

s me (28" )me; (25™)

n=1 w(z§7L))

This time the proposal distribution 7 (z;) explicitly appears in the computation of
weights (4.6), since we do not set 7(z;) equal to the forward message. Note also
that in order to confine the inference problem to node level we use the notation m .
to denote the message propagating to the node f. on the edge j. In Figure 4.1b,
mc(z;) refers to mq;(2;). In selection of optimal 7(z;), we choose to find a min-
imum variance, unbiased estimator of the normalization constant of ¢(z;) that is
J mjc(zj)me;(z;)dz;. As shown in [133], this can be achieved by minimizing the
a-divergence between mj.(z;)m.;(z;) and m(z;) for a = 2:

O g e
o[ q(z))
/ m(z5) 42 = Fats) [w(zj)} ’ 4.7

where the multiplicative and additive constants are dropped. The last line follows
from that we choose our proposal 7(z;) to be a proper distribution. More precisely,
we constrain 7(z;) to be in the same distribution family with m,.(z;), i.e.,

T(25: A) = hje(z) exp (@5e(25)TA — Aje(N), (4.8)

with a constant h,.(z;). Having specified the functional form of =(z;; A) in an
exponential family, we shall iteratively tune its parameters in such a way that
D2 [mjc(zj)mcj (Z])H’/T(ZJ7 )\)] is minimized:

A — N — p DTy Dy [mje(z5)me; (25)] 7 (255 V), (4.9)



4.3 Adaptive Importance Sampling Message Passing

57

where t denotes the iteration index and p(*) is the step size at iteration ¢. We obtain
VaDa[mje(z)me;(z;)||7(z5; A)] by

= —Eqyz)) fr(( J))VA log 7 (2 )}
= ~Eqz)) _i((zjj))(%c( i) = Eﬁ[@c(zj)])] : (4.10)

The second line follows from F(ZJ) = Valogm(z;) [51]. The last line is due

to the property of exponential family of distributions that the gradlent of the log-
normalizer is expectation of sufficient statistics [89], i.e., VaA4;.(A) = E[pjc(25)],
which is available in closed-form. However, the overall expectation required to cal-
culate VD, does not have an analytical solution since ¢(z;) is unknown. Instead,
we follow SG-PMC'’s stochastic approximation approach [131] to estimate the true
gradient with

TADs = i) | 2 G1c(e) - Beloele)
N a2
= w’ G j(s )(d’ﬂc( A9) — Exldje(2)]). (4.11)

Notice that ¢(z; (e )) x mjc(z§ ))mcj( (=) ), hence using the weighting definition in
(4.6) we can wrlte

(s)
z X
( J(S)) x w(f"). 4.12)
m(z;

Q

J

~—

We now substitute (4.12) back in (4.11) and find a noisy gradient estimate of VDo
in closed-form:

N
VaDs o = Y wi (950(=f") — Ealoye(2))]) (413)

s=1

Substituting VD, with a noisy gradient estimate V ,\DQ in (4. 9) and setting p(*)

o0

according to Robins-Monro conditions [134], i.e., > p() = oo, Z pM* < o0, we
t=1 =1

get a stochastic gradient descent procedure to tune the parameters A of the proposal

distribution 7 (z;; A).
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In our optimization strategy, we use m;.(z;) as the initial proposal distribution
m(z; M), ie, MO = ;. and iteratively refine it. At the end of iteration ¢, we
collect new weighted particles to be used in gradient estimation (4.13) at iteration
t + 1 by employing 7(z;; A(¥)) in (4.6).

To diagnose the convergence of the stochastic approximation, we keep track of
the number of efficient particles [19, Chapter 7]:

N
ner =1/ wl. (4.14)
s=1

Once the number of efficient particles exceeds the specified threshold, e.g., neg >
N/10 [19, Page 124], we stop the stochastic approximation procedure and use the
converged 7(z;) in (4.6) to evaluate G(z;). This procedure relieves the end-user
from choosing the number of iterations and carries out the convergence diagnosis
automatically.

4.3.2 Backward Message Calculation with Moment Matching

Approximating ¢(z;) by a set of weighted samples §(z;) suffices to execute EVMP.
We can also find an approximation g(z;) within the distribution family of m.(z;)
by using the weighted samples §(z;) and moment matching [67]:

q(zj) o< exp <¢jc(zj)T P! ( {]Ed(zn[zj]»Vq(zg)[Zj]} T) > :

mj

Here, V;.,)[z;] is the variance of z; calculated over ¢(z;) and v(-) is a mapping

from natural parameters to central moments for the chosen exponential family dis-
tribution ¢(z;), i.e.,

V() = |Eqe2,) (2], V2] " (4.15)

The advantages of moment matching are twofold. Firstly, in the free energy calcu-
lation, ¢(z;) yields a closed form solution for the entropy term, corresponding to
zj. Secondly, moment matching allows us to approximate the backward message
My (Zj) with Vej (Z]) by lelleg q_(ZJ) with mjc(zj) [67, 81]

ch(zj) X €xp (¢jc(zj)T(ﬁZj - njc)) . (416)

Apart from being employed in VMP seamlessly, the above message is likely to be in
a convenient functional form to be integrated with BP or EP.
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4.3.3 Algorithm and Node-level Implementation

AIS-MP is summarized in Algorithm 2 and implemented in a Julia language-based
message passing PPL ForneyLab.jl. By default, the number of samples is set to 1000
and the ADAM optimizer [135] from the Flux.jl [46] package is employed to adap-
tively adjust step sizes. The end-user is free to change these hyperparameters. Note
that we keep track of the convergence and automatically determine whether to
terminate the optimization.

If a deterministic relation is not needed in the model specification but the infer-
ence is still challenging, the end-user of ForneyLab.jl can execute AIS-MP by intro-
ducing an auxilary random variable z; = z;.

Algorithm 2 AIS-MP around a deterministic node in an FFG

Require: A deterministic node f.(z;,2;) = 6(z; — g(z;))
Collect mjc(2;), me;j(z;) = mic(9(25))
Sett = 0, W(Zj; )\(0)) = mcj(zj)
Find G(z;) using (4.6)
while ngg < N/10 do {ns as (4.14), N = 1000 by default}
t + = 1; set p(t) {ADAM optimizer by default}
Run (4.9) using (4.13)
Find §(zx) using (4.6)
end while
Find (z;) and ?Cj(zj) using (4.15) and (4.16)

. X (s)
Set q(z;) = ; w;” (2 — g(2;7))

4.4 Related Work

AIS-MP is an instance of the class of approximate inference methods for proba-
bilistic programming, like Black Box Variational Inference (BBVI) [51], Automatic
Differentiation Variational Inference (ADVI) [50] and No-U-Turn Sampler (NUTS)
[49]. Unlike BBVI, ADVI and NUTS, AIS-MP utilizes stochastic approximation meth-
ods only when closed form message passing algorithms do not suffice to run infer-
ence in non-conjugate and nonlinear sections of the model specification. Similar
hybrid approaches are proposed in [84, 120]. We differ from them in that AIS-MP
estimates expectation quantities with IS, which is accompanied by the number of
efficient samples to track the convergence of stochastic approximations.

Adaptive importance sampling has been incorporated to enhance the perfor-
mance of variational inference in [136]. Our work differs from theirs in several
notable ways. Most notably, they utilize adaptive importance sampling to reduce




60

Adaptive Particle Methods within Message Passing

the variance of the free energy gradient estimates in BBVI. Whereas we use adap-
tive importance sampling directly in the approximation of the posterior marginals
and the messages. Secondly, they use Monte Carlo moment matching in approxi-
mation of the optimal proposal distribution for free energy gradient estimation. In
contrast, we adhere to SG-PMC’s stochastic optimization approach to tune proposal
distributions by generalizing it to exponential family of distributions and minimiz-
ing a-divergence for oo = 2.

The gradient estimate in (4.13) substantially coincides with the noisy gradient
derived in [132] except that their procedure is in a fully online setting (no summa-
tion term as in (4.13)). Another difference is that they minimize the variance of the
estimator for expectation quantities such as Ey(.,)[®(z)], whereas we minimize the
variance of the estimator for the normalization constant of ¢(z;) by aiming to get a
good weighted samples representation §(zy).

4.5 Experiments

4.5.1 Illustrative Example

Inspired by [120, Section 3.1], we start with an illustrative example to portrait the
importance of proposal distribution selection better while demonstrating how we
attack it with AIS-MP. The model we will be working on is the following condition-
ally conjugate model:

p(x) = N(x;0,1)
p(z) = Ga(z;2.5,1)
plyle, z) = Ny = 17.5;z,1/2) (4.17)

where NV (i, v) is a Gaussian distribution with mean . and variance v, and Ga(a, b) is
a Gamma distribution with shape a and rate b. In this model specification, the priors
are located far away from the posteriors, which as we shall show cause imprecise
estimations when the priors are employed as the proposals in importance sampling
procedures. Let us first run VMP as the ground truth of this experiment.

We run the VMP algorithm for 8 steps by setting the initial variational distri-
butions ¢(z) and ¢(z) to the prior distributions p(z) and p(z), respectively. VMP
steps are visualized in Figure 4.2. The free energy at the end of the 8th VMP step is
15.575.

Recall that both EVMP and AIS-MP are approximations to the exact VMP algo-
rithm. Let us, now, see how well the VMP steps are approximated by these algo-
rithms. We start with the EVMP algorithm. To clearly see the effect of adaptive
importance sampling, in EVMP, we will use importance sampling approximations
only by discarding the automated Laplace step for Gaussian case. To be able to
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Figure 4.2: 8 VMP steps for the model (4.17) are visualized along with the free energies as
functions of variational parameters. On the left column, we update the varia-
tional distribution g(x). On the right column, we update the variational distribu-
tion ¢(z). As a result of the coordinate descent procedure with exact stationary
point calculations, the free energy decreases at each VMP step.
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calculate the free energy in closed form, we also use central moment matching and
transform weighted sample representations to standard distributions, i.e., Gaussian
for + and Gamma for z. The EVMP steps with importance sampling and moment
matching are visualized in Figure 4.3.

Imprecision in expectation estimations causes the EVMP steps to differ substan-
tially from the exact VMP steps. Especially, the final ¢(z) estimation is considerably
different than ¢(z) found by VMP. The final free energy achieved by EVMP is 20.568.

Finally, we demonstrate AIS-MP steps in Figure 4.4. Notice how similar the AIS-
MP algorithm steps are to the exact VMP steps. The final free energy achieved by
the AIS-MP algorithm is 15.576, almost no different than the exact VMP algorithm.

4.5.2 Gamma State Space Model

In this subsection, we use AIS-MP in ForneyLab.jl to analyze the yearly solar activi-
ties between 1945 and 2020 over a sunspots data set (Source: WDC-SILSO, Royal
Observatory of Belgium, Brussels [137]; see Figure 4.6). Data samples are rational
numbers as they are calculated by averaging count data. To reflect the count nature
of the data, we round data sample values to their closest integer values and model
them with Poisson likelihoods. We designed a non-conjugate Gamma state-space
model to track the rate parameters of the Poisson likelihoods. More precisely, we
propose the following generative model for the sunspots dataset:

T
p(y,2,7) = pP(p(1)p(l21) [ [ pzelzi,7)p(yel20)

where p(v) = Ga(y;
p(z1]7) = Ga(z1;1,7)
p(zelzi—1,7) = Galz; ze-1,7)
P(ye|ze) = Po(ys; z1),
where Ga(+; a,b) denotes Gamma distribution with shape a and rate b, and Po(-; ()
is Poisson distribution with rate (. We run VMP on the model by utilizing IS to

estimate expectations quantities that are not available in closed form. We assumed
a mean-field factorization on the recognition distribution

T
(M [T az0)- (4.18)

This is a challenging model specification for EVMP as the chosen priors lead to
forward VMP messages that significantly diverge from the unknown correct pos-
teriors. Hence, we run AIS-MP to automatically tune the proposal distributions
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Figure 4.3: 8 EVMP steps with importance sampling and moment matching for the model
(4.17) are visualized along with the free energies as functions of variational pa-
rameters. On the left column, we update the variational distribution ¢(z). On
the right column, we update the variational distribution ¢(z). In EVMP, prior
distributions p(z) and p(z) are employed as the proposal distributions of the im-
portance sampling procedures. Although the free energy at the end of the 8th
step is lower compared to the beginning, EVMP steps substantially differ from
exact VMP steps.
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Figure 4.4: 8 AIS-MP steps for the model (4.17) are visualized along with the free ener-
gies as functions of variational parameters. On the left column, we update the
variational distribution ¢(z). On the right column, we update the variational dis-
tribution ¢(z). AIS-MP adjusts proposal distributions in the importance sampling
procedures starting from the prior distributions p(x) and p(z). The AIS-MP algo-
rithm mimic the exact VMP steps better than the EVMP algorithm and achieves a
lower free energy compared to EVMP.
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Figure 4.5: A time slice of the FFG we build in ForneyLab for Gamma state-space model.
The equality node that generates an auxilary variable z; performs AIS-MP and
approximates a non-Gamma message (shown by red arrow) with a Gamma mes-
sage (shown by green).

by IS estimates of expectations. We build an FFG as in Figure 4.5 in ForneyLab.jl.
Note that we introduce deterministic equality nodes that generate dummy variables
x = z and perform AIS-MP around these nodes. Running VMP for 10 iterations,
the free energy converges as in Figure 4.6 (left) and we get Gamma approximate
distributions ¢(z;), mean and variance of which are visualized in Figure 4.6 (right).

We compare AIS-MP’s estimates with NUTS’s in Figure 4.6. We use Turing [100]
probabilistic programming package of Julia language to run the NUTS inference en-
gine. We observe that the mean estimates substantially coincide, whereas NUTS’s
variance estimates are larger in comparison to AIS-MP’s. The difference in the
variance estimations is not surprising as we use a fully factorized distribution to
perform approximate inference in the AIS-MP case, whereas NUTS performs in-
ference over the joint distribution of the random variables. In terms of run time,
NUTS is preferable to AIS-MP for this model. AIS-MP converges in 6 VMP itera-
tions, which takes roughly 2.5 minutes to execute in ForneyLab.jl including graph
construction, whereas NUTS converges very fast with a reverse mode automatic dif-
ferentiation [116], in less than 3 seconds in our personal computer. Nevertheless,
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AIS-MP can still be a good alternative to NUTS in different model specifications. For
example, Switching State-Space Model (SSSM) variants [110] comprise both con-
tinuous and discrete variables, hence NUTS must be combined with other samplers
that perform inference for discrete variables, which sometimes does not yield satis-
factory estimations (see Section 3.3.3). As opposed to NUTS, AIS-MP can be used
to estimate discrete variables. For an SSSM example, we provide an AIS-MP imple-
mentation in our experiments repository. In the SSSM example, forward messages
yield good proposal distributions and AIS-MP executes EVMP in effect without the
need for stochastic optimization.
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Figure 4.6: Figure summarizes the results of the experimental validation. On the left, free
energy over VMP iterations are visualized for AIS-MP algorithm. On the right,
black dots indicate sunspot observations [137] rounded to closest integer values.
The lines and shaded regions correspond to mean and variance of the posterior
estimates g(z:). Posterior estimates are color-coded based on the legend corre-
sponding to AIS-MP (this paper) and NUTS (baseline) [49].

4.6 Conclusion

In this chapter, we propose Adaptive Importance Sampling Message Passing (AIS-
MP) that uses a stochastic adaptive importance sampling approach to estimate the
required expectations in the approximation of messages in FFGs. AIS-MP aims to
mitigate the shortcomings of the previously proposed Extended VMP (EVMP) algo-
rithm for automated VMP in message passing-based PPLs. As opposed to EVMP, AIS-
MP consists of a stochastic optimization procedure, and hence inference is slower
compared to EVMP. Nonetheless, as demonstrated by experimental validation, AIS-
MP performs better inference on models that EVMP cannot handle. We coded AIS-
MP in the Julia language-based PPL, ForneyLab.jl and aim to release it as a full
inference engine in the future.
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This chapter is based on the original works referenced below. A subsection about
an efficient Black-Box Variational Inference implementation with message passing
and an illustrative example are added in the chapter.
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Abstract

Stochastic approximation methods for variational inference have recently gained
popularity in the probabilistic programming community since these methods are
amenable to automation and allow online, scalable, and universal approximate
Bayesian inference. Unfortunately, common Probabilistic Programming Libraries
(PPLs) with stochastic approximation engines lack the efficiency of message passing-
based inference algorithms with deterministic update rules such as Belief Propaga-
tion (BP) and Variational Message Passing (VMP). Still, Stochastic Variational Infer-
ence (SVI) and Conjugate-Computation Variational Inference (CVI) provide prin-
cipled methods to integrate fast deterministic inference techniques with broadly
applicable stochastic approximate inference. Unfortunately, implementation of SVI
and CVI necessitates manually driven variational update rules, which do not yet
exist in most PPLs. In this chapter, for the exponential family of distributions, we
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cast SVI and CVI explicitly in a message passing-based inference context. We also
demonstrate how to go beyond exponential family of distributions by using raw
stochastic gradient descent for the minimization of the free energy. We provide
an implementation for SVI and CVI in ForneylLab, which is an automated mes-
sage passing-based probabilistic programming package in the open source Julia
language. Through a number of experiments, we demonstrate how SVI and CVI
extends the automated inference capabilities of message passing-based probabilis-
tic programming.

5.1 Introduction

Probabilistic programming refers to a programming paradigm that aims to auto-
mate and facilitate probabilistic inference for end users with varying degrees of
expertise in probabilistic modeling methods [47]. A considerable amount of in-
ference methods and tools have been developed over the past decade to support
this endeavour. A very important development in this realm concerns stochastic
approximation methods for variational inference where noisy gradient estimates of
a variational objective are used to update posterior distributions [78,79]. These
methods have been implemented in Probabilistic Programming Languages (PPLs)
such as Turing.jl [100], Stan [97], Pyro [99] and TensorFlow Probability [98]. Re-
alizing variational inference as a stochastic optimization task paves the way to-
ward universal inference and scales well to large data sets [87]. Still, stochastic
approximation methods for variational inference come with their own challenges.
For example, Black-Box Variational Inference (BBVI) [51] often requires additional
steps, such as Rao-Blackwellization [138], control variates [139], or variable repa-
rameterization [85] to reduce the variance in noisy gradient estimates and to attain
stable convergence. Another popular method, Automatic Differentiation Variational
Inference (ADVI) [50] maps continuous random variables to the real domain and
runs stochastic optimization by applying reparameterization in this new domain to
prevent high variance in gradient estimates and domain violations. However, the
applicability of ADVI is limited to continuous random variables. Moreover, neither
BBVI nor ADVI were developed with conjugate model structures in mind, and hence
they do not utilize the speed and computational advantages of message passing-
based inference methods, such as Belief Propagation (BP) [63, 64], Expectation
Propagation (EP) [67,88] and Variational Message Passing (VMP) [65, 66].

In this chapter, we focus on two other well-recognized stochastic approxima-
tion methods for scalable and universal variational inference, namely Stochastic
Variational Inference (SVI) [83] and Conjugate-Computation Variational Inference
(CVI) [84]. Unlike BBVI and ADVI, both SVI and CVI take advantage of conjugacy
structures in the model specifications. They use natural gradient descent [140,141]
to minimize a variational free energy objective in a stochastic setting. By incorpo-
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rating Fisher information into stochastic optimization by natural gradient descent,
both SVI and CVI adjust steepest descent directions better than raw stochastic gra-
dient descent, which further yields faster and more stable convergence. Whereas
SVI aims to scale variational inference for conjugate models to large data sets, CVI
extends this idea to non-conjugate models. While both methods seem efficient on
paper, automating them in a PPL is a challenging task as both methods necessitate
analytical calculations.

In the message passing branch of probabilistic programming, PPLs such as In-
fer.NET [101] and Julia language [104] packages ReactiveMP.jl [142] and Forney-
Lab.jl [62] aim to execute automated Bayesian inference by employing predefined,
deterministic message update rules. ForneyLab often executes inference faster than
stochastic approximation-based methods for conjugate or conditionally conjugate
probabilistic models with small data sets. However, it does not scale well to large
data sets, does not provide a formal mechanism for online variational inference and
its inference capabilities are more or less limited to a priori defined deterministic
rules in conjugate model specifications. Nevertheless, ForneyLab possesses in prin-
ciple the required inference rules to automate and harness CVI and SVI in order
to alleviate its shortcomings to a large extent. We present how to incorporate CVI
and SVI into ForneyLab’s automated message passing framework on factor graphs
for the exponential family of distributions. Additionally, we provide strategies to
go beyond the exponential family of distributions with stochastic gradient descent
optimization of the free energy. In our formalism, we stick to the deterministic mes-
sage passing algorithms in our PPL as much as possible and minimize the local free
energy with stochastic gradient descent when deterministic message passing rules
are insufficient to perform the inference. We show the favorable features of these
new extensions by a number of experiments.

5.2 Stochastic Variational Message Passing with Nat-
ural Gradient Descent
In this section, we address the three problems depicted for a node f;, in Section 2.5.
We will use SVI [83] and CVI [84] that are both based on Natural Gradient Descent
(NGD) [140,141] optimization of the free energy, otherwise known as the Bayesian
Learning Rule [143],
nj(t) - 77J(_tfl) _ p(t)vr];\i]: (n;tfl)) (5.1)

to tune the natural parameters of the approximate marginal

q(z55m5) = hj(z;) exp(pj(z;)Tn; — Aj(n;))- (5.2)
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In (5.1),  is the iteration index in NGD, p(*) is a step size and V)| F (77(.t_1)) is the

J
natural gradient of the free energy w.r.t. n;, evaluated at n](-tfl). In our message

passing framework, we access F(n;) through the messages propagating on edge j:

F(n;) = Eq(zg';m)[bg q(z3m5)] — Eq(z;imy) [log mjb(zj)] —Eq(z5m;) [log mbj(zj)] +c

(5.3)
where c collects the terms independent of 7;. Assuming that
m;i(2;) o exp(¢;(2;)Tjn) » (5.4)
the natural gradient fo_ (n;) evaluates to (Appendix A):
Vi Fny) =mn; - (njb + G (1) Vi, Bz, [log mbj(%‘)]) ; (5.5)

Vi Bz log ma; (25)]

where G(n,) refers to the Fisher information matrix of ¢(z;;7;,), given by the Hes-
sian of the log-normalizer:

G(ny) = Vi, Aj(n).- (5.6)

Next, we will discuss how to estimate fo Eq(z;im;)[log my;(25)] for all three cases
given in Section 2.5 to optimize the free energy in a stochastic manner by setting p(*)

according to Robbins-Monro conditions [134], i.e., 3 p® = oo and 3. p®° < co.
i=1 =1

5.2.1 SVI for Scalable VMP

Consider the FFG depicted in Figure 2.5c, where f; is defined to be an equality
node, i.e., z; is shared across /N sub-graphs denoted by dashed boxes. The sub-
graphs are comprised of identical functions with distinct local random variables in
their arguments, e.g., G, = V4, €4),Gn = (Van,&n) with d € V,, e € V,, such that
falyi, 2, 25) = h(y1, 2x, 25), fe(yn, 21, 25) = Myn, 21, 2;). Consider VMP in this FFG
and suppose the messages towards f;, have identical sufficient statistics with distinct
natural parameters, i.e,

mp(2;i) oc exp(d;(zi) nip)- (5.7)

In the message passing interpretation of SVI [144], we work with M < N sub-
graphs at a VMP iteration by estimating the message my;(z;) from the equality node
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as
N/M
~ T N
mpj(25) = H 0(zj — zi)mip(2i) dz; ox exp | ¢;(z;) i

m‘b) .
icg’ (b) icg (b)

i#] i#]
(5.8)

Here, £ (b) C £(b) denotes M edges on which the messages are available towards
fb. Substituting the above estimate in (5.5), the natural gradient estimate of the
free energy evaluates to

Vo F () =15 — (njb+ Z m) (5.9)

ies’ (b)
i#]

For an FFG G = (V, £), Algorithm 3 shows how SVI is executed by applying NGD
around equality nodes V— C V that are associated with shared variables z such that
zCz.

Algorithm 3 SVI on an FFG.

Require: A graph G = (V,€) for f(z) such that Z C z is a collection of variables
shared across sub-graphs {G,, ..., G, } through equality nodes V_ C V;
Number of iterations: T'
for all z; € z do
Initialize ¢(z;) o< exp(¢;(z;)T 17](-0))
end for
fort=1,...,T do
Choose a subset G of sub-graphs to be processed
forall G € G do
Inside the sub-graph G, run VMP for one step as in Section 2.3
Calculate VMP messages towards b for all b € V_
end for
forallb € V_do
Collect all available messages m.(z;) s.t. i € £ (b)
Calculate @fx F(n;) using (5.9) {Given that z; € z}
Set a step size p*)
Update ¢(z;) using (5.1)
end for
end for
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5.2.2 CVI for Non-conjugate Inference

Next, we consider the factors in V(j) as non-conjugate pairs that yield messages
with different sufficient statistics (see Figure 2.5a):

my(2;) o< exp(o;(z;)™n5n) (5.10a)
my;(25) o< exp(Pu;(25) ;) (5.10b)

Motivated by the message approximation scheme within the exponential family of
distributions in [128], we will use CVI to replace my;(z;) with an approximate
message v;(2;) that has sufficient statistics ¢;(z;). In an ideal scenario, v;(z;)
needs to satisfy that ¢(z;) o< m;;(z;)vp;(2;) is a stationary point of the free energy.
To search a stationary point, we run NGD given in (5.1) until convergence, and then
find v4;(2;) as described by [67,81],

q(z;m7)

mjp(25) oc exp(;(25)T (0 = 1jv))- (5.11)

voj(25) =
In the NGD-based optimization of the free energy, we employ an estimate for
fo Eq(z,n,) [log ms;(2;)], which does not have an analytical solution, since ¢(z;) and
myj(z;) differ in sufficient statistics. In some cases, such as when ¢(z;; ;) is a Gaus-
sian distribution, it is possible to directly estimate the natural gradients without ex-
plicitly evaluating the Fisher information matrix and its inverse, see [84, Appendix
B] for details, which follows from [145]. In our implementation, we stick to their
computationally efficient approach for the Gaussian case. In other cases, we com-
pute G(n) with automatic differentiation [41] and estimate V., E,(. ., . [log my; ()]
with the REINFORCE algorithm that is also the core algorithm of BBVI [51]:

S
]- S S
Vi, Bateyomy) 10g e ()] = < D Vi, logq (27 ) logmy, (47), (5.12)
s=1

where zj(-s) ~q(z3m5) -
In Section 5.4.4, we will demonstrate that approximate messages vy;(z;) ease hy-
brid inference procedures in message passing-based PPLs.

5.2.3 CVI for Generality

Above, we addressed the case that m;;(z;) is available in closed form but differs
from mj;(z;) in sufficient statistics. However, there might be cases that ms;(z;)
is not available in the PPL either because calculations do not have analytical so-
lutions or due to missing message passing rule implementations, as illustrated in
Figure 2.5b. To address this problem, we propose a strategy harnessing the existing
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deterministic message passing rules at the utmost level. Our strategy is based on a
decomposition of the factor f;(zp) as

folzn) = / 5z — 9(zors)) falza) d, (5.13)
fe(ze)

where z; is an auxiliary random variable between the factors f. and f4, g(2.\;) is
a generic, deterministic function that maps the variables z.; to z; and accounts
for generality in model specifications. f; is illustrated as a composite node in Fig-
ure 5.1. We require that f;(z4) is a factor, on which message passing rules, such as
VMP, are defined and arise proportional to the exponential family of distributions,
i.e., fy allows the terms z4 to be arranged as

fa(za) o< exp (dai(2:) T Aai(Za\i)) » (5.14)

where \y;(zq,\;) is a function of all the arguments z, but z;, which leads to a VMP
message

mgi(z;) o exp (Eq(zd\i) [log fd(zd)]) o exp (¢di(22‘)T Eq(za0) Aai(zavi)] ) (5.15)

Ze\ji

Figure 5.1: A factor node f;(2y), visualized as a composite node, where zy\; = zc\ (5,3 UZa\i-
In case the message ms;(#;) is not defined in closed form for the factor f;, we re-
quire the end-user to define f3,(z;) as a composite node such that the components
of fi are fo(z.) = 0(zi — g(zo\s)) and fa(za). g(zc\;) is a custom deterministic
function defined by the end-user. We do not put any restrictions on g(z.\;) and
hence allow the end-user to define almost universal model specifications. We
require fy to be a factor registered in the PPL together with the message passing
rules on it.

We also require ¢(zy ;) to be factorized as q(zy\;) = q(2c\j,i})9(24\:), where
q(ze\{j,iy) and g(z4\;) may contain further factorizations within themselves, but
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not given explicitly. Then, the log of VMP message m;;(z;) from the factor f, to
z; evaluates to (we detail the derivation below while discussing automated Rao-
Blackwellization)

log mbj(zj) X EQ(Zb\_;‘) [IOg fb(zb)] X Eq(zc\{j,i})[log Mdi (g(zc\i))] : (5.16)

Since g(z.\;) is a custom function defined by the end-user, there will be no rule
registered beforehand in the PPL to calculate the above expectation. Nevertheless,
we resort to Monte Carlo summation to estimate it as

S
log mpj(z;) = log me;(2;) =~ %Zlog M; (g (zj, zii){”})) , (5.17)
s=1

(s)

where z ALy ~ 4 ( c\{j,z‘}) :

Once logmy;(z;) is estimated, we use CVI as in Section 5.2.2 to find an ap-
proximate message v;;(z;) that has sufficient statistics ¢;(z;). Notice that instead
of resorting to Monte Carlo estimation at first step in Eqz,, [log fy(25)], we har-
nessed the message passing rules defined in our message passing-based PPL to re-
duce the number of variables to be sampled, which further reduces the variance
in log my;(z;) estimates. This approach coincides with Rao-Blackwellization, as we
detail next.

Automated Rao-Blackwellization

Consider the composite node f;(zp) = [ (zi — 9(2¢\;)) - fa(za) dz; visualized in Fig-
%,_/

fe(ze)
ure 5.1. As stated earlier, we assume that q(z\;) = q(2¢\(5,i1)9(za\:) and fg is a

function amenable to be arranged as fq(za) o exp (¢ai(2i)TAai(24\i)). Then log of
the VMP message my;(z;) evaluates to

logmp;(2;) o< Eq(z,, ;) [log fo(2b)]

=Ky a(z;) [log/é ZC\Z N fa(zq) d21:|

x Eq(zb\j) |:10g/5(22 - g(zc\i)) exXp (¢di(zi)T/\di(Zd\i)) dzl:|
q(zb\J [¢’d2( (Zc\i))T)\di(Zd\i)]~ (5.18)

A trivial approach to estimate the above expectation is to use Monte Carlo summa-
tion by drawing samples from ¢(z;\ ;). However, we aim to reduce the variance in
our estimates by avoiding sampling and sticking to analytical solutions as much as
possible. This strategy relates to Rao-Blackwellization [138], [6, Chapter 11.6.1]
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and has been used in various machine learning tasks including Bayesian estimation
in state space models [146, 147]. VMP rules defined in ForneyLab help us to carry
out variance reduction with Rao-Blackwellization in an automated way:

log mp;(25) o< Eq(z.\ ;.49) {Eq(zd\gzc\“,i}) [sbdi(g(zc\i))udi(zd\i)}}
=Eqg(z5.0) |:Eq(zd\i) [dei(g(zc\i))T)‘di(zd\i)]}

=Eiza i) [d)di(g(zc\i))TEq(zd\i) p\di(zd\i)”

X EQ(ZC\{J,”)[IOg mdi(g(zc\i))]a (5.19)

where mg;(-) is the VMP message defined from f; to z;. The second line above
follows from q(z3\;) = q(zc\(5,i})9(24\i)- The number of variables to be sampled
for the estimation of log my;(z;) in (5.19) is less than (5.18). The message passing
framework of ForneyLab equips us with the tools to carry out analytical calculations
automatically. This feature is missing in many other PPLs.

CVI around Deterministic Nodes

Now, we provide the CVI algorithm around the deterministic node f.. Given f;,(z)
is decomposed as (5.13), we carry out CVI by defining message passing rules around
the deterministic component f.(z.) = d(z; — g(z.\;)) by imposing a mean field
assumption on q(z.\;):

g(zei) = [I a(z)- (5.20)
je‘i('C)
VE

We provide a high level summary for CVI around the deterministic node f.(z.) in
Algorithm 4.



76

Stochastic Variational Message Passing

Algorithm 4 CVI around a deterministic node in an FFG

Require: A graph G(c) = (c,&(c)) s.t. fe(ze) = 6(zi — g(20:4));
Number of iterations: T for all j € £(c), j # i;
Number of samples: S
for all j € £(c) do
Collect mjjc(z;) o< exp (¢jc(2) )
end for
for j € £(c),j #1ido
Estimate log m.;(z;) as in (5.17)
Set 77](_0) — Nje
fort=1: Tj do
Calculate @an}'(nj) {See Section 5.2.2}
Set a step size p(*)
Update 7; using (5.1)
end for
Set ¢(z;) o exp ((bj(zj)T77§Tj))
Set ve;(2;) oc exp(;(z)T (187 — nje))
end for
Set q(z;) = {g (zﬁiz) ‘ fors e {1,.. .75}} where zfji ~ q(ze\i) {9(ze\;) is given
in (5.20)}

Algorithm 4 is defined for a generic case with multiple input function g¢. In case
the number of input variables is 1, i.e., |zc\,»| = 1, the algorithm simplifies fur-
ther since logme;(;) is available in closed form and no Monte Carlo summation is
needed to estimate it. By setting the deterministic node to an identity function, the
end-user of our PPL can run CVI for non-conjugate inference with known messages
as in Section 5.2.2.

CVI seamlessly interfaces with deterministic message passing procedures. Con-
sider a composite likelihood node accounts for complex observations through a
non-linear deterministic node. Running CVI on this deterministic node, the approx-
imate messages v,.;(z,) are ready to interface with BP and EP procedures. Similarly,
the approximate marginals ¢(z;) and ¢(z;) that are estimated in Algorithm 4 allow
VMP messages to be computed in neighboring factor nodes. Notice that in the last
line of Algorithm 4, we set ¢(z;) to a set of samples, which allows expectation quan-
tities in VMP message calculations to be estimated with Monte Carlo summation,
automatically as in Chapter 3, similarly to [120].

In Algorithm 4, we make use of the CVI algorithm to allow almost universal
model specifications and inference with non-conjugate factor pairs. For the sake of
brevity, we skip the details for scalability and online variational inference related
solutions of CVI that are analogous to the SVI algorithm and implemented in our
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framework.

5.3 Beyond Exponential Family of Distributions

Stochastic approximation methods for variational inference within the message
passing framework can be extended beyond the exponential family of distributions
by exchanging the natural gradient descent optimization scheme for raw stochastic
gradient descent. As discussed in Section 5.1, many PPLs automate variational in-
ference through stochastic gradient descent rather than natural gradient descent.
Here, we demonstrate how to interface these stochastic gradient descent-based
methods with message passing, which allows us to cast the stochastic optimiza-
tion of the free energy as a distributed fallback operation to be resorted to when
necessary.

Consider a node f,(z5), once again. This time, we assume that the incoming
message m;,(z;) on edge j to the node f; is not a member of the exponential
family of distributions, and we want to find an approximate posterior ¢(z;;7;) in
the same distribution family with m;;(z;). Below, we briefly mention two main
approaches to estimate the noisy gradients of the free energy with respect to the
parameters n; of the approximate posterior. Note that this time 7, does not refer
to natural parameters as ¢(z;;7;) is not a member of the exponential family of
distributions. Moreover, this time we will not find an approximate message v;(z;)
since the division given in (5.11) is not straightforward to calculate. Instead, we will
just find approximate marginals ¢(z;) that will be used to calculate VMP messages
around the factors in V(j).

5.3.1 Efficient Black-Box Variational Inference

Black-box variational inference (BBVI) [51] is a universal approximate inference
technique that employs the REINFORCE algorithm, otherwise known as score func-
tion estimator, in the estimation of the free energy gradients [148]. We use REIN-
FORCE algorithm in (5.12) to estimate natural gradients. Below refers to the noisy
gradient estimation of the free energy w.r.t. 7);:

S
1 S S S S
Vi, Fj) =5 > _ Vi, log (=" m;) [105%61(2](' \iny) = log mjo(z4™) = log my (2] ))] )
s=1

(5.21)

where z](-s) ~q(z).

This is an efficient realization of BBVI because message passing automatically
carries out Rao-Blackwellization as discussed and reduces variance in gradient esti-
mations.
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5.3.2 Reparameterization Gradient Message Passing

REINFORCE is a broadly applicable estimator for gradients of expectation of func-
tions. However, the variance of the REINFORCE estimator is sometimes too high to
be practical [78,149]. An alternative approach is based on reparameterization of
the random variables and has been employed in a wide variety of machine learning
tasks ranging from deep generative modeling [85,86] to variational inference [87].
Let us rewrite the local free energy function:

)& . 0 a(25; ;) z ) a(2531m;) 2
F = Bt [lg fe >] [ atmes® 7500

where f(z;) = mjs(2;) - mp;(2))-
One might think that the gradient could be estimated by a Monte Carlo approxi-

B S
mation V, F(n;) = & 21 Vo, log[q( - ,n])/f( (e ))] where {z( )} _, is a set of sam-

ples from ¢(z;;7;). Unfortunately, the noisy measurements from log[q(z;;7;)/f(2;)]
can not be taken without loosing some information about the variational parame-

ters 77;. In other words, once z( s) sampled the term log f (z; () ) is not a function of
n; anymore and its gradient V, log f ( ) becomes zero. The reprameterization

trick deals with this problem by generating the zj samples from a differentiable
process of dummy random variables e(*):

e ~ ple) (5.22a)
2 = h(e®; ) (5.22b)
a(zj3my) = [Tn=1(253m5) | p(h (255 m7)), (5.22¢)

where h(e; n;) is an injective, differentiable function of a random variable €, h=*(-; ;)
is its inverse, Jj,-1(z;; ;) is the Jacobian of h~! evaluated at z; for multidimensional
e and z; and |J,-1(z;;7;)| is the determinant of the Jacobian, [85-87,150].

The gradient of the local free energy can now be estimated by Monte Carlo
approximation because it can be expressed as an expectation of the gradient:

(€) [n-1(z53m5)]
Vo, F() = Epe) |V, log 2L . (5.23)
v e F(h(esmy)

The above expression is further simplified by discarding the terms that do not
include the variational parameters [87], and the result is called the reparameteriza-
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tion gradient [85, 86]:

Vo, F(nj) = —Epo {an log |Jn(&m;)| + Vy, log f(h(e; Uj))}

= —Ey(e) [V, log [Jn(e;m;)| + Vi, logmyy, (h(e;m;)) + Vi, log mu; (h(€;m;))] -
(5.24)

5.3.3 [Illustrative Example

In the upcoming section, we will demonstrate how SVI and CVI perform as proba-
bilistic programming algorithms in a message passing-based PPL. But, first, we want
to illustrate a hybrid message passing inference procedure on a simple example to
demonstrate how to combine the reparameterization trick and the REINFORCE es-
timator in the message passing context. Consider the factor graph in Figure 5.2,
which depicts the following probabilistic model.

N
py, @, w) = p(w) [ [ plenlw)p(yn|zn), where (5.25)
n=1
p(w) = Ga(w; 5,1)
p(xnlw) = N(zn; s, 1/w)
p(Ynlzn) = TN (yn; 2p,0.25,0,10) .

In (5.25), Ga(-; a,b) is Gamma distribution with shape a and rate b, N (z,; sp, 1/w)
is a Normal distribution on z,, with known exogenous mean s, and precision w,
TN (:; i, v,0,10) is a truncated normal distribution with upper and lower limits 10
and 0, where y is mean and v is variance.

In this probabilistic model, we are interested in the posterior marginals p(w|y)
and p(z;|y). Unfortunately, BP messages m.;(w;) necessitate integrals that are hard
to calculate. Hence, instead of running exact BP in this tree-like FFG, we shall resort
to an EP-like iterative procedure to find approximate marginals ¢(w) and g(z;).

Recall from Section 2.4 that we initialize the EP procedure around the equality
node f, by initializing the messages v;,(w;) for i = 0 : N. The message v,(wo)
is the prior p(w) as we relate wy with w on the FFG. All other messages v;,(w;)
are initialized with uninformative Gamma distributions Ga(w;;0.01,0.01). Given
the messages v;,(w;), we can now analytically calculate the message on edge j
propagating from f, by

vp;(w;) o H /6(wj — w; )vip(w;) dw; . (5.26)
i€E(b)
7]
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fe d fa
I ©
w1 81 Y1
®
wo fb w; Tj

fo o1 2 @ fe @ fa

fo on fa
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Figure 5.2: An FFG representation of (5.25). The factors f,, f., fa respectively stand
for p(w), p(xn|wn) and p(yn|zn). The variable wo relates to w in (5.25) and
branches out through the equality factor f,. The variables w1, ..., wy are copies
of wy. Edges are enumerated by the numbers in circles visualized below edges.

The message v;(w;) is a Gamma distribution Ga(w;; ayj, by;). Following the EP
steps defined in Section 2.4, we are now supposed to calculate

q(w;) o< vpj(wy) /fc($j>wj)mj+zv,c(ﬂfj)d$jv (5.27)

mjp(wy)

where f.(x;,w;) stands for p(z;|s;,1/w;) with known s;. However, we mentioned
that the integral in calculation of mj,(w;) impedes the BP algorithm. Hence, we
shall approximate it. For the approximation of m,(w;), we first introduce a joint
approximate factor ¢(w,, z;):

q(wj, z;) = f(wy,x;) = ve;(w;) - fe(wg, wi) - mjpn.e(z;) - (5.28)

Now let us evaluate the marginal approximate factor ¢(x;):

q(xj) ~ f(z;) = mj+N,c(l’j)/Vbj(wj) < felzj, wy)dw; (5.29)

me j+n(T;)
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Above, BP message m. v (x;) is available in closed form and proportional to
Student’s t distribution:

mc,jJrN(mj) ocSt(xj;ucj,acj7ncj), (530)

where St(z;; fiej, 0cj, nej) is a Student’s t distribution with location p.;, scale o.;
and degrees of freedom n.;. Given that v;(w;) = Ga(wj;; ap;, by; ), we find pe; = s;,

Ocj = \/bcj/acj and Nej = 2abj-

Now, let us assume the joint approximate distribution ¢(w;, z;) factorizes as
q(wj, z;) = q(w;) - q(x;) - (5.31)
Then we can approximate the BP message m;(w,) in (5.27) with a VMP message

mjp(w;) o exp (Eq(xj)[log fe(w;, xj)])
o Qa(wj, 1.5, 0.5(Vq(mj)[l‘j] + (Sj — Eq(mj)[.%‘j])z)) . (5.32)

Since the VMP message m , (w; ) is already in the same distribution family as v, (w;),
we can set v;(w;) = mjy(w;) without a need for moment matching. Running
this procedure iteratively for all the factors connected to f;, we find approximate
marginals ¢(w) and ¢(x;) fori=1: N.

So far, we have summarized the overall inference procedure for the model de-
fined in (5.25). However, we have not mentioned how to calculate ¢(z;) in (5.29),
yet. Recall that the forward message m. j;n(z;) is not in exponential family of
distributions and as it is customary in Bayesian inference, we will approximate
g(z;;m;) within the distribution family of the forward message that is Student’s t
distribution, i.e., q(l'j,T]J) = St(:cj;uj,crj,nj), where ny = [,uj,crj,nj]T. We will
use stochastic optimization to tune 7;, where the gradient of the local free en-

ergy is Vm]: [aﬂf , 2L, gf ]7. In estimation of the first two partial derivatives,
J
97 and 2 aa , we will use the reparameterization trick (5.24) since sampling from

St(xj ; 1bj, 05,n;) can be performed by the following procedure:
x;;) = p; + Uje(s), where €®) ~ St(0,1,n;). (5.33)

In calculation of , on the contrary, we use the REINFORCE estimator (5.21) as

we can not reparameterlze 2% as a function of nj, explicitly.

For the empirical test of the described inference procedure, we use N = 4 data
samples generated by using s; = —5, so = —0.2, s3 = 15, s4 = 6. The perturbated
inputs are x; = —2.62, xo = 3.9, x3 = 17.3, x4 = 6.92. The noisy output measure-
ments are y; = 0.07, yo = 4.39, y3 = 9.99, y4 = 6.82. We run our EP-like updates
for 10 iterations. For the calculation of ¢(x;), we run stochastic optimization for
1000 steps with the ADAM optimizer [135]. The estimates for ¢(x;) are visualized
in Figure 5.3 together with the actual perturbated input values.
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Figure 5.3: The estimates for ¢(z;) and the actual perturbated inputs. Estimations are per-
formed with a stochastic optimization procedure within an EP-like message pass-
ing scheme. The approximating distribution families for ¢(z;) are chosen Stu-
dent’s t distribution. The gradients to be used in stochastic optimizations are
estimated by the combination of a reparameterization trick and the REINFORCE
estimator.

Note that having estimated ¢(z;), the VMP messages in (5.32) are available in
closed form, since the mean and the variance of z; under Student’s t distribution
are analytically defined.

5.4 Experiments

In this section, we show the effectiveness of the SVI and CVI implementations in
the message passing-based PPL ForneyLab.jl.

5.4.1 Gaussian Mixture Model

SVI is meant to be beneficial when working with gigantic data sets that can not
be processed at once as needed in VMP. In this experiment, however, we aim at
validating that our SVI implementation in ForneyLab is functioning as expected in
theory. Therefore, we use a small data set to run VMP and use its free energy as a
performance benchmark. We measure the performance of the SVI over a Gaussian
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Mixture Model (GMM) [76, Chapter 20] for the Iris data set [151, 152] after re-
ducing the dimensionality of the data samples from 4 to 2 by Principal Component
Analysis [75, Chapter 12]. The Iris data set comprises 150 data samples, equally
distributed among three classes. We define the GMM by

150
Py, z, 1, W,s) Hp (k) (W) Hp (znl8)p(yn|2n, u, W), (5.34)
p(s) = Dlr(s; [50, 50, 50])
p(pr) = N (px; 02, Tax2)
p(Wi) = Wa(Wi; Iaxo,2)
p(znls) = Cat(zn; s)
1\ [[zn=FK]
p(yTL'ZT‘U”a HN ynuukaW ) ) (5~35)

k=1

where N, W, Dir, Cat stand for Gaussian, Wishart, Dirichlet and Categorical dis-
tributions respectively. 0, is two dimensional vector of zeros and I,y2 is two by
two identity matrix. The Iverson bracket, [z, = k|, is an indicator function that
takes the value one if the equality is satisfied, and zero otherwise. All the fac-
tors given above are registered in our PPL including p(y,|zn, tt, W), which is called
GMM likelihood node. We approximate the true posterior p(z, u, W, s|y) by a fully
factorized
150

3
a(z, 1, W) = q(s H a(ue)a(Wi) T T a(zn)- (5.36)
k=1 n=1

For SVI, we randomly split 150 data samples into five mini-batches equal in
size to process per iteration. The estimations with stochastic VMP are visualized in
Figure 5.4. We use the mean estimates for ¢(ux) and ¢(W}) to set the mean and
precision parameters of the visualized clusters. The cluster assignments for data
samples are shown in red, blue, and yellow. To color-code the data samples on the
plot, we use the maximum of ¢(z,). On the right-hand side of Figure 5.4, we see
that SVI performs on par with VMP in terms of free energy. Notice that whereas SVI
employs 30 data samples per iteration, VMP uses all 150 of them. Thus, ForneyLab
can be run in SVI mode instead of VMP to carry out inference on models require
working with large data sets.

5.4.2 Tracking a Non-stationary Process

In this experiment, we demonstrate how stochastic optimization enables us to track
a non-stationary process. For this purpose, we use a coal mining accidents data
set [153], visualized with black points in Figure 5.5.
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We model the number of accidents with a Poisson likelihood, i.e., p(y:|z:) =
Po(y:; z¢) and aim at estimating the rate z; to get the notion of policies regarding
the safety regulations in mining sites. At first, we postulate that the safety policies
do not change and the rate is shared among all the likelihoods, i.e., z; = z for all ¢.
We put a shape-rate parameterized Gamma prior p(z) = Ga(z;1,1) on z. We run BP
in an online setting, processing the number of accidents one by one and updating
the prior p(z) at each time step with the posterior estimated in the previous time
step. We visualize the mean estimations with a blue curve in Figure 5.5.

2 VMP iterations
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700 | Batch VMP Minibatch SVI

8 10

a 2
g 3
8 8

Free Energy
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(a) GMM estimations with SVI (b) Free energy comparison

Figure 5.4: Visualization of the marginal posterior and free energy estimates with SVI. These
results verify that our SVI implementation in ForneyLab performs as expected for
this model.
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Figure 5.5: Coal mining accidents in the United Kingdom from 1851 to 1962. In 1887, new
safety regulations are exerted to prevent accidents on mining sites. We show that
it is possible to achieve online BP using SVI with a step size satisfying the Robins-
Monro conditions. Violating the Robins-Monro conditions and keeping the step
size fixed over iterations, we are able to track the hidden non-stationary process
shown by the red curve.
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Next, we investigate the behavior of stochastic approximation for variational in-
ference. We set the distribution family of ¢(z;7) to the Gamma distribution family,
same with p(z). Notice that p(y:|2z:) and p(z) are conjugate factor pairs, thus the
natural gradient of the free energy with respect to 7 is available in closed form and
hand-coded in our PPL through SVI. Therefore, by running SVI in ForneyLab, we can
investigate the inference with NGD over the free energy objective. In Section 5.2,
we discussed that the step size p(¥) must satisfy Robins-Monro conditions for con-
vergence. Setting it to 1/t for ¢ = 1 : 112, we satisfy Robins-Monro conditions and
the estimations coincide with online BP.

So far, we treated the example as if z; = z for all ¢. However, countries change
their safety regulations over time and the assumption that z; = z does not re-
flect the true process well. We may consider enriching our model specification as
in [154]. However, this new model may complicate our automated inference pro-
cedure and lead to unsatisfactory estimations. Instead of inserting the changes in z,
explicitly within a new model specification, we retain our simple model as it is and
implicitly treat the problem at hand as a non-stationary process. We achieve this
by violating the Robins-Monro conditions and setting p*) = p = 0.1 for all ¢. This
is a widely preferred approach in bandit problems to track non-stationary hidden
rewards [155]. Keeping p*) fixed over time weighs the contributions from recent
observations more than earlier observations in updating n through (5.1). The mean
of ¢(z) over time is visualized by a red curve in Figure 5.5. Note that the mean
is around 3 until the 1890s, which steadily declines to around 1 later on. This
analysis estimates a policy change just before the 1890s, which is indeed the case:
authorities in the UK exerted new safety regulations in 1887 to prevent accidents in
mining sites. Regarding the mean estimates around 3 and 1, a Gibbs sampling over
a change point model gives similar estimations [156]. This experiment supports
the notion that the devised stochastic message passing algorithms enable us to go
beyond conventional inference approaches in message passing-based PPLs.

5.4.3 Hierarchical Probabilistic Modelling with a Non-conjugate
Prior

In this experiment, we build a hierarchical probabilistic model with a non-conjugate
prior to test the performance of the CVI implementation in ForneyLab. Inspired by
the famous eight school example from [157], we introduce a slightly different hier-
archical model to analyze the effects of eight special coaching programs on the SAT
score of students. In our experiment, we assume that we work with students’ data
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who take the exam for a second time after attending a special coaching program:

8

N;
p(y, ,w, a, 8,1, 5) = p(a)p(B)p(wp(s) | [ plwilu, s)p(wila, B) T pyinlzs wi),

i=1 n=1

(5.37)

)
)
p(p) = N(11;0,10)
p(s) = Ga(;0.1,1)
p(xilp, s) = N (i, 1/s)
p(wila, B) = Ga(w;; o, B)
)

P(Yin|Ti, wi) = N (Yin; @i, 1/w;).

We change the original problem and model specification in [157] to introduce a
non-conjugacy that stems from p(«) in our model specification. In this model, we
aim at analyzing the effect of special coaching in general by estimating the global
variables «, 8, u and s that are shared among eight schools. We also desire to
estimate the effect of the schools individually by estimating the local variables z;
and w;. Our model differs from the original model specification in that we make an
analysis over participants’ SAT scores taken before and after the special coaching.
We denote the change in the SAT score of the n™ participant of the i school with
yin- We generate y;,, values from Normal distributions parameterized with means
and standard errors given in [157, Table 5.2].

For the inference, we make the mean-field factorization assumption in the ap-
proximate posterior:

8

g(@,w, 0, B, 1, 5) = q(@)q(B)a(w)g(s) [ [ a(zi)a(ws). (5.38)

i=1

In ForneyLab, we run VMP for 10 iterations. We tie « to an identity deterministic
function g(a) = « just to execute NGD variational inference for the non-conjugate
section of the factor graph and to estimate ¢(«) as a member of Gamma distribution
family with CVI. At each VMP iteration, the natural parameters of ¢(«) are updated
by NGD with ADAM optimizer for 10000 iterations.

For the comparison, we use the ADVI inference engine of Turing. We observe
that ADVI converges in 5000 iterations with forward-mode automatic differentia-
tion [158] and the default optimizer set by Turing. The run time and free energy
comparisons are given in Table 5.1!. We see that Turing and ForneyLab perform

1Specs of the computer: Julia v1.5.3, Turing v0.18.0, 7 GHz Quad-Core Intel Core i7 CPU, 6 GB 2133
MHz RAM
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Hierarchical model Sensor fusion
Run time | Free energy | Run time | Free energy
ForneyLab with CVI | 10.961 209.127 6.820 94.784
Turing with ADVI 0.969 208.244 27.238 104.374

Table 5.1: Run time (sec.) and free energy comparisons for the hierarchical model and the
sensor fusion experiments.

almost equally well in terms of free energy, while Turing outperforms ForneyLab in
run time. Nevertheless, this experiment validates the quality in our estimates with
the CVI implementation in ForneyLab and encourages us to test it in a state space
model, where we can take full advantage of the deterministic message passing rules
of ForneyLab. The next experiment focuses on a state space model example.

5.4.4 Sensor Fusion

In this experiment, we show how ForneyLab casts stochastic optimization for varia-
tional inference as an efficient, distributed operation. We use a variant of a sensor
fusion example given in [156, Example 3]. Assume an object moves in a two-
dimensional environment where three noisy sensors are set in pre-specified loca-
tions: &1 23. At a discrete time ¢, each sensor measures the Euclidean distance
[|& — ht|| between the object’s position h; and itself. Our task is to estimate the
position of the moving object over time using noisy sensory measurements.

Smoothing with Fixed Model Parameters

We build a state space model using Newtonian dynamics to model the transitions.
At first, we use fixed transition and measurement noise matrices in our model spec-
ification:

T
p(y, x, z) = p(z1)p(z1|z1)p(y1|z1) H (zt|ze—1)p(xe|ze)p(ye|xe), where  (5.39)
t=2

p(21) = N(21; 04, I1x4)
p(2tlze-1) = N(21; Azp—1, Taxa)
p(@e|2e) = d(we — g(2¢)) with g(2) = [||& — Bz, ||€2 — Bz, 163 — B[]
p(yelee) = N(ye; xe, Isxs),

where z; is the vector of hidden position h; and velocity values, A =

Ioa | Ioxo ]

O2x2 | Tox2
and B = [ Ixz | O2x2 |. In this model, the non-conjugacy stems from the deter-
ministic function g(z;). We circumvent the non-conjugacy issue by incorporating the
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CVI algorithm into our message passing procedure through the factors p(z;|z;). At
a given time step ¢, we run the CVI algorithm around p(z;|z:) for 100 iterations with
a descent optimizer with learning rate 0.1 to find a message towards the equality
node that connects z; to p(z:|z:) (see Figure 5.6 for the visualization of a closely re-
lated model). The approximate message combines with BP messages at the equality
node to construct the forward and backward messages towards the p(z;|z;—1) fac-
tors. Therefore, in ForneyLab, the number of parameters to be estimated by stochas-
tic approximation scales linearly with T" and the rest of the computation is carried
out with deterministic BP messages.

We generate synthetic data with 7' = 15 and compare ForneyLab’s performance
with ADVI of Turing. We define a fully structured Gaussian approximate posterior
q(z) to be estimated with ADVI as it is in ForneyLab. Whereas ForneyLab esti-
mates the structured approximate distribution with distributed operations through
message passing, ADVI estimates the parameters of ¢(z) solely with stochastic op-
timization. Therefore the number of parameters to be estimated by stochastic ap-
proximation scales quadratically with 7" in ADVI due to the Cholesky factor of the
covariance matrix in ¢(z). We use reverse-mode [116] automatic differentiation
background in Turing to speed up the inference. ADVI converges in 6000 iterations
with a default optimizer set by Turing. The run time and the free energy compar-
isons are given in Table 5.1. We see that equipped with CVI, ForneyLab attains a
slightly lower free energy in a shorter time compared to Turing’s ADVI. This experi-
ment demonstrates the efficiency of our CVI implementation in ForneyLab.

Bayesian Parameter and State Estimation with Structured Variational Message
Passing

In the previous experiment, we worked with fixed noise parameters in transition
and measurement components. Let us relax this assumption and estimate these
parameters as well. The model specification in (5.39) slightly changes as

p(y,x, 2, W, S) = p(W)p(S)p(21)p(x1|21)p(y1]x1, S)
T

Hp(zt|zt,1, W)p(zt|2e)p(ye|we, S) (5.40)

t=2
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where

p(z1) = N (21504, Iyxa)

= N(z; Az, W)

—» Normal — BP

—> Wishart VMP
—oSamples — Struct.VMP
— CVI

—— Approx.Marg.

Figure 5.6: A sub-graph of the model defined in (5.40). The factors fw, fs, f=, f=, fy stand
for p(W), p(S), p(zt|ze—1), p(x¢|z¢), p(ye|z:) respectively. In order to provide
the reader with the intuition of the message passing procedures in ForneyLab,
we visualize the messages as well. The arrow shapes indicate the probability
distribution families that messages are carrying. The messages are colored ac-
cording to the algorithm types that generate them with an additional black color
indicating approximate marginal distributions to be employed in VMP. Forney-
Lab resorts to stochastic optimization only around the factor f, and carries out
the rest of the computations by deterministic distributed message passing opera-
tions. Notice that CVI sends a Gaussian message, visualized with the red arrow,
towards the equality node that is incorporated in the calculation of the forward
and backward messages with BP. We also allow VMP to be executed around the
node f, by setting q(z) to a set of samples over which the expectation quantities
are estimated for VMP.
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Above W;(V,n) is a Wishart distribution with d x d positive definite matrix V' and
n degrees of freedom. We generate a synthetic data with 7' = 30 and approx-
imate the exact posterior p(z, W, S|y) with a structured mean-field assumption:
q(z, W, S8) = q(z)q(W)q(S), where ¢(z) is not factorized over z. The factor graph
and the message passing procedure for one time slice is depicted in Figure 5.6.

Notice that we resort to NGD stochastic approximation only around the factor
fu(xe, 2¢) = p(x4|2¢) to compute a message visualized with a red arrow and parame-
terized with a Normal distribution. At a time step ¢, CVI computes the approximate
message in 1000 NGD iterations with a step size of 0.1. The rest of the computations
are carried out with deterministic distributed operations. We run 30 VMP iterations,
which minimizes the free energy as in Figure 5.7. For qualitative analysis, we also
visualize the final position estimations with 1000 samples drawn from ¢(z).

This experiment provides the reader with the intuition behind our CVI imple-
mentation in ForneyLab. CVI around a deterministic node renders NGD locally
to circumvent intractable operations due to non-conjugacies and approximates the
problematic messages with approximate messages amenable to analytical calcula-
tions.

5.4.5 Regression with a Bayesian Neural Network

Many PPLs support integration with deep learning libraries to allow complex prob-
abilistic model specifications with neural networks, e.g., Pyro [99] and TensorFlow
Probability [98] respectively interface with PyTorch [45] and Tensorflow [44]; Tur-
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Figure 5.7: On the left is the free energy over VMP iterations for the model defined in (5.40).
On the right is the 2-d environment the object moves in. The red curve shows
the true trajectory of the movement with the star being the initial point. Black
squares are the sensors measuring the Euclidean distances with some perturba-
tions. Once the inference is complete, we draw 1000 samples from ¢(z) and
visualize the corresponding position estimates with cyan curves.
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ing [100] supports model specifications with Flux.jl [46]. Inspired by Turing, here
we show how to use ForneyLab’s CVI to make inference in a Bayesian Neural Net-
work (BNN) built [159] with the Flux deep learning package.

For this experiment, we generated 40 data samples with input x,, and output
yn values from a sinusoidal function. We run inference for the following model
specification:

40
p(y, x, s,w) = p(w) H §(sn — g(w, xy,)) p(yn|sn), where (5.41)
"=1 Deterministic node
p(w) = N (w; 022, I22x22)
P(Ynlsn) = N (yn; sn,0.1).

In the above model specification, g(w, x,,) is a three-layered neural network com-
prised of 22 weights with a prior p(w). Exogenous inputs to the neural network are
x, values. We run CVI to approximate p(w|y, ) with a Gaussian ¢(w). We use a
descent optimizer with step size 0.01 and run 10000 iterations over the entire data
set.

After the inference is completed, we generate 100 neural networks parameter-
ized with weights sampled from ¢(w) and run each neural network with z,, in the
range (—5,5). The results are visualized in Figure 5.8. We see that the neural
network captures the sinusoidal shape confidently for the interpolation task in the
range (—2,2). Outside of this range, we obtain flattened extrapolation with higher

@ Observed data instances

-
T

Output values
°

-1k

s = o > P
Input values
Figure 5.8: A simple example proves that ForneyLab is compatible with Julia language’s deep
learning package Flux. We use Flux to build a neural network architecture and
insert it into an FFG through a deterministic node. In this plot, observations are
red points. The blue curves are the outputs of neural networks parameterized
with weights sampled from ¢(w) after the inference with CVI.
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uncertainty. This simple experiment demonstrates how ForneyLab with CVI seam-
lessly interfaces with a deep learning package.

5.5 Discussion and Implementation Details

SVI and CVI greatly extend the inference capabilities of our message passing-based
PPL, equipping it with some favorable features over the existing non-message passing-
based PPLs. For instance, many of the non-message passing-based PPLs achieve
scalable variational inference by adhering to doubly stochastic variational infer-
ence [87], in which the stochasticity is due to both the mini-batch selection process
from the data set and sampling from the candidate approximate posterior distri-
bution. This process is the same in conjugate and non-conjugate models for non-
message passing-based PPLs. In contrast, running SVI in a message passing-based
PPL for conjugate model specifications obviates the need for sampling from the
candidate approximate posterior distribution and reduces the source of stochastic-
ity to the mini-batch selection process only. Reducing the dependency on sampling
processes often results in faster and more stable convergence. Furthermore, as
opposed to non-message passing-based PPLs, SVI enables message passing-based
PPLs to employ natural gradients that are available in closed form for conjugate
factor pairs. Similar to SVI, CVI is also an efficient inference procedure that in-
volves analytical calculations in gradient estimations. We show that message pass-
ing frameworks provide convenient tools to take full advantage of the CVI algo-
rithm: pre-defined message passing rules carry out the analytical calculations in
CVI and reduce the number of variables that are to be sampled. For example, the
term 7);,, appears in the natural gradient (5.5), relates to the natural parameters
of the message m;(z;) from a factor V(j) \ b and allows to calculate the contribu-
tion of V(j) \ b to the natural gradient without sampling. Similarly, the estimation
of log myj(2j) o Eq(z,,,)[log fo(2s)] in (5.16) involves some analytical calculations
that are automatically addressed by the pre-defined message m4;(z; ).
Non-conjugate models make use of natural gradient terms V,I;; Eq(z;im,) [log mi; (2
that are not available in closed form. The original CVI article [84] proposes an
efficient estimation approach that does not necessitate the explicit evaluation of
the Fisher information matrix for Gaussian approximate distributions and recom-
mends the reparameterization trick [85] for the other distributions. We adhere to
their efficient approach for the Gaussian case, but use the REINFORCE estimator
(5.12) for the other distributions, instead. This is mainly because REINFORCE is
an easy-to-implement, global estimator for the free energy gradient. However, it
is often considered a high variance estimator requiring additional variance reduc-
tion techniques to be used in practice. [51] shows that Rao-Blackwellization [138]
and control variates [139] considerably reduce the variance in free energy gradi-
ent estimations. Fortunately, message passing frameworks inherently support Rao-

~—
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Blackwellization and closed-form solutions. Nevertheless, it is still valuable to get
the gradient estimations over reparameterization of random variables to further
reduce the variance in estimations. The reparameterization trick is generalized be-
yond Gaussian distributions in recent works by [149, 160, 161]. The most recently
introduced approach is the implicit reparameterization trick [161], which repa-
rameterizes variables using Cumulative Distribution Functions (CDFs). We plan to
implement this feature in a future release of ForneyLab.

Additional to SVI and CVI, we demonstrate how to interface BBVI and repa-
rameterization based stochastic optimization approaches with the message passing
procedures on factor graphs. The resulting approach is efficient as message passing
algorithms automatically realize Rao-Blackwellization, enabling us to go beyond the
exponential family of distributions. Since most of the distributions in ForneyLab are
members of the exponential family, efficient BBVI, and reparameterization-based
stochastic optimization approaches have not yet been implemented in ForneyLab.
Nonetheless, they can be implemented when needed.

Stochastic optimization methods, in general, require hyperparameters such as
step size to be set carefully for fast and stable convergence. The current Forney-
Lab implementation allows step sizes to be set by optimizer objects defined in Julia
language’s deep learning package Flux [46]. We also implemented the optimizer
proposed in [83, Equation 26] satisfying Robins-Monro conditions. Additionally, we
provide an implementation for [162], which adjusts step sizes adaptively using al-
ready calculated natural gradients. Another hyperparameter required in CVI is the
number of iterations per message approximation. To free our PPL’s end-user from
specifying the number of iterations, we provide her with two options that automat-
ically determine when to stop doing iterations: one based on tracking the relative
change of the variational objective; the other based on viewing the optimization
algorithm as producing a Markov chain and using Markov Chain Monte Carlo di-
agnostic tools to determine the stopping criterion [163]. The former method runs
faster but can prematurely end the optimization algorithm in some cases, whereas
the latter method is more robust but has a significantly higher computational load
as it runs several optimization chains in parallel for each iteration.

We present the stochastic approximation for variational inference as if it is an
unconstrained optimization task. However, the domain of the probability distribu-
tion functions are often constrained, e.g., shape and rate parameters of a Gamma
distribution are constrained to be in the positive real axis. Unfortunately, NGD steps
given in (5.1) are susceptible to violations of constraints. In our ForneyLab imple-
mentation, we avoid domain violations in Gaussian and Gamma distributions by
discarding the samples that causes violations. In the future, we plan to integrate
the recent researches along this line [164] to our message passing-based PPL.
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5.6 Conclusions

This chapter demonstrates how to cast stochastic optimization methods for varia-
tional inference as distributed, local operations on FFGs for probabilistic program-
ming. Choosing NGD as the optimizer of the free energy, the resulting method
automates the well-recognized SVI and CVI algorithms in a message passing-based
PPL. In SVI, the natural gradients of the free energy objective are analytically ac-
quired from pre-defined messages in the message passing-based PPL. In CVI, the
natural gradients are partially available in the messages in closed form, and the
components that are not amenable to closed-form calculation can be locally esti-
mated by automatic differentiation tools and Monte Carlo summation. Both SVI
and CVI operate at node level and seamlessly interface with the message passing
procedures. The efficiency of SVI and CVI within a message passing-based PPL has
been validated by a number of experiments.
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Discussion and Conclusions

A part of this chapter is published in the original work referenced below.

* Semih Akbayrak, ismail Sen6z, Alp Sar1 and Bert de Vries, Probabilis-
tic Programming with Stochastic Variational Message Passing, Interna-
tional Journal of Approximate Reasoning, 2022

6.1 Contributions

This dissertation enriched deterministic, distributed inference procedures known as
message passing algorithms with the generality and the flexibility of Monte Carlo
methods, Laplace approximation, and automatic differentiation techniques. The re-
sulting inference procedures presented in this dissertation exploit the conjugacy and
conditional conjugacy structures in the model specification while resorting to com-
putationally more expensive numerical approximation methods in non-conjugate
sub-graphs. We also showed how to employ approximation methods to compensate
for the lack of message passing rules in probabilistic programming packages aiming
to automate Bayesian inference with re-usable inference components.

In Chapter 2, we presented Forney-style Factor Graphs (FFGs) as a probabilistic
modeling framework that allows us to build complex models by combining nodes
and sub-graphs through edges. We showed that the modular, plug-in type struc-
ture of FFGs is suitable for the automation of inference procedures. We reviewed
the message passing interpretations of exact and approximate Bayesian inference
procedures. An important observation in this chapter is that the global free energy
objective we work with throughout the dissertation can also be partitioned over the
factor graph, allowing us to define inference tasks locally over sub-graphs.

In Chapter 3, we focused on the Variational Message Passing (VMP) algorithm
on FFGs by emphasizing that VMP messages on factor nodes have fixed functional
forms. Arguments to VMP messages are expectation quantities of variables associ-




96

Discussion and Conclusions

ated with the edges connected to the factors. Then, the VMP message calculation
procedure reduces to the calculation of the expectations. We estimated these expec-
tations with importance sampling, which resulted in an intuitive message passing
interpretation. FFGs, in conjunction with message passing algorithms, partition
high dimensional manifolds into smaller dimensions that allow us to use impor-
tance sampling efficiently. However, to deal with those cases where local manifolds
are still high dimensional, we automate the Laplace approximation in FFGs. Laplace
approximation preserves the Gaussian distribution assumption of the forward mes-
sages in the posteriors, which allows us to exploit the closed-form message passing
rules abound for the Gaussian case in later stages of the inference procedures. We
called the resulting method Extended Variational Message Passing (EVMP).

In Chapter 4, we improved the importance sampling estimation stage of the
EVMP algorithm with an adaptive procedure. Unlike EVMP, which represents ap-
proximate posterior marginals with weighted samples after the importance sam-
pling estimation stage, this time, we sticked to a moment matching approach to
approximate backward messages with standard probability distributions. Backward
messages that are approximated with standard messages can interface with Belief
Propagation and Expectation Propagation in addition to VMP; hence we called our
approach Adaptive Importance Sampling Message Passing (AIS-MP).

In Chapter 5, we showed how easy it is to interface the stochastic approximation
methods for variational inference with the message passing procedures. Therefore,
we were able to adopt the universality and scalability features of stochastic varia-
tional inference methods in our message passing framework.

6.2 A Comparison of the Algorithms

Throughout the thesis, we presented hybrid inference algorithms for probabilistic
programming in FFGs. Now, let us discuss when to prefer a specific inference al-
gorithm to the others. It is not easy to give a definitive answer to this question.
Nevertheless, in Table 6.1, we compare the algorithms in terms of some key fea-
tures that might form the basis of algorithm selection criteria.

We investigate the IS and Laplace modes of the EVMP algorithm separately.
SVMP represents the algorithms presented in Chapter 5, namely SVI, CVI, Repa-
rameterization Gradient Message Passing, and efficient BBVI.

In our algorithm designs, we strive to relieve end users from hyperparameter!
selection. Hyperparameters in approximate inference algorithms might include the
number of samples, step sizes in gradient-based optimization schemes and stop-
ping criteria depending on the type of the approximation. EVMP and AIS-MP have
more or less stable hyperparameter-free inference schemes even though some of

IWe consider hyperparameters required to execute individual inference steps in message passing
algorithms such as posterior marginal updates and message calculations.
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Algo EVMP (IS) |EVMP (Lap.)| AIS-MP SVMP
Feature
Hyperparameter-free Yes Yes Yes No
Optimization-free Yes No No No
Deterministic No Yes No No
Scalable No No No Yes
Dimensions Low Low, High Low Low, High

Table 6.1: A comparison table of EVMP, AIS-MP and SVMP. The rows from 1 to 4 show
whether the listed algorithms possess the feature. The last row shows what di-
mensions these algorithms are designed for. The assessments about the hyperpa-
rameters are whether the algorithms need hyperparameters to execute individual
inference steps in message passing such as message calculations and posterior up-
dates.

our choices are ad-hoc, e.g., the number of samples is set to 1000. In SVMP, we put
some effort into designing hyperparameter-free inference schemes, but they are not
mature yet. Let us illustrate the importance of hyperparameter selection by a toy
example.

Consider an edge of an FFG with two messages on it. Suppose that the for-
ward message is a wide Gaussian distribution while the backward is multimodal
distributed. We visualize these messages in Figure 6.1 together with a scaled pos-
terior proportional to the product of forward and backward messages. Running
CVI with a step size of 0.05 on this illustrative example, we see that the variational
distribution oscillates between the two modes over the course of the optimization
(See Figure 6.2a). One may attribute this behaviour to the fixed step size 0.05 and
advise sticking to the Robins Monro conditions in step size selection. However, Fig-
ure 6.2b shows that step sizes comply with the Robins-Monro conditions may also
lead to optimization routines diverging from stationary points. In Figure 6.2b, the
variational distribution converges to a stationary point at first but diverges later on
as the other mode continues to attract the variational distribution through noisy
gradients.

In the example Figure 6.1, the EVMP algorithm of ForneyLab automatically ex-
ecutes a Laplace approximation procedure. EVMP initializes a gradient-based op-
timization with the mean of the forward Gaussian message and runs the optimiza-
tion by using L-BFGS [165, 166] optimizer in the Julia-based optimization package
Optim.jl [103]. Unlike SVMP, the gradients in the Laplace approximation are de-
terministic, and hence determining the learning rate with a line search and setting
stopping criteria is easier. Note that the mean of the forward message is closer to
the posterior mode on the left-hand side. Since the automated Laplace procedure of
EVMP initializes with the mean of the forward message, the optimizer successfully




98

Discussion and Conclusions

Forward Message
Backward Message
0.6 F Scaled Posterior

Outputs proportional to prob. dens. func.

Inputs

Figure 6.1: An illustrative example with a wide Gaussian forward message and a multimodal
backward message. The unnormalized posterior is scaled for visualization pur-
pose. The lilac bars on the left and the right of O respectively show F'(0) and
F(c0) — F(0), where F denotes the Cumulative Distribution Function (CDF).

converges to the mode on the left-hand side (See Figure 6.3a).

The EVMP algorithm automatically switches to the Laplace approximation mode
if exactly one of the incoming messages to an edge is a Gaussian distribution. How-
ever, this choice is open to criticism. Consider Figure 6.3. As a result of the mode-
seeking behavior of the Laplace approximation, the EVMP algorithm could capture
only one of the modes, which is the left one in this example. However, the mode
on the right contains the bulk of the probability mass. The automated importance
sampling (IS) scheme of the EVMP algorithm, on the contrary, can capture both
modes successfully, as shown with an orange-colored LWS in Figure 6.3b. There-
fore, the end-user must be in charge of approximation type selection. At this point,
we can also emphasize that the automated moment matching of AIS-MP should be
optional since it leads to wide, unimodal approximate distributions that might not
be desired in certain applications.

Often, the set of hidden variables z in a probabilistic model lies on a high dimen-
sional manifold. By exploiting the factorizations in the probabilistic model, message
passing algorithms partition the original high-dimensional inference problem into
a set of simpler problems defined in lower-dimensional manifolds. This is why
EVMP and AIS-MP are good candidates to try first (IS works well in low-dimensional
manifolds). If the local inference needs to be performed in high dimensions, then
EVMP and SVMP algorithms can be preferred depending on the type of inference
problem. The Laplace approximation in EVMP employs exact gradients in a quasi-
Newton optimization scheme. This exact optimization procedure ease automation
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Figure 6.2: Top: CVI run with a step size 0.05 for varying number of iterations. Bottom: CVI
run with a step size of 1/¢, where ¢ is the iteration number.

of the hyperparameter selection process. Therefore, the EVMP algorithm provides
a fully automated Laplace approximation procedure. However, our choice to let
the algorithms free from hyperparameters may cause other problems. For example,
consider the Bayesian Neural Network given in Section 5.4.5. The EVMP algorithm
returns a zero mean Gaussian posterior distribution on neural network weights in
this model. The reason is that the automated optimization of the Laplace approx-
imation in EVMP initializes with the mean of the prior, which is a vector of zeros.
Setting all the weights to zero in a neural network creates symmetry and results in
0 gradient. So, the vector of zeros is an unsatisfactory stationary point in neural
networks that our automated Laplace approximation gets stuck. In contrast, CVI
in Section 5.4.5 breaks the symmetry in weight initialization by sampling from the
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Figure 6.3: Top: The automated Laplace procedure of EVMP is executed. Bottom: Impor-
tance sampling is used to find a List of Weighted Samples (LWS) approximation.
We also show a Gaussian distribution approximation with the moment matching
calculated over the LWS representation.
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posterior, which initially equals to the prior distribution.

In EVMP, we can break the symmetry in the weights by randomly initializing
the weight priors by drawing the mean parameter entities from N(0,0.1). Having
resorted to that approach, the EVMP estimations we get are visualized in Figure 6.4.

or l @ Observed data instances l

Output values
°

~10 F

2 > o > n
Input values
Figure 6.4: Performance of the EVMP algorithm on the BNN model specification in Sec-

tion 5.4.5 is visualized. Although EVMP captures the sinusoidal shape in the
dataset, variance of the predictive distribution is extremely large.

The EVMP algorithm captures the sinusoidal shape in the dataset. However, the
covariance parameter is overestimated. Recall that the Laplace approximation is a
stationary point-seeking approach. Once a stationary point is reached, the Laplace
approximation evaluates the Hessian at this point and sets the covariance matrix
of the approximate Gaussian accordingly. However, as evidence from this example
shows, the crude approximation of the automated Laplace method might result in
undesired covariance estimations even if the found mode is satisfactory. CVI in
Section 5.4.5 does not suffer from such a problem as it minimizes the free energy
with respect to the natural parameters of the variational distribution that implicitly
includes the covariance matrix term.

In our Laplace and CVI implementations, we automatically estimate the full
precision matrix, which might not be feasible in very high dimensions as the number
of parameters to be estimated in the precision matrix scales quadratically with the
dimension. As a remedy, we can impose an additional factorization assumption
and adjust the algorithms so that only the diagonal entries of the precision are
estimated. We leave it as future work.

(3.14) shows how backward messages arise as Non-standard Exponential Family
(NEF) distributions in the EVMP algorithm. A similar approximation is performed
in (5.17) just before calculating the message approximation with CVI. There are
two major differences between these two approaches. The first difference is that
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in the latter case, following the Monte Carlo estimation of the message, CVI ap-
proximates the message within the Exponential Family (EF) of distributions. These
messages then can be used in BP in later stages of the inference if the terminal
node that this approximate message propagates to possesses the required BP mes-
sage passing rules. In the EVMP case, however, the NEF message should eventually
collide with an EF or LIWS (a List of Weighted Samples) message coming from the
other end of the edge to generate LWS marginal, over which expectations in VMP
messages can be estimated. Another major difference between (3.14) and (5.17) is
the sampling procedures. Note that in (3.14), we draw samples from the messages
whereas in (5.17), samples are drawn from approximate marginals. This is because
in the latter case, we assume full factorization in the approximating distribution,
while in the former, no factorization is put on the approximate joint distribution
of the input variables. Of course, it is desired to retain the dependency structures
in approximating distributions. However, preserving the dependency structures in
approximating distributions requires us to calculate the entropy of the approximate
joint distribution in free energy calculations, which is a challenging task except for
some special cases, e.g., joint Gaussian distributions. To avoid trouble with calcu-
lating the entropy of the approximate joint distribution, in (5.17) we automatically
assume mean field factorization.

In IS mode of EVMP, we estimate not only the marginal distributions but also the
entropy terms for free energy calculation. In AIS-MP, we introduce an additional
moment matching step to be able to represent marginals with standard EF distri-
butions and consequently to calculate entropy terms in closed form. The entropy
terms included in free energy calculation are available in closed form in CVI, too.

Message passing algorithms are fast and efficient, especially in Gaussian state
space model variants, as the computational operations in the bulk of Gaussian state
space models can be partially or entirely performed in closed form. To reflect
the true generative processes better in the model specifications, often nonlinear
functions are incorporated into Gaussian state space models. Standard algorithms
that operate on Gaussian state space models with nonlinearities such as Extended
Kalman Filter (EKF) and Unscented Kalman Filter (UKF) (or Sigma-point Kalman
Filter [77] in general) are discussed in detail in [19]. These algorithms can be
expressed as local operations in the context of FFGs; see, for example, [167].

EKF linearizes nonlinear functions around the forward message’s mean, allow-
ing us to use standard Kalman filtering (smoothing) equations to run inference in
Gaussian state space models with nonlinearities. However, this local linearization is
not always a solution to our inference problems in state space model variants. For
example, consider the HGF model described in (3.17). In the HGF model specifica-
tion, the VMP message propagating from the node N (xy; 241, w;) to the determin-
istic node é(w; — exp(z¢)) is Gamma distributed. If we linearize this deterministic
node, then the message propagating to the equality node z; is connected to turns
out to be another Gamma distribution due to the scaling property of Gamma dis-
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tribution. Multiplying this message with a Gaussian message propagating on the
upper layer, where the variables z are located in, results in an intractable integral
in the normalization. Similarly, consider the message propagating from the equal-
ity node to z; is connected to the deterministic node §(w; — exp(z:)). This message
is a Gaussian message. Using EKF, we find the message propagating to the node
N (x; 241, w;) on the edge w; is defined in Gaussian distribution family, which
again needs to be multiplied with a Gamma message coming from N (z; z4_1,w;)
and leads to intractable normalization.

Messages in IWS forms are represented in Figure C.1. In our EVMP algorithm,
the samples constituting the message propagating from a deterministic node in the
forward direction are transformed samples that are randomly drawn from the in-
coming message to the deterministic node. Sigma-point methods, in general, follow
a similar approach. Unlike EVMP, in sigma-point methods, weights and samples
(sigma points) are deterministically selected in such a way that the pseudo-mean
parameters calculated over selected weight and samples match with the actual
mean parameters of the message propagating to the deterministic node [168]. Once
the weights and samples are chosen, sigma-point methods approximate the message
propagating from the deterministic node using moment matching performed over
transformed samples and their corresponding weights. Sigma-point methods can be
preferable to Monte Carlo methods, especially in low dimensions. However, gener-
alizing the deterministic sigma point selection process beyond Gaussian distribution
is not straightforward [169]. Moreover, the deterministic numerical integration ap-
proaches that sigma-point methods utilize, such as Gauss-Hermite cubature, might
not scale well to high dimensions [19].

Lastly, let us discuss the scope of the presented algorithms in terms of probability
distribution families. EVMP can easily be extended beyond EF distributions as long
as VMP messages are defined on soft factors from non-EF distributions. AIS-MP,
in contrast, is developed specifically for EF distributions. Regarding the Stochastic
VMP algorithms, SVI and CVI are also applicable for EF distributions. Nonetheless,
we can go beyond EF distributions by forgoing the natural gradient descent proce-
dure and sticking to raw stochastic gradient descent, as discussed in Section 5.3. In
the letter case, we do not approximate backward messages with standard probabil-
ity distributions; hence the outgoing messages from the sub-graph SVMP resorted
to need to be calculated by VMP.

6.3 Strengths and Limitations

Below, we make the concluding remarks, mention the strengths and limitations of
the methods presented in this dissertation, and discuss the research questions we
posed in Section 1.2.
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RQ1. How can we automatically execute Bayesian inference in an efficient
manner?

In Chapter 2, we reviewed FFGs and the standard message passing algorithms
since the main contributions of this dissertation that are presented in the later chap-
ters are formulated in an FFG framework, and the efficiency of the algorithms pre-
sented in later chapters is mainly due to the deterministic message passing algo-
rithms.

Inference tasks in probabilistic models such as exact posterior marginal calcu-
lation, posterior approximation with a factorized variational distribution and pre-
diction are all integration operations. A natural way to perform inference in proba-
bilistic models is to group the random variables together in integrals by discarding
the irrelevant terms for the given inference step. Message passing algorithms treat
the integral components that appear in inference procedures as building blocks of a
unified inference engine. The messages performing marginalizations are called Be-
lief Propagation (BP) messages. BP is effective and automatable on FFGs, but not
broadly applicable. If BP is hampered because the rule is not defined for the incom-
ing message type, then we can approximate the problematic message within the de-
sired distribution type using Expectation Propagation (EP). Hence EP preserves the
effectiveness of BP everywhere, but in an approximated inference component that
is effective in its own way, under a moment matching constrain [69]. If, instead, we
introduce a factorized variational distribution to approximate the joint distribution
of random variables around a factor node as in Section 2.3, we get a surrogate ob-
jective that can be minimized with the coordinate descent optimization by means
of message passing, named Variational Message Passing (VMP). Therefore, message
passing is an automatable and effective procedure for Bayesian inference in proba-
bilistic models, and FFGs are formal frameworks for message passing inference.

Inference in FFGs by means of message passing is a series of local operations
defined in sub-graphs. This locality feature makes hybrid inference straightforward.
For example, consider Section 2.3 once again. We derive the VMP message m;(z;)
using the message m;;(z;) regardless of the algorithm that generates m;(z;). The
message m;,(z;) can be a BP, EP, or another VMP message, and yet we computed
mjp(z;) using the VMP algorithm.

The limitations of a message passing inference engine built upon the BP, VMP,
and EP algorithms are threefold and discussed in Section 2.5. This manuscript
addressed them by seeking answers to the following research questions.

RQ2. How can we automatically combine the generality of Monte Carlo
sampling and flexibility of Laplace approximation with the efficiency of
message passing algorithms?
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In Chapter 3, we allowed the end-user of our message passing-based PPL to
insert customized functions into factor graphs through deterministic factor nodes
without putting any restrictions on the type of deterministic mappings. The de-
terministic mappings can be simple expressions such as exp() or complex functions
involving conditional statements and loops. We thoroughly examined message pass-
ing around deterministic factor nodes to address the lack of generality in message
passing-based PPLs. Connected to soft factor nodes from the exponential family of
distributions at the output interface, we showed how the backward messages on
deterministic nodes arise as members of the exponential family of distributions, al-
though their sufficient statistics are not recognized in standard distributions. For
the general case, we used importance sampling to approximate marginals and rep-
resented them with a pseudo-distribution List of Weighted Samples (LWS). As for
the proposal distribution in importance sampling, we used forward messages from
soft factors that always carry standard probability distributions and are easy to
sample. We showed that forward messages from deterministic nodes also carry
ILWS and are calculated intuitively. These IWS forward messages can be used to
automate Bootstrap Particle Filter alongside approximating the marginals. Given
that marginals are represented with LWS pseudo-distributions, we can estimate ex-
pectations over them and approximate VMP messages. We also provided a Monte
Carlo approach to estimate entropy terms that allowed us to keep track of conver-
gence with the free energy. We examined Gaussian as a special case to deal with
inference in large dimensions and preserve the computational convenience of Gaus-
sian distributions, especially in state space model variants. We automated Laplace
approximation using automatic differentiation and optimization packages of Julia
language. We called this entire procedure Extended Variational Message Passing
(EVMP) and implemented it in a message passing-based PPL, ForneyLab.

The EVMP algorithm greatly extends the capabilities of message passing-based
inference engines. However, it possesses several shortcomings. First and foremost,
approximations in EVMP are driven by the model itself. If the model is not a good
representative of the true real-world process, we may get imprecise estimations.
Secondly, importance sampling is not efficient in high dimensions. To deal with
high dimensions defined in the domain of real numbers, we automated Laplace ap-
proximation. However, the Laplace approximation is only a mode-seeking algorithm
that does not perform optimization with respect to the covariance matrix. Thirdly,
to calculate the free energy, we used Monte Carlo sampling for the estimation of the
entropy terms related to posteriors represented with IWS. Lastly, we evaluated the
functional form of the messages in EVMP but did not define or approximate them
as standard probability distributions, which precludes the automatic execution of
BP at the other end of the edge.
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RQ3. Having developed a hybrid Monte Carlo - message passing inference
procedure, is it possible to improve the accuracy of Monte Carlo estimates
within message passing in an automated way?

In Chapter 4, we tried to alleviate some of the shortcomings of the EVMP algo-
rithm mentioned above. We exchanged the forward message proposal distributions
in the EVMP algorithm with adaptive proposal distributions. The algorithm is called
Adaptive Importance Sampling Message Passing (AIS-MP).

EVMP is appealing for probabilistic programming as it is a hyperparameter-free
algorithm to a large extent. In our adaptive importance sampling scheme, to free
the end-user from the hyperparameter selection process, we chose step sizes with
the ADAM optimizer and tracked the convergence with the number of efficient sam-
ples. We initiated the proposal distributions with the forward messages and hence
set EVMP as the fallback method of AIS-MP.

After finding IWS representations, we used an additional moment matching step
to approximate both marginals and backward messages with standard probability
distributions. The moment matching step allowed us to calculate entropy terms in
closed form. In addition, we enabled backward messages to interface with the BP
and EP algorithms at the other end of the edge. As it is hard to derive inverse link
functions for certain probability distributions such as Gamma distribution [93], we
performed moment matching over central moments that is only an approximation
to the desired moment matching procedure.

The main shortcoming of AIS-MP is its slowness. AIS-MP is slower than EVMP
because AIS-MP involves an additional stochastic optimization step. We used an
ADAM optimizer with a small initial step size to avoid diverging behaviours. We
believe better optimizers can be tailored for the AIS-MP algorithm in the future.
Nevertheless, the current implementation of the AIS-MP algorithm is particularly
preferable in those models comprised mainly of conjugate factor pairs with few
non-conjugacies and non-linearities. Since AIS-MP is based on importance sam-
pling as the EVMP algorithm, it is efficient when the high dimensional manifold
the variables of the model lie on is well partitioned with the FFG and the message
passing algorithms.

RQ4. How can the free energy gradient estimates help us for scalable and
broadly applicable variational inference?

In Chapter 5, we focused our attention on the stochastic optimization of free en-
ergy. Stochastic approximation methods for variational inference, in general, write
down the free energy objective as a function of the parameters of a recognition dis-
tribution. After that, they estimate the gradient of the free energy with respect to
variational parameters by evaluating the samples (or their transformations parame-
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terized with the variational parameters) drawn from the recognition distribution in
the free energy. The free energy gradient estimates are then used to tune the varia-
tional parameters. Stochastic approximation methods for variational inference are
scalable to large datasets and high dimensions. Therefore, they would be of great
importance to our message passing-based PPL. The most popular variational infer-
ence algorithms for probabilistic programming are Automatic Differentiation Varia-
tional Inference (ADVI) and Black Box Variational Inference (BBVI). We showed an
efficient realization for the BBVI algorithm and the stochastic variational inference
with reparameterization of random variables in Section 5.3. These methods can
be applied both for the exponential family of distributions and the other probabil-
ity distribution families. In our message passing-based PPL, stochastic approxima-
tion methods are locally resorted to only when the implemented message passing
rules are insufficient to execute the inference. Specific to the exponential family
of distributions, very efficient stochastic approximation approaches have been pro-
posed in the literature under the name of Stochastic Variational Inference (SVI)
and Conjugate-computation Variational Inference (CVI). We showed that, similarly
to BBVI and ADVI, both SVI and CVI can be formulated as probabilistic program-
ming algorithms in the message passing framework on FFGs. The main drawback
of these approaches is determining the hyperparameters such as step sizes and the
number of iterations in stochastic optimization procedures. As a future research di-
rection, recent attempts [170,171] to adapt the line search mechanism to stochastic
gradient descent can be implemented in our PPL.

In this thesis, we are in pursuit of a PPL framework that combines the
advantages of both sampling-based and message passing-based inference
without taking over the downsides of both frameworks.

The above research questions pave the way toward a PPL framework that com-
bines the bests of sampling-based and message passing-based inference methods
that are summarized in Table 1.1. No single method satisfies all the criteria in Ta-
ble 1.1. In our message passing PPL, we provide the end-user with several options
as in other PPLs, where the end-user is allowed to choose the inference algorithm
among, say, Hamiltonian Monte Carlo (HMC) and ADVI. A superficial comparison
of algorithms is given in Table 6.2.

In Section 6.2, we stated that if the search space of variables is partitioned into
small dimensional manifolds, the end-user is advised to try EVMP first. In case the
EVMP estimations are not satisfactory, the user can get more satisfactory estimations
by AIS-MP in exchange for speed. A faster but more hyperparameter-dependent
framework, SVMP, is based on stochastic optimization approaches for variational
inference. We implemented several methods to remove the hyperparameter selec-
tion process in SVMP, but they are not fully optimal yet. If the user works with a
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—_ Method EVMP AIS-MP SVMP

Criteria

Precision X v v
Performance metric v v v
Speed v X v
Universal v v v
Scalable X X v
Full automation v v X

Table 6.2: A superficial comparison table of EVMP, AIS-MP and SVMP.

gigantic or a streaming dataset, she is advised to choose SVMP.

We leave the full automation criteria grey colored. We mentioned in Chapter 1
that there are standard approaches in iterative message passing algortihms to set
initial messages or approximate marginals. However the initialization of the mes-
sages and the approximate marginals can still be considered as hyperparameters in
addition to the number of iterations. Nevertheless, EVMP and AIS-MP automates
the individual inference steps in iterative settings and free the end user from speci-
fying hyperparameters per inference steps. In noniterative inference settings, EVMP
and AIS-MP can be considered as fully automated algorithms.

6.4 Outlook

This dissertation focuses on hybrid Bayesian inference approaches in probabilistic
models. We provide an FFG-based framework for the automation of the proposed
algorithms. In our framework, deterministic message passing algorithms consti-
tute the main components of the inference engine, while Monte Carlo methods,
the Laplace approximation, and stochastic optimization approaches are positioned
as complementary components extending the capabilities of the inference engine.
Almost all the algorithms presented in this dissertation are implemented in a Ju-
lia language-based message passing PPL, ForneyLab.jl. By PPL implementations,
we aim to allow end-users with varying degrees of expertise in Bayesian inference
to make the most of probabilistic modeling. Besides the PPL implementations, we
strive to give intuition behind hybrid Bayesian inference techniques throughout the
dissertation. We demonstrate how convenient our FFG and message passing-based
framework is for hybrid inference procedure design. We hope that this manuscript
enlightens the reader about hybrid Bayesian inference implementations so that the
reader can go beyond the presented techniques when needed.
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Appendix A

Stationary Points of the Free
Energy

This appendix is based on the original work referenced below.

e Semih Akbayrak, Ismail Sendz, Alp Sar1 and Bert de Vries, Probabilis-
tic Programming with Stochastic Variational Message Passing, Interna-
tional Journal of Approximate Reasoning, 2022

Consider the free energy objective given in (2.4). This objective is a functional
of q(z). We first find the stationary ¢(z;) for this functional. Let us rewrite it here:

Fla(z)] = Eq(z)[l0g ¢(25)] — Eq(z,ylog mjn(25)] — Bg(zy) [Eq(zy ;) [108 f5(28)]] + ¢,
where ¢ stands for the terms independent of z;. It can be equivalently written as

m;b(2;) exp(Eq(z,, ) [10g fo(2b)])
S mjn(25) exp(Eq(s,, ) [log fo(26)])dz;

Fla(z)] =D lQ(Zj)
- log/mjb(zj)eXp(Eq(z,,\j)UOg fo(zo)])dz; + ¢,

which is a KL divergence summed with a constant. Setting ¢(z;) equal to the right
hand side of the KL divergence minimizes the free energy w.r.t. ¢(z;).

Now, consider the other interpretation of the variational objective that casts the
free energy as a function of ; asin (5.3) given that ¢(z;;n;) = h;(z;) exp(¢;(z;)Tn;—
A;(n;)) with a constant h,(z;). Functional form of the message m;;(z;) is given in
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(5.4). Then the gradient of the free energy w.r.t. n; is

Vo, F(n5) = Vi, (Eq(zj;n) log q(25;m5)] — Eq(z;im,) log mji(25)] — Eq(z; ;) [log mu; (zj)])
= Vi, (Ba(zim) 03 I (05 = n3) = Aj(0j) = Eq(zyim,) log ma; (25)])
= Vo, Bz (65 ()T (05 = m0) + Ba(zyimy) (65 (25)] — Vi, A5 ()
= Vi, Bqz;im [log ma; (25)]
= V2 Aj(n5) [nj = njs] — Vi, Bg(zyimy) log mu; (5)]-
The last line above follows from V, A(n;) = Eq.,.m,)[¢j(2;)] (See (B.14)). We
denote the Hessian of the log-normalizer, Vflj A;(n;) with G(n;), which is the Fisher

information matrix of ¢(z;; n;). Following [83], we write the natural gradient of the
free energy as

fof(nj) = G (0y) Vo, F(nj) = 1 — (%’b + G (0)) Vi, Byzymy) [log mbj(zj)]>~



Appendix B

On The Applicability of VMP

This appendix is based on the original work referenced below.

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

In this chapter, we show that the applicability of the VMP algorithm relies on
connected factors being conjugate pairs in exponential family of distributions. Non-
conjugate connected factors lead to intractable posteriors and messages. Never-
theless, we show that for a given soft factor, the corresponding VMP messages are
locally expressed in terms of some expectation quantities. If these expectations are
not available in closed-form, then we can estimate them to approximate the VMP
messages around the non-conjugate factor pairs.

Let us focus on Fig. 2.1. We postulate the following assumptions:

* fu(z,) is an element of the exponential family (EF) of distributions, i.e.,

fa(za) = p(Zj |Za\j)
= hj(zj) exp (¢;(2)) T Aaj (Za\;) — log Zj(2a\;)) - (B.1)

In this equation, h;(z;) is a base measure, \,;(z,\;) is a vector of natural
(or canonical) parameters, ¢;(z;) are the sufficient statistics, and Z;(z, ;) is
the partition function, i.e., Z;(zq\;) = [ h;(z;) exp(¢;(2;)TAaj(Zay;))dz;. It
is always possible to write the log-partition function as a function of natural
parameters A;(A.;(zq\;)), such that A;(A\g;(zq\;)) = log Z;(z,\ ;). Hence, the
functions Z; and A; are related through Z; = expoA; o ;. We are allowed
to go back and forth between A, and Z;.
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____________________________________

:\ Ma;(25) 5. M (2 mei(2;) ma; (2) ,;/
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Figure B.1: An example deterministic conditional is visualized for f.(z.) = p(zi|z;) = d(z:i —
9(z;)). fe(zc) and fq(zq) together form the composite node f,(z5). The set
of variables z4\, can be equivalently denoted by z;\ ;. Similarly, ms;(z;) and
me;(z;) denote the same message.

* We differentiate a few cases for fj:

1. f, is also an element of the EF, given by

Jo(2zs) = p(2x|Ze\k)
= hi(2) exp(dr(2) T Aok (Zo\ k) — 108 Zi(zi\1)) 5 (B.2)

and is a conditionally conjugate pair with f, for z;. This (conditional
conjugacy) property implies that, given z, ;, we can modify f, in such a
way that its sufficient statistics will match the sufficient statistics of f,.
Technically, this means we can rewrite f, as

Jo(zo) = hi(21) exp(@;(25) T Aj (Ze\ ;) + cbj(Zp\5))- (B.3)

The crucial element of this rewrite is that both f,(z,) and f,(z;) have
been written as exponential functions of the same sufficient statistics
function ¢;(z;). This case leads to the regular VMP update equations,
see Section B.1.

Our Extended VMP does not need this assumption and derives approxi-
mate VMP update rules for the following extensions.

2. fp is an element of the EF, but not amenable to the modification given
in (B.3), i.e., it cannot be written as an exponential function of sufficient
statistics ¢;(z;). Therefore, f; is not a conjugate pair with f, for z;.

3. fp(zp) is a composition of a deterministic node with an EF node, see
Figure B.1. In particular, in this case f;(z;) can be decomposed as

fb(zb) = /5(2, — g(Zj))fd(Zd)dZi, (B4a)
= fa(9(2)): Zavi) (B.4b)
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where z; = g(z;) is a deterministic, possibly nonlinear transformation
and f;(z4) is an element of the EF:

fa(za) = p(zk|Za\r)
= hk(zk) eXp((bk(Zk)T)\dk(Zd\k) — 10g Zk(zd\k))~ (B.S)

We assume that the conjugate prior to f; for random variable z; has
sufficient statistics vector ¢;(z;), and hence (B.5) can be modified as

fa(za) = hi(z1) exp(di(2:) T Aai(Za\i) + cai(Zavi)), (B.6)

where c4;(2zq\;) refers to the terms that does not include z;.

B.1 VMP with Conjugate Soft Factor Pairs

The original VMP algorithm arises as an efficient inference procedure in models that
solely consist of conjugate factor pairs. This is because conjugate factor pairs yield
analytically tractable messages and posterior calculations. Next, we shortly review
the effect of conjugate factor pairs on VMP updates.

B.1.1 Messages and Posteriors

The VMP message from the factor f, to z; can easily be evaluated by applying the
VMP message calculation rule to (B.1):

Maj(25) X exp(Ey(a,, ,)[log fa(Za)])
o hj(zj)exp ((;Sj(zj)T Eg(zo ;) [Naj(Zars)] ) (B.7)

Naj

Since f, is conjugate to f,, its functional form can be modified as (B.3) and by
applying (2.7) to (B.3), we find the VMP message from the factor f; to z;:

mip;j(25) o< exp (%’(%‘)T Eq(zp ) Mo (Z65)] ) (B.8)

Mbj

Given that the messages m,;(z;) and my;(z;) have the same sufficient statistics,
the posterior update step reduces to summation of the messages’ natural parame-
ters:

q(25) o< hj(z;) exp ((bj(zj)T (Naj + Ubj))- (B.9)
————

nj
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Note that we evaluate the posterior up to a normalization constant. Nevertheless,
the log-normalizer function A;(-) is readily available for EF distributions having
sufficient statistics vector ¢;(z;). As a consequence, the posterior evaluates to

q(z;) = hj(zj) exp (¢5(2)Tn; — Aj(ny)) - (B.10)

Having showed that the conjugate factor pairs lead to a closed-form expression
for posterior ¢(z;), we now investigate which expectation quantities related to ¢(z;)
are required in the outgoing VMP messages from the factors f,, and f; to, say z; and
Zl+

mai(21) o exp (Eq(za\l)[log fa(za)]) , (B.11a)

Mk (25) X exp (Eq(zb\k)[log fb(zb)]) ) (B.11b)

In practice, the message m;(z;) is explicitly calculated by isolating the terms with
z in a sufficient statistics vector as it is done for z; in (B.8). Similarly, my(2x)
is explicitly calculated, analogous to message m,;(z;) in (B.7). Here, we follow a
rather different approach to explicitly show the expectations related to ¢(z;) in the
message calculations. Substituting f, and f, with (B.1) and (B.3) in (B.11), and
keeping in mind that the mean-field assumption allows separation of the expecta-
tion quantities with distinct random variables, the messages evaluate to

mai(1) o< exp (Eq(a,) (93] Eqta, 1) Pai (Zari)] = Eogtann .0 108 Z5(2a)]) -
(B.12a)

mar(2x) < hy(21) exp ( D5 D Eqap ) [P0 (Z675)] + Eqzy 0y €05 (Zb\j)]) :
(B.12b)

Notice that both messages require the moment parameters (; = U,(n;), i.e.
expectation of the sufficient statistic vector ¢,(z;) w.r.t. ¢(z;). Fortunately, in EF
distributions, E,.,)[¢;(z;)] is available in closed form as the gradient of the log-
normalizer [89, Proposition 3.1]:

Eq(z)[0i(25)] = Vi, A (n)). (B.13)

For the sake of completeness, we now show that this equality holds. Recall that
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Aj(n;) =1log ([ hj(z;) exp(¢;(z;)Tn;) dz;). Then,

Vo, f hj(z;) exp(¢;(z;)Tn;) dz;
J 7 Zj ) exp(¢;(z;)Tn;) dz;
f(bj zj)hj(z;) exp(¢;(z;)Tn;) dz;
exp(A;(n;))

= [ s (625070, — Ay

Vi, Aj(ng) =

= / ?5(2;)q(zj) dz;. (B.14)

B.1.2 Free energy

As in the message and the posterior calculations, conjugacy eases the free energy
calculation. We investigate it for (2.5), the free energy terms that include z;. F; is
decomposed as

Fj = —Ey(zn)[l0g fa(Za)] — Eq(z,)llog fo(2s)] + Ey(z;) [log g(z5)]. (B.15)

Average energy terms Negative entropy

Substituting f,, f» and ¢(z;) with (B.1), (B.3) and (B.10) in the above expression:

‘Fj == EQ(Zj) [log(hj (ZJ))} - E‘I(z [¢] (Zj)] q(2za\ ;) [)‘aj (Za\j)] + EQ(Za\j) [log Zj (Za\j)]
o Eq(zk) [log(hk (Zk))] - EQ(ZJ) [d)J (ZJ)] Q(Zh\7 [)‘bj( )] Eq(zb\j) [ij (Zb\j)]
+ Eq(z,) [l0g(hj(25))] + gz, (@5 (25)] T — Aj (1) (B.16)

The expectation terms related to z; in Fj are Eq(. [¢;(2;)] and Ey(.,)[log(h;(2;))]-
The former expectation is available in closed-form, (B.13). Thus F; is analytically
tractable for those distributions that possess closed form solution for E, . [log(h;(z;))].
For the majority of EF distributions, the base measure is constant; hence the expec-
tation E, ) [log(h;(z;))] is available in closed form.

In short, conjugate factor pairs facilitate the VMP procedure by allowing closed-
form expressions for updates of messages, posteriors and free energy. Moreover,
although exceptions exist, similar to the normalization of the posterior (B.9), the
messages mq;(z;) and my;(2;) can be effortlessly normalized if the required expec-
tations are known. Therefore, we can directly parameterize them with standard
probability distributions and draw samples from them. This property of EF distri-
butions plays a pivotal role in our automation of importance sampling procedure in
Extended VMP.
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B.2 VMP with Non-conjugate Soft Factor Pairs

Suppose that the soft factors f, and f, are no longer conjugate pairs, i.e., f, given
in (B.2) can be written in the form

To(zb) = hi(z1) exp(@n; (25) T Abj (Zb\5) + cbj(Z0\5)), (B.17)

where crucially ¢;(2;) # ¢;j(z;). Also notice that Ay;(zs\ ;) is the natural param-
eters after the modification of (B.2) to isolate the terms with z; in the sufficient
statistics vector. Therefore, the messages my,;(z;) differ from mq;(z;) (B.7) in suffi-
cient statistics:

my; (Zj) X exp <¢bj (Zj)TEq(Zb\j) [)\bj (Zb\j)]> . (B.18)

In this case, the normalization constant calculation in the posterior update step
is not straightforward anymore; and worse, it is often intractable. The term in-
tractable refers to integrals that are not available in closed-form for continuous vari-
ables. For discrete variables, it refers to summations that are not achievable in a fea-
sible amount of time. The lack of the normalization constant, [ mg;(z;)ms;(z;) dz;,
hinders the calculation of the expectations with z; terms that appear in out-going
VMP messages from f,, and f; to variables z,\ ; and z,\ ;, respectively, e.g. E,.,)[¢n;(z;)]
in

M (o) o€ P () €D (oo 805 ()] Batan ) Vs (200)] + B[00 (2015)]) -
(B.19)

As a result, non-conjugacies obstruct VMP procedure by hampering closed-form
expectation calculations. Bear in mind that even though VMP procedure is ob-
structed due to intractable expectations, the messages are distinctly fixed for soft
factors as functions of certain expectation quantities that are supposed to be calcu-
lated over their arguments. We use this property in our Extended VMP method.

B.3 VMP with Composite Nodes

In this subsection, we shed light on the issues with composite nodes that are con-
structed by composition of EF distribution soft factors and deterministic condition-
als, i.e.

Folzs) = / Folzir 23) falza zy) dzi, (B.20)

where f.(z;,2;) = p(zi|z;) = (2 —g(z;)) is a deterministic conditional distribution.
Composite nodes enable us to build almost arbitrary factor nodes. For example,
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a mixture likelihood distribution p(y|z) = N (y; ju1, 02)* N (y; pa, 02)1 ) with 2 a
selection variable, can be constructed by composing an EF soft factor, a Gaussian,
with a deterministic factor as [ p(y|z)p(z|z)dz;, where p(y|z) = N (y;z,0?) and
p(z|z) = 6(x — zu1 — (1 — 2)ua). However, composite nodes impose new challenges
on inference procedures.

Now, let us try to calculate ¢(z;). The forward VMP message m,;(z;) is given in
(B.7). Suppose that the conjugate prior to EF soft factor f, for z; has the sufficient
statistics vector ¢;(z;) (see (B.6)). Then, the VMP message from f; to z; is

mpj(z;) oc exp <Eq(zb\j) {log (/ 6(z — g(z;)) exp (¢i(2:) T Aai (2a\i)) dZi)D

/5 (z: — ) exp (gbl(zl) a(zans) [)\di(zd\i)D dz;
VMP:mq;
BP
— exp (qbi(g(zj))TEq(zd\i) [Adi(zd\i)D : (B.21)

mai(9(2;))

Note that the above message reduces to VMP message from f; to z; followed by
Belief Propagation (BP) [63, 64]. The resulting backward message m;;(z;) has
the sufficient statistics vector ¢;(g(z;)). If ¢;(-) = ¢,;(g~*(-)), this case reduces to
ordinary VMP as discussed in Section B.1; otherwise this case is a special case of
Section B.2 and ¢(z;) is not available in closed-form. Hence, the outgoing messages
from the factor nodes f, and f,, say

mar(z1) < exD (Eq(a)) 105 (25) Eggay, ) Pas (2ar1)] = Eggag, 108 25 (2a)])

(B.22a)

Mpk (2k) X exp (Eq(zb\k) [log (/6(,2 -

() exp (¢i(2:) T Aai(Zavs) + Cai(Zars)) de)})

= h(zk’) exp (]ECI(ZJ')[¢i(g(zj))]TEq(zd\{i,k})[Adi(zd\i)} + E’I(zd\{i,k}) [Cdi(zd\i)])
= h’( )exp ( [¢7(zl)] Eq(zd\{,‘k})[/\di(zd\i)] + Eq(zd\{i7k})[cdi(zd\i)]> :
(B.22b)

are intractable. The last line in the above derivations follows from the transfor-
mation of variables [157], i.e., q(z;) = q(2;)| 9 \ and expose the automatable na-

ture of Variational Message Passing: the VMP message mypk (21 ) Tequires expectation
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quantities that are related to arguments of the soft factor z; is tied to, which is in
this case f;. Therefore, once the VMP message passing rule is defined for the factor
fa as a function of its arguments, we can instantiate the messages by providing the
required expectation quantities. For example, the required expectation quantities
related to argument z; are contained in the sufficient statistics vector ¢;(z;).



Appendix C

Derivation of Extended VMP

This appendix is based on the original work referenced below.

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

Here, we show the details of our solution approach that is based on importance
sampling (IS) and Laplace approximation. First, we address the issues with de-
terministic mappings of random variables. The resulting technique emerges as a
remedy for non-conjugate soft factor pairs problem as well.

C.1 Deterministic mappings with single inputs

We first address the issues with single-input deterministic mappings and generalize
our solution to multiple inputs later on. Consider the sub-graph given in Fig. B.1,
where the deterministic conditional p(z;|z;) is defined as f.(z;,2z;) = 0(z — g(z;))-
As derived in (B.22), we need the expectations E.,)[¢;(z;)] and E,.[¢i(2)] to
calculate VMP messages towards variables in z,\ ; and z, ;, respectively. Suppose
that ®(-) is an element in the sufficient statistic vectors ¢;(-) and ¢;(-). Then we
need to be able to calculate E,.,)[®(z;)] and Ey(.,)[®(z;)]. Let us start with evalu-
ating Eq(.,)[®(2;)] first:

Bye [0(e2)] = [ 0@z = [ a()0(g(2)dz;

The second equality in the above expression is due to the transformation of vari-
ables, i.e., q(z) = q(z;)| £ [157].
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Substituting ¢(z;) with the message passing calculation as in (2.6) in the above
integral yields

By 0] = [ et S —ag(z))a, 1)

where m.;(z;) = mai(g(z;)), as given in (B.21). Recall from Section 2.5 that the
normalizer, [ mg;(z;)mc;(z;)dz;, is often hard to calculate analytically.
We use importance sampling [19, 102] to approximate the integral in (C.1):

Maj(25)mai(9(25))7(25)

7(z5)
Bz [P (20) / e >md,<g]<z DGl g, ©(g(2;))dz;

7TZJ

e, (2 mai(9(25"))

N s
~ ﬂ—(z(\)) P (s) C.2
~) | & o | 2laz™), (C2)
| g PaEmate"h)

(n)
n=1 (2 Zj )

w(é)
where zj(.s) for s = 1,..., N are drawn from the proposal distribution 7 (z;), i.e.,
zj(s) ~ m(z;). g(z§s)) for s =1,..., N are particles and their corresponding weights

are denoted by w(®).

The design of a good proposal distribution has a critical role in IS. First, it is
supposed to be an easy-to-sample distribution. Secondly, its support is required
to be no smaller than the support of m,;(2;)ma4i(g(2;)) [19]. Lastly, the proposal

distribution is desired to be a good representation of ¢(z;) = 7 rZZ’(ZJ))mm]J((Zj’)ZZ]
to attain a fast convergence [52]. In our automated design, m,;(z;) constitutes
the proposal distribution. Our choice is not optimal in a sense that information
regarding the evidence is most often carried out by the backward message and
it is not incorporated in our proposal design. However, m,;(z;) satisfies the first
two conditions since the messages are parameterized with standard distributions
(easy-to-sample) and it has nonzero probability everywhere the posterior has, too.
Substituting 7 (z;) with m;(z;) in (C.2) yields

N (S)
mdz )) s
By [®(z0)] = ) —J(n) 2(g(”), (C3)
o=t 20 maile(z™)
w(s)
where 2% ~ mg;(z;) fori =1,...,N and Eq(z [®(z;)] denotes our estimator for

Eqz[®(20)]-
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Let us summarize the procedure in (C.3) to define our first set of rules related to
the deterministic nodes. (C.3) consists of samples that are drawn from m;(z;) and
transformed through deterministic mapping ¢(.). We cast this process as the for-

ward message m.;(z;) calculation. Once the samples are transformed, i.e., g(zj(s)),

the weights w(®) are determined over my;(.). We interpret this process as the colli-
sion of the forward m.;(z;) and the backward messages mg;(2;), and hence relate it

to the posterior calculation. Setting ®(g(z (s))) to §(z; — g(zj(.s))), our interpretation

of message collision becomes obvious since @(g(zj(s))) = (2 — g(z; (s ))) results in
a Monte Carlo estimate for ¢(z;). As a result, we introduce our first set of rules
related to deterministic nodes and the posterior approximation at the output edge
of the deterministic node:

1 1
mei(zs) {(N,g(z§1>>) (N,g<z§N>>) } (C.42)
q(z;) < mei(z) - mai(z) = {(wz(l), 1(1)) ey (w,EN), zi(N))} , (C.4b)
(s)
s s s mai\Z;
where Zj(g) ~ maj(zj),zi(‘) = g(Z]( ))’wz( ) = Nd(l()) (C4C)
Z_Ilmdi(zi‘ )

Here, we introduce the term list of weighted samples (LWS) to refer to the distribu-
tions that are represented by a set of samples and corresponding weights. Above,
me;(2;) and q(z;) are represented by LWS distributions.

Now, we turn our attention to calculation of ¢(z;) and the expectation quantity
Eqy(-,;)[®(2;)]. For this task we have two different strategies: if m,;(z;) is a Gaussian
message, we approximate ¢(z;) by Laplace approximation which is also automat-
able thanks to automatic differentiation and otherwise we follow the IS procedure
introduced above. Let us go over them starting from the latter.

C.1.1 Non-Gaussian case

This time we are supposed to evaluate E, . [®(z;)] so that the VMP messages to-
wards z,, ; can be computed. Notice that the procedure is exactly same with (C.2),
except that the expectation quantity of interest, E,(. )[®(2;)], does not involve the
deterministic mapping g(.), this time. Therefore, by using m,;(z;) as the proposal
distribution, we can estimate E,. ,[®(z;)] as the following

. N1 ma(g(z4) )
= mailg(5")

u)(é)
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This gives us the second set of rules related to deterministic mappings. An element
of this new set of rules is that the backward message is directly passed in probability
distribution function (pdf) form:

mpj(25) = mej(25) = mai(9(z5))- (C.6)

Recall from Sec. B.1 that the messages used to carry standard EF distributions. Now,
we make an exception and introduce my;(z;), which is no longer associated with
any of the standard EF distributions. Nonetheless, m;;(z;) takes an exponential
form since mg;(-) is an EF distribution (see (B.21)). Therefore, we call my;(z;) a
non-standard exponential family (NEF) distribution. Having defined the backward
message, let us evaluate the posterior ¢(z;). Similar to ¢(z;), substituting ®(z;) with

0(z; — z§i)) in (C.5) gives us a Monte Carlo estimate of ¢(z;):

q(z5) o< maj(2;) - s (25) = { (wﬁ}% Z](-I)) e (wg\’), Zj(-N))} , (C.7)
(S))

myi (2,
where z§s) ~ Mg (zj),w(‘g) = bj(ij. (C.7b)

J N (n)
Z_:l My (Zj )

C.1.2 Gaussian case

In FFGs, the models are often constructed in such a way that the most prevailing
message types will be Gaussians. This is because Gaussian messages facilitate infer-
ence by allowing many inference related operations to be executed in closed-form
such as summation, conditioning, scaling and shifting by constants, etc. In order
to retain the computational advantages of Gaussian distribution, we take it as an
implicit hint that the posterior distribution is Gaussian-like, if m,;(z;) is a Gaussian
message. Then, we use Laplace approximation [75, Section 4.4] to approximate
q(z;) with N'(z;; 5, V;) where

jij = argmax (log mg,;(z;) +logmepi(24)) , (C.8a)
Vj = (=3, (log ma;(p;) +log my; (1)) ", (C.8b)

where V. f denotes the gradient of f with respect to z; and Vij f(u;) refers to
the Hessian of f(u;) with respect to y; and evaluated at ;1. Note that the gradient
and the Hessian respectively reduce to the first and the second derivatives if z; is
scalar. Laplace approximation is a mode-seeking algorithm. We use automatic dif-
ferentiation (autodiff) [41] to evaluate the gradient V_, (log mq;(2;) + log my;(25))
and employ it in a gradient-ascent algorithm to seek the mode (we supply the im-
plementation details in Appendix E). Once the mode is reached, we evaluate the
Hessian at the mode to fit the variance term for our Gaussian approximation.
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The assumption we make here that m,;(z;) implies a Gaussian-like ¢(z;) paves
the way of automating many well known inference procedures achieved through
Laplace approximation, such as Bayesian logistic regression [121, Section 8.4],
Laplace-Gaussian filtering and smoothing in state space models [172], Poisson Lin-
ear Dynamical Systems [173], etc. However, our assumption would not be appro-
priate for all configurations. For example, Gaussian prior on rate parameter of a
Poisson distribution would result in an ambiguous posterior since the domain of
the rate is the positive real numbers while the Gaussian approximated posterior has
a support on the entire real axis. A better model specification could be achieved
by mapping a Gaussian distributed random variable to the rate parameter through
an inverse-link function, exp in this example. Likewise, a multi-modal backward
message my;(2;) with a support on real numbers often yields a multi-modal poste-
rior which can be better captured with particle methods. (In Appendix F, we shall
show that it is possible to run particle filtering through Gaussian factor nodes in our
technique.)

In summary, our method resorts to Laplace approximation to approximate ¢(z;)
with a Gaussian distribution whenever m,;(z;) is Gaussian. Therefore, the user of
our method must keep in mind the consequences of prior choices and build her
model accordingly.

The overall procedure for single input deterministic functions is depicted in Fig-
ure. C.1. In the next subsection, we extend this procedure to multiple input deter-
ministic mappings.

C.2 Deterministic mappings with multiple inputs

Consider the deterministic node, f.(z.) = d(z; — g(2.\;)), given in Fig. 3.1 where
the inputs to the deterministic function g(.) are z.,; and the output is ;.

Before starting the discussion on the backward messages, let us define the for-
ward message m.;(z;). Analogous to the single input case, we define m.;(z;) with
an IWS as the following

(L L)
mCi(Zi> ~ {(N7g(zc\z)> ] (N7g(zc\i ) 9 (Cga)
where zis\z = U z,(f) for z,(f) ~ Mpe(21).
ke&(c)
ki

Once the message is calculated as a set of equally weighted samples, we scale the
weights according to the importance score of their corresponding samples to repre-
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Figure C.1: Messages around a deterministic node f. are visualized together with posterior
approximations. In EVMP algorithm, forward messages from single input deter-
ministic nodes are approximated by LWS representations. Backward messages,

on the other hand, take non-standard exponential family distribution forms. Note
that the message ms;(z;) refers to me;(z;).

sent ¢(z;):

q(zi) < mei(2i) - mie(z;) = {(w(l)7 zfl)) ey (wiN), zl(N))} , (C.10a)
)

where z,fs) = g(zgi)i)vwz(S) Comae(z )

(C.10b)

Now, let us define the backward messages propagated by the deterministic node.
The exact backward message towards one of the input variables, say z;, is

me;(z5) = /6(,21 —9(2zc\i)) H Mic(2r) dze ;- (C.11)

ke&(c)
k#j

Unfortunately, the above integral is often intractable. Even if all the variables are
discrete and integral is replaced by summation, it becomes intractable in practice
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as the number of variables increases. Here, we address this issue with two different
approximation strategies. As it is in the above subsection, type of the approximation
depends on the incoming messages to the deterministic node from the input edges:
if the messages my.(zx) for k € £(c), k # i are all Gaussian, we approximate the
joint posterior distribution of z.\; by a Gaussian distribution. Then, we calculate the
backward messages over the approximated joint posterior and incoming messages.
Otherwise, we use Monte Carlo summation. Let us start with the latter case.

C.2.1 Monte Carlo approximation to the backward message

Monte Carlo approximation to the the integral in (C.11) is

N
1 s
mej(2)) & 5 D mic(9(2)00 %)), (C.12)
s=1

(s)

apar = U Zl(cs) for Z;(:) ~ Mye(2).

ke&(c)
pany
ki

Once the message m.;(z;) is approximately calculated and propagated as an
NEF distribution, ¢(z,) is also approximated either by IS or Laplace, depending on
the message type m.(z;) as it is discussed in C.1.

where z

C.2.2 Gaussian approximation to the backward message

The above procedure yields two consecutive approximation processes in the calcu-
lation of ¢(z;). Considering that we assumed m.(z;) implies that ¢(z;) is Gaussian-
like, we can avoid the approximation in (C.12) if all the incoming messages m.(z)
for k € £(¢), k # i are Gaussian. We achieve this by approximating the joint pos-
terior q(z.\;) with Laplace, followed by a marginalization to evaluate ¢(z;) and
me;j(z) o< q(z;)/mje(z;).

More precisely, consider the incoming messages my.(2x) = N (2k; tike, Vie) for
k € &(c), k # i. Note that these messages carry prior beliefs on random variables in
z.\;, which can be represented with a joint belief mg¢ )\ .(2.\;) constituted by con-
catenation of the random variables in z.\; : @ zx: such that pgpic: D pre

keE(c) keE(c)
ki ki
and Ve kEEB )ch, where V(.)\; . is a block-diagonal matrix and
ki

Me(eNi,e(Zeni) = N (Beenies Veeie)- (C.13)
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Now, we approximate ¢(z.\;) by a Gaussian distribution N (pc\;, Ve\;) with a
Laplace approximation:

Me\; = argmax IOg mS((:)\i,c(zc\i) + log mic(g(zc\i))v (C.14a)

Ze\i

Vevi = (*Viu\i(log Me(eni,c(teyi) +logmic(g(peai)))) ™" (C.14b)

By marginalizing out z.\ (; j;, we find q(z;):

) = [ a(aei) oo i) = N3 V) (€15)
Recall that ¢(z;) o< mjc(2z;)mc;(z;). This yields the following backward message
me;(25) o< q(z;)/mje(z;) = N(pies, Ves), (C.16)

where VC;1 = %*1—%;1 and VC;1 fej = Vfl uj—ngl ;e Note that we intentionally
parameterize the Gaussian backward message m.;(z;) with a precision-weighted
mean chl He; and precision chl. The canonical parameterization (weighted-mean
and precision) brings computational advantages, especially in state space models,
by avoiding certain matrix inversions [57]. The approach that we introduced in this
section resembles Expectation Propagation (EP) [67,88] in the sense that we first
find the posterior, ¢(z;), and then the backward message is evaluated by dividing
the posterior to the incoming message. As it is stated in [88], Laplace Propagation
[174] proposes an iterative Laplace approximation approach to mitigate intractable
integral issues that sometimes emerge in EP.

So far, we've discussed how to extend VMP to those models with determinis-
tic conditional distributions. To summarize, the resulting technique approximates
the forward messages in deterministic nodes by LWS. Backward messages, on the
other hand, are either directly propagated in NEF form or approximated with Gaus-
sian distributions. We also showed posterior approximations related to these mes-
sage types. In the next subsection, we shall attack the problem regarding the non-
conjugate soft factor pairs.

C.2.3 Non-conjugate Soft Factor Pairs

Next we address the non-conjugate soft factor pairs problem. Consider the generic
edge depicted in Figure 2.1. Suppose that the messages mq;(z;) and my;(z;)
differ in sufficient statistics that causes the normalization constant [ mg;(z;) and
my;(z;) dz; to be analytically intractable. Recall that the very much same problem
emerges in C.1 while calculating ¢(z;). Therefore, the approximation rules defined
in C.1 applies to non-conjugate factor pairs, as well. For the sake of comprehensive-
ness, the rules are summarized below.
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1. If m4;(%;) is a Gaussian message, apply Laplace to approximate ¢(z;) with a
Gaussian distribution as in (C.8).

2. Otherwise, use IS as in (C.7).







Appendix D

Free Energy Approximation in
EVMP

This appendix is based on the original work referenced below. An additional deriva-
tion for the joint entropy estimation is provided.

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

Recall from Section 2.3 that variational inference transforms a difficult inference
task to an easier optimization problem of a variational bound called the free energy
F. Considering the fact that VMP converges to a stationary point by updating one
posterior factor at a time, we anticipate that our approximations approach near
local optima.

As it is shown in Section B.1.2, the free energy is amenable to analytical calcula-
tions for those models that are solely comprised of conjugate factor pairs. The mod-
els that we address here do not allow the free energy to be calculated analytically.
This is because analytically intractable expectation quantities, which complicates
VMP in practice, also appear in the free energy calculation. Therefore, we provide
an approximate free energy to the user so that she can track the convergence of the
inference and also make model comparison [65,175].

We introduce our free energy approximation approach over the sub-graph given
in Figure B.1, where f,(z,) is a standard EF distribution (B.1) and f;(z) is a com-
posite node, i.e., fy(z,) = [d(zi — 9(2;))fa(za) dzi = fa(9(2;),2za\i). Recall from
(B.6) that f4(2;,2z4\;) is modified as

fa(za) = hi(zr) exp(@i(2i) T Aai(2a\i) + cai(Zavi))-
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This sub-graph is a part of a larger FFG. First, we decompose the free energy as the
following

F = Fj —Eya,)[l0g fa(2a)] — Eqzy)[log fi(z)] + Ey(z; [log g(2;)] (D.1)
Average energy terms Negative
entropy
Fj

where F\; stands for the free energy terms that are not subject to variables z;.
Explicitly writing the average energy terms:

~Ey(z,)[10g fa(2a)] = —Eq(z)[log(hj(2)))] — Eyre) (65 (2)] By (z, ;) [Naj (Zar,)]
+ ]EQ(Za\j)[log Zj (Za\j)] (D.2a)

—Ey(ay) 108 fo(21)] = —Eq(ay) [1og ( / 5(zi — g(2;))

hi(zi) exp (fi(2:) " Aai (2ani) + Cai(2Zari)) dzzﬂ
= _EQ(Zk)[IOg(hk(Z’f))] - EQ(Zi)[¢i(zi)}T]Eq(zd\i)[)‘di(zd\i)]
+ ]EQ(zd\i) [Cd’i (Zd\z)] (D.2b)

The above derivations closely follow the derivations in (B.22). Note that the expec-
tation terms regarding z; in (D.2b) are substituted by the expectations related to
z;, which are contained in the sufficient statistics vector ¢;(z;). This quantities are
exactly same with the ones required to calculate VMP messages towards z, ;, and
we used IS to estimate them in (C.3). Therefore, E.,)[¢:(z;)] for the estimation of
—Eq(z,)[log f1(z)] is readily available.

Next, we investigate the terms related to z; in —Ey(,,)[log f.(z.)]. Recall that for
q(z;), we have two approximation methods: 1) a Gaussian approximation to ¢(z;)
with Laplace, 2) an LWS approximation. ¢(z;) is approximated with a Gaussian
when m;(2;) is a Gaussian and this is the case if the factor node f,(z.) = p(2;|z,\ ;)
is a Gaussian distribution. In this case, ¢;(z;) = [z, 23]7 (¢;(2;) = [z}, 2;2]]7 for a
multivariate Gaussian), log(h;(z;)) = —0.5log(27) (log(h;(z;)) = —0.5d log(2m) for
a d-dimensional multivariate Gaussian), and E,.,)[log(h;(z;))], Eq(.,)[¢;(2;)] are
available in closed-form. Similarly, the entropy term —E, . [log ¢(z;)] is available in
closed-form for a Gaussian ¢(z;). This completes the calculation of the expectation
terms with z; in F;.

In case q(z;) is approximated with LWS as in (C.7), we approximate E, . )[log(h;(z;))]
and E,(.,)[¢;j(2;)] with IS as in (C.5). Therefore, the approximations for the av-
erage energy terms are straightforward. For LIWS approximated ¢(z;), the main
difficulty in the estimation of F; stems from the entropy calculation. This is be-
cause log(g(z;)) does not persist in functional form. The entropy approximation for
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weighted sample approximated distributions is often carried out by probability den-
sity estimates on weighted samples [176]. Fortunately, in our case, we do not need
to fit a density estimate on LWS since the messages m,;(z;) and my;(z;) afford the
information regarding the density ¢(z;). Let us derive an estimator for the entropy
Hjl

H; = _/Q(Zj)IOgQ(Zj)dzj
_ _/q(zj)log( M (25)me; (25) >de

S mag(2)me;(z)dz;

= —/Q(zj)log (maj(zj)mbj(zj))dzj+/q(2j)10g (/ maj(zj>mbj(zj)dzj> dz; .

H} H?
(D.3)
We estimate the first term with the following Monte Carlo summation:
N
Z ) Tog (ma; (=1 ymas (=) (D.4)

The term with the log in ’H? is constant since z; is integrated out inside the log.
Therefore ’Hf simplifies further:

7—[? = log (/ maj(zj)mbj(zj)dzj) /q(zj)dzj. (D.5)
————
1
Recall from (C.5) that the samples 251)7 . zj(-N) are drawn from the message mq;(z;).

Therefore, Monte Carlo estimate of H ]2 is

= log ( Zmbﬂ ) . (D.6)

This completes the estimation of the terms with z; in F;.

Joint Entropy Estimation

Consider a deterministic node f.(z.) with multiple inputs:

/ 6 c\z
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Note that in EVMP algorithm, the message passing rules we introduced around
deterministic nodes with multiple inputs follow from BP, which posits a structured
factorization for the approximate posterior ¢(z.). Hence, we should be able to
calculate joint entropy

Heovi = _/Q(Zc\i)logQ(Zc\i))dzc\i (D.7)

to return the Free Energy [69], where ¢(z.\;), up to a normalization, is defined as

dlae) [ otz
X /5( c\l H mkn Zk dzl
ke&(c)
o Mic(9(Ze\i)) H Mge(2k)- (D.8)
ke&(c)
ki
LWS approximation for q(z.\;) is
c\z ch\z e\’ (Dg)
where zg\; ~ U mielar) and wl) oc mic(g(2))).
ke&(c)
ki

Estimation of the joint distribution entropy is analogous to that of the marginal
entropy

Hevi = Hi, +Has (D.10)
where
c\l Zw - |logmic(g Z log mck( zk , (D.11)
ke&(c)
k#i
and

’Hc\z log< Zlogmu (\l))> (D.12)
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Implementation Details for
EVMP in ForneyLab

This appendix is based on the original work referenced below. The optimizer used
for the Laplace approximation is replaced by an L-BFGS optimizer from the Julia
package Optim.jl.

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

Our extensions to VMP are readily available in ForneyLab [62], which is a Ju-
lia package for message passing based probabilistic programming. In this section,
we provide the reader with some of the core implementation details and automa-
tion process of the method. First, the number of particles that commutes through
deterministic nodes is set to 1000 by default. The user can change the number of
samples during model specification. Similarly, the posterior of the variables that are
connected to non-conjugate soft factor pairs are approximated by 1000 samples. For
Laplace approximations, gradients are automatically calculated by automatic differ-
entiation tools of Julia language. We use the ForwardDiff package [158] since it is
a mature, universal automatic differentiation tool that aligns well with the needs of
our approach. Recall that Laplace approximation is a mode seeking algorithm. We
automate the mode seeking by using L-BFGS [165,166] optimizer in the Julia-based
optimization package Optim.jl [103].







Appendix F

Bootstrap Particle Filtering

This appendix is based on the original work referenced below.

* Semih Akbayrak, Ivan Bocharov, and Bert de Vries, Extended Varia-
tional Message Passing for Automated Approximate Bayesian Inference,
Special issue on Bayesian Inference in Probabilistic Graphical Models,
Entropy, 2021

Having implemented importance sampling to get around the complications in
VMP, we now show how our technique inherently supports bootstrap particle filter-
ing in state space models [19,122].

Recall that we automate Laplace approximation to retain the computational con-
venience of Gaussian filtering and smoothing. Although this choice sounds reason-
able for those cases we believe the distributions over hidden states possess unimodal
behaviour, it would not be sufficient to capture multi-modal distributions [19]. Sim-
ilarly, due to non-linearities in the model specification and/or non-Gaussian process
noise, Gaussian distribution might not be a plausible representation of the hidden
states. In these cases, Sequential Monte Carlo methods [177] could be appealing
because they flexibly recover asymmetric and mixture distributions.

In VMP setting, our method employs samples and their corresponding weights
to deploy VMP messages which are parameterized by exponential family distribu-
tions. Alternatively, in Belief Propagation (BP) setting, a soft factor collects samples
to instantiate the conditional distributions and then draws samples from these con-
ditionals. This process is depicted in Figure F.1 with two samples for the sake of
easiness in visualization.

Having implemented the BP rule at a soft factor for incoming LWS messages, we
have to show how posteriors are approximated through updating weights. Suppose
that mgx(2x) is a message carries LWS, and my(2y) is parameterized either by an
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Bootstrap Particle Filtering
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Figure F.1: Bootstrap Particle Filtering employs the state transition distributions, p(zx|zx—1)
as proposal distributions, which can easily be supported in our framework by
defining BP rules at soft factors for incoming messages that are LWS. The
rule is straightforward to implement: weights stay unchanged; for each in-
coming sample, instantiate a new conditional distribution and draw a sample
from it. The weight update is automatically carried out at equality node by

- (s)
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Wi
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EF or an NEF. Then, we define the posterior update rule as
Given mgg(2) = {(w]illl, z,(gl)) ey (w,(cj\_[)l, Z,EN))) } ,
q(zx) o Mok (2r) Mok (2k)

~ {(w,(:), z,(cl)) ey (w,gN), z,iN)))} , (F.1a)
where w,in) o w,(i)lmbk(z,(:)). (F.1b)

In Bootstrap particle filtering, these rules update the weights at equality nodes au-
tomatically. A major drawback of sequential importance sampling methods is that
the further samples commute over time steps, the more they lose their ability to
recover the underlying process, and many of the weights approach to zero. This
phenomenon is known as the degeneracy problem and can sometimes be alleviated
by resampling [19,177]. In our automated setting, at each weight update step, we
measure the effectiveness of the existing samples by ng = ﬁ, as it is shown
S (w™

n=1

in [19]. Then, we resample if neg < N/10 [19]. A user can effortlessly execute



153

a particle filtering procedure in our method by putting an LWS prior on the first
hidden state of a sequential model and running BP inference on the model .

LFor demonstration purposes, we implemented BP rules at Gaussian node for LWS messages. The user
can implement the very same rules for other soft factors according to her needs. Visit https://github.
com/semihakbayrak/ForneyLab. j1/blob/dev/demo/bootstrap_particle_filter.ipynb for a toy
example.


https://github.com/semihakbayrak/ForneyLab.jl/blob/dev/demo/bootstrap_particle_filter.ipynb
https://github.com/semihakbayrak/ForneyLab.jl/blob/dev/demo/bootstrap_particle_filter.ipynb
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