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ABSTRACT

This paper proposes a generative hierarchical probabilistic model for
acoustic signals where both the frequency decomposition and log-
power spectrum appear as latent variables. In order to facilitate ef-
ficient inference, we represent the model in a factor graph that in-
cludes a probabilistic Fourier transform and a Gaussian scale model
as modules. We derive novel ways of performing variational mes-
sage passing-based inference in the Gaussian scale model. As a re-
sult, in this model a probabilistic representation of the log-power
spectrum of an acoustic signal can be effectively inferred online.
The proposed model may find applications as a front end wherever
probabilistic log-power spectral features of a signal are needed. We
validate the model and message passing-based inference methods by
tracking the log-power spectrum of a speech signal.

1. INTRODUCTION

Various probabilistic generative models for different representations
of acoustic signals have been presented in the literature. For ex-
ample, [1] models the temporal representation using a probabilis-
tic auto-regressive model, [2 [3] model the frequency coefficients
independently using probabilistic auto-regressive models and [4} |5}
6l [7] model the log-power spectrum using Gaussian mixture mod-
els. Despite these independent modeling strategies, a principled joint
spectro-temporal modeling approach has not yet been proposed.

During the probabilistic modeling of acoustic signals, the fre-
quency coefficients or log-power spectra are often first extracted
from the signal. A less common approach is to treat these different
representations as latent states in a probabilistic model. In [§] the
probabilistic version of the Fourier transform is introduced, stochas-
tically relating the observed time domain signal to its frequency co-
efficients, which now represent hidden random variables. In [9] and
[2]] two models using this approach are presented. These are closely
related to each other [3] and to Gaussian processes [10].

Similarly, in [11] the relation between the log-power spec-
trum and frequency coefficients is modeled as a probability density
function, termed the Gaussian scale model. Here the frequency co-
efficients are modelled by a complex Gaussian distribution, whose
covariances are exponentiated random variables, representing the
log-power spectrum. [11] specifically models this probabilistic
log-power spectrum by a Gaussian mixture model, resulting in a
Gaussian scale mixture model (GSMM) [12]. However, a general
approach for performing inference in the Gaussian scale model is
missing, restricting implementation with alternative “back ends” for
modeling the probabilistic log-power spectrum.

This paper combines the probabilistic Fourier transform and
Gaussian scale model in a hierarchical probabilistic “front end”
for more complex probabilistic models. The front end we propose
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jointly models the time domain, frequency coefficients and log-
power spectrum of an acoustic signal, based on a noisy temporal ob-
servation. Importantly, in our approach the different representations
are treated as latent variables in the generative model. Furthermore,
we propose several ways for performing probabilistic inference in
this hierarchical front end using message passing.

This paper is organized as follows. In Section [2[ we propose
a probabilistic generative model for acoustic signals. In order to
support inference in this model, we will represent the model by a
Forney-style factor graph (FFG). Message passing-based inference
in FFGs is shortly reviewed in Section [3] Section [d] describes how
probabilistic inference for log-power spectral tracking in our model
can be performed using message passing. We evaluate our approach
in Section[5]and conclude the paper in Section [f]

2. MODEL SPECIFICATION

This section specifies our probabilistic generative model for acoustic
signals. Consider an observed signal ¥, = [Yn, Yn—1,- - - Yn—n]
of length N + 1 attime ¢ = nT’, where 71" is the sampling period and
n the sample index. We assume that y,, is composed of a “clean”
signal &, = [Tn,Tn_1,...Tn_n]  plus independent and identi-
cally distributed (i.i.d.) Gaussian observation noise. The clean time
domain signal x,, relates to its frequency coefficients through

Tn = Fy 8y, ey
where F3, is defined as
[ cos(winT) cos(wi(n — N)T) 7 T
Jo cos(wynT) cos(war(n — N)T) @)
" sin(winT) sin(wi(n — N)T)
| sin(wanT) sin(wa(n — N)T') |
and where s,, = [s}“ 2., S%]M]T represents a vector of frequency

coefficients s;;' with angular frequency w., at time index n. Impor-
tantly, both @, and s, are random vectors in (I). The probabilistic
Fourier transform [8]] is here expressed as the likelihood function

PYn | $n) =N (yn | Fusn, A7), 3)

where A, is a diagonal precision matrix for the observation noise.
The resulting vector of real coefficients s,, can be reparameter-
ized into a vector of complex frequency coefficients ¢,, through

m~+M

et =50 08 form=1,...,M 4)

where ¢ = +/—1. This reordering is just a reflection of the fact that
the first half of the entries of s,, corresponds to the real parts of the
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corresponding complex frequency coefficients and the second half
corresponds to the imaginary parts of these coefficients.

We will assume a (complex) Gaussian distribution for ¢,,, given
by Ne (en | p, T, C) with mean g = 0, complex covariance ma-
trix I' and relation matrix C', see [13]] for more details. In order to
keep inference tractable, independence is assumed between the real
and imaginary parts of the coefficients, requiring C' = 0. Following
[[L1]], the covariance matrix I" is modelled as a diagonal matrix with
exponentiated auxiliary variables &', leading to
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This probabilistic relationship relates the complex frequency coef-
ficients to the log-power spectrum [[11]. To clarify this point, the
log-likelihood function of (3) can be found as lnp(c; | &) =
—&7 — e |2 — In and from this description the maximum
of €™ can be found to occur at &7 = In |¢7*|?, which coincides
with the deterministic transform from the frequency coefficients to
the log-power spectrum. As a result of this observation, the vector
€, = [€L,€2,... M7 is treated as the probabilistic log-power
spectrum of the noisy acoustic signal yy,.
‘We model the log-power spectrum as a Gaussian random walk

pET &) =N (&7 &k, 7e '), (6)

where we model frames of length N + 1 with a step size K between
frames and where ¢ represents the process noise precision. Because
of the specified step size, &,,* does not have to be defined for all n. In
principle, it would be easy to replace the Gaussian random walk with
an alternative model such as a probabilistic auto-regressive model,
for which message passing update rules have been derived in [1]].

The set of equations (), @), (3) and () specifies a generative
probabilistic model for acoustic signals that includes both the fre-
quency decomposition and log-power spectrum as latent variables.
In general, we observe signals in the temporal domain and we are
interested in inferring the log-power spectrum representation (or the
frequency decomposition). Inference in this model is not analyti-
cally tractable. We solve the inference task through message passing
in a factor graph and for this purpose we derive new variational mes-
sage passing update rules. In the next section, we shortly summarize
message passing-based inference in factor graphs.

3. FACTOR GRAPHS AND MESSAGE PASSING

We use message passing in a factor graph as our probabilistic infer-
ence approach of choice, because of its efficiency, automatability,
scalability and modularity [14}15].

3.1. Forney-style factor graphs

Factor graphs are a class of probabilistic graphical models. This pa-
per will discuss Forney-style factor graphs (FFG) as introduced in
[[16] with notational conventions adopted from [17]. The interested
reader may refer to [[17] or [[14] for additional information on FFGs.
FFGs visualize global factorizable functions as an undirected graph
of nodes corresponding to the local functions, or factors, connected
by edges representing their mutual arguments. This factorized repre-
sentation allows naturally for the visualization of conditional depen-
dencies in generative probabilistic models. Figure |I| shows a factor
graph representation of a single time slice of our generative model.

3.2. Sum-product message passing

For calculating marginal distributions in a generative model, we need
to integrate over all other random variables. Because of the factoriza-
tion of the probabilistic model, we can perform this marginalization
through a set of small local computations. These local computations
are called messages and are denoted by p. The sum-product mes-
sage fi(z;) flowing out of an arbitrary node f(x1,x2,...,Zn) with
incoming messages fI(x\ ;) is given by

ﬁ(%) :/f(I171’27~~~’In)Hﬁ($i) diIJ\j (@)
i#]

which is called the sum-product update rule [18]. This update rule
is the core of the sum-product message passing algorithm, which
is also known as belief propagation [[19]. This algorithm concerns
the distributed calculation of various marginal functions from a fac-
torizable global function. The marginal distributions can then be
calculated from the messages as p(z;) « fi(z;) - ji(x;). The FFG
now has arbitrarily directed edges to indicate the flow of the mes-
sages. A message u(x;) propagating on edge x is denoted by fi(x;)
or ji(z;) when propagating in or against the direction of the edge,
respectively.

3.3. Variational message passing

In some cases the integrals in the sum-product algorithm can become
intractable. Then we can resort to an approximate message passing
algorithm, called variational message passing (VMP) [20], [21]].
Consider the generative model p(y, =) with an intractable pos-
terior distribution p(z|y), where y and = denote the observed and
latent variables, respectively. Variational inference approximates
the intractable true posterior with a tractable variational distribution
g(x) through minimization of a variational free energy functional

q(x)
F :/ z)In dz— In )
[q] @) o p(y)
N——
KL-divergence log-evidence

which is in the machine learning literature also known as the negative
Evidence Lower BOund (ELBO).

In practice the optimization of (8] is performed by imposing ad-
ditional constraints on g(z), e.g., by limiting ¢(z) to a family of
distributions, or by additional factorization assumptions. Depending
on the constraints on g(z), the minimization of (8) can be achieved
through sum-product message passing or variants of VMP. In the lat-
ter case, the goal is to iteratively update the variational distributions
through coordinate descent on (8). In general, the variational mes-
sage v(x;) from a generic node f(x1,x2,...,%n) with incoming
messages q(x\ ;) can be written as [21]]

U(xzj) ocexp/Hq(aﬁi)lnf(xl,xg,...,mn) da, ;. 9)
i#£]
The posterior ¢(z;) can be updated by multiplying the forward and
backward messages on the edge of z; as ¢(z;) o 7(x;) - U(z;).

4. VARIATIONAL LOG-POWER SPECTRAL TRACKING

This section describes the inference procedure in the probabilistic
front end using message passing. Specifically, this section describes
the inference procedure in the Gaussian scale model of (), as all
other messages have already been derived in [17] and [14]. In order
to prevent notational clutter, we drop the sub- and superscripts in (3).
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Fig. 1. This figure shows: a) a factor graph representation of a time slice of the generative model of Section 2] b) a comparison between the
different inference approaches expressed as the variational free energy as a function of coordinate descent iterations, c¢) the deterministic and

inferred log-power spectrum of an acoustic signal.

4.1. Sum-product messages

The sum-product messages can be calculated using (7), where we
assume that the incoming messages to the node of (@) are given by

f(€) o< N(E [ me, 7¢ )
fi(c) o Ne(c | me, vo'4, 0),

(10a)
(10b)

with means me € R and m. € C and real precisions {¢,v.} €
R*. Substitution of (3) and (TOB) in (7) leads to the message

—¢ 2 2
- € 70|m6|

_ —_— 5. 11
i(E) o et + e P { =8 + 7. } an

This message does not belong to the exponential family and mul-
tiplication of j1(§) with ji(€) will no longer be a conjugate opera-
tion. Section 3 will describe ways of dealing with these messages.
Unfortunately, the integral involving the calculation of fi(c) is in-
tractable. Because of this, we need to resort to VMP [21]].

4.2. Variational messages

For mean-field variational message passing we will assume the fol-
lowing form constraints on the posterior distributions

q(€) = N(& | me, ¢ )
q(C) :NC(C | mC? 70717 0)7

(12a)
(12b)

where mg € R and m. € C are means and {y¢,7.} € R are
precisions. Substitution of (3) and (12a) in variational update rule

@) yields
7(c) o< Ne(0, exp(me — ¢ '/2), 0) (13)

and similarly substitution of () and (12b) in (9) yields

p¢) cexp{—¢—e Syt Hmd . (14

This latter message again has a functional form, similar to (TT)).

4.3. Handling non-conjugate messages with a functional form

The messages derived in (TT) and (T4) do not belong to a known
family of distributions and are therefore represented in their func-
tional form. Furthermore, multiplications with these messages will
no longer be conjugate operations. Here we will describe 3 ways of
dealing with these messages based on [22] and [23].

First, we can approximate these messages by a Gaussian dis-
tribution directly using Laplace’s method. Here the log-message is
approximated by a second-order Taylor expansion at its mode as

1d*Ini7(§)
2 d& le=¢

where £p is the mode of the message. Because the message is ex-

panded around its mode, the first-order derivative vanishes from the

dln o

Taylor expansion. This mode can be found by solving dig(@ =0

In7(¢) ~ Ini7(&o) + (€—&)* (5



for £. This approach results in the approximate variational messages

(16a)
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A second approach is to propagate the message on the graph and
to approximate the resulting marginal instead of the message itself.
Here the marginal distribution ¢() is given by ¢(&) o 7(&) - U(§),
where one of the messages is a function and the other a Gaussian.
The Gaussian can also be converted to its functional form and the
marginal can be expressed as the product of the colliding messages.
The mode of the resulting marginal can be approximated using New-
ton’s method, where the first and second derivatives can be deter-
mined using automatic differentiation. Similarly the variance of the
approximate Gaussian marginal distribution can be determined.

The third approach uses moment matching instead of Laplace’s
method for approximating the resulting marginals. The moments of
the marginal ¢(§) can be calculated as

292 |me|?e” ™
ety )
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in which the marginal is properly normalized by dividing by the nor-
malization constant Z = [ 7(§)(£)d¢. This intractable normaliza-
tion integral is can be approximated using Gauss-Hermite quadrature
integration [24, Chapter 6] as

K
1 _
Zr LS (gk zfl+m§), (18)
\/Ek:l £

where wy, and &, can be calculated using the Golub-Welsch algo-
rithm [25]], representing the weights and evaluation points, respec-
tively. Similarly, the moments can be approximated using Gauss-
Hermite quadrature integration as

K k
1 (7 1 —(z —1
—_— E wi | Exr /2 +m5) IJ<§k 2v¢ T +me
Z\m =~ ¢ ¢

and from the obtained moments, the sufficient statistics of the ap-
proximate Gaussian marginal distribution can be found.

E[§"] ~

5. EXPERIMENTAL VALIDATION

5.1. Log-power spectral tracking of acoustic signals

In order to validate the proposed methodology, the model is used to
perform generalized Kalman smoothing to estimate the probabilistic
log-power spectrum of an acoustic signalﬂ A random fragment of
female speech lasting 5 seconds and resampled to fs = 16 kHz
has been selected. We process the time domain signal in blocks of
length N + 1 = 32 with a step size of K = 32. From these blocks

'Experiments are available at https://github.com/biaslab/
SSP2021-VariationallLogPowerTracking,

the average value is subtracted. For the frequency decomposition the
angular frequencies wy, = mi}rﬁ form=1,...,(N —1)/2 are
used. In the proposed model we set the hyperparameters as A, =
10% - Iy41 and Ve = 1073, where T4 1 denotes the identity matrix
of size (N +1 x N +1). The choice of these parameters illustrates a
model in which we assume little observation noise and a log-power
spectrum with little temporal dependency.

Technically, the log-power spectral estimation task can be
phrased as computing g(&1.x:n|Y1:x:n). For validation of our ap-
proach, we will compare the obtained results with the deterministic
log-power spectrum. The open source Julia [26] package ForneyLab
is used, which aims to excel at real-time message passing-based
inference in dynamic models [[15]. The inference in the Gaussian
scale model is performed using VMP, where the message 7(§) is
approximated directly using Laplace’s method by (I6b). Fig. [
shows a comparison between the deterministic log-power spectrum
and the smoothed probabilistic log-power spectrum.

5.2. Comparison between inference methods

Fig. (1| also shows a comparison between the different inference ap-
proaches proposed for the Gaussian scale model. For this purpose
we directly model the complex frequency coefficients using a sim-
plified generative model, consisting out of observation model p(zy, |
cn) = N(zn | cn,vet), @) and @) for a single frequency coeffi-
cient and unit time steps, meaning that A/ = 1 and K = 1. Here
zn represents the observed complex frequency coefficients and ~.
represents the observation noise precision. Synthetic data is used
for comparison, consisting out of 100 data points, generated using a
process noise precision of 7¢ = 1 and observation noise precision
of 7. = 10°. The prior p(&) equals the standard Gaussian distri-
bution. Fig.|l| compares the performance of the different inference
methods through the variational free energy.

5.3. Discussion

From Fig. [1|we can conclude that the proposed front-end is capable
of extracting the spectral characteristics of an acoustic signal, solely
through probabilistic inference. The process noise precision con-
trols the smoothing of & and is kept low for comparison sake. The
approaches where the marginal distributions are approximated us-
ing Laplace’s method or Gauss-Hermite quadrature integration out-
perform the approaches where the message is approximated using
Laplace’s method in terms of variational free energy.

The current proposed approach allows us to model all represen-
tations of an acoustic signal simultaneously. Furthermore it allows
us to explicitly measure information loss in transforming the acous-
tic signal by the resulting variational free energy. Finally, the current
front-end provides a modular basis for alternative model assump-
tions on the probabilistic log-power spectrum.

6. CONCLUSION

This paper presented a generative probabilistic model for acoustic
signals where the frequency decomposition and log-power spectrum
are represented as latent model variables. In order to facilitate online
inference, we represent our model as a factor graph and derive dif-
ferent variational update rules for the Gaussian scale model, which
is a sub-module in our model. Experimental validation supports the
notion that we proposed an efficient variational log-power spectral
tracking algorithm that can be applied as a plug-in front end to vari-
ous probabilistic signal processing tasks.
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