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Abstract—State-space modeling of non-stationary natural sig-
nals is a notoriously difficult task. As a result of context switches,
the memory depth of the model should ideally be adapted
online. Stabilized linear forgetting (SLF) has been proposed as
an elegant method for state-space tracking in context-switching
environments. In practice, SLF leads to state and parameter
estimation tasks for which no analytical solutions exist. In the
literature, a few approximate solutions have been derived, making
use of specific model simplifications. This paper proposes an
alternative approach, in which SLF is described as an inference
task on a generative probabilistic model. SLF is then executed
by a variational message passing algorithm on a factor graph
representation of the generative model. This approach enjoys a
number of advantages relative to previous work. First, variational
message passing (VMP) is an automatable procedure that adapts
appropriately under changing model assumptions. This eases the
search process for the best model. Secondly, VMP easily extends
to estimate model parameters. Thirdly, the modular make-up of
the factor graph framework allows SLF to be used as a click-on
feature in a large variety of complex models. The functionality of
the proposed method is verified by simulating an SLF state-space
model in a context-switching data environment.

I. INTRODUCTION

Natural signal modeling is a key issue in various scientific
and engineering disciplines, e.g. [1], [2]. Unfortunately, nat-
ural signals often exhibit characteristics, such as a switching
context, which are notoriously difficult to track by standard
methods like the Kalman filter.

As an illustrative example, consider tracking a ball during
a soccer game. When a player kicks the ball, the direction
and velocity of the ball suddenly changes. At that instance,
the state estimator should forget the current trajectory and
start tracking a new trajectory. Standard modeling assump-
tions do not suffice here. For instance, a Kalman filter will
only adapt gradually to the new trajectory. A model with
switching dynamics [3] is not appropriate here either, because
the dynamical system that governs ball movements does not
change after a kick. Instead, a model is required that retains
the dynamical system model, but resets the tracked state
upon sudden changes. However, a complete reset of the state
is not required either, because ball direction and speed are
constrained by physical boundaries such as player strength and
the size of the playing field. Therefore, the state after reset is
constrained as well.

Stabilized forgetting (SF) was introduced as a solution for
robust state tracking in the presence of “partial state resetting”
dynamics [4], such as described above. In the absence of

observations, SF also ensures that the uncertainty about the
state estimate remains bounded [5]. A general characterization
of SF is given by [6]. SF is discussed in the context of
control by [7], and SF is justified in the context of recursive
estimation by [5], [8]. In general terms, recursive Bayesian
estimation distinguishes two stages: a time step that predicts a
new state belief given previous measurements, and a data step
that updates the predicted state belief with information from
a new measurement, see e.g. [9]. In stabilized forgetting, the
state estimate comprises a mixture of two estimates, where the
first estimate derives from a standard state transition model
and the second estimate relates to a fixed distribution (the
alternative model). A time-dependent mixing variable governs
the mixture of the default and alternative model. Furthermore,
the literature distinguishes between linear mixing of the esti-
mates in the so-called stabilized linear forgetting (SLF) model,
and exponential mixing in the stabilized exponential forgetting
model [10].

In practice, the mixing coefficient is generally not known
beforehand. Algorithms for estimating the mixing coefficient
in the context of recursive estimation have been derived in
[11]–[13]. This paper proposes an alternative approach to SLF.
Instead of adapting the recursive estimator, this paper describes
SLF as an inference task in an augmented probabilistic model.
We represent the model by a (Forney-style) factor graph
(FFG). In the factor graph framework, joint state-parameter es-
timation can be executed through message passing algorithms.
Relative to previous work, a major advantage is that message
passing in a factor graph is an automatable procedure. Hence,
if one were to make different modeling assumptions, state
and parameter estimation algorithms are updated accordingly.
This is important, because signal modeling often involves an
iterative search process for the best model. This paper develops
a variational message passing (VMP) approach to SLF that is
based on the variational Bayes method [14], [15], which is
a well-known and principled technique [16] for approximate
inference.

The main contributions can be summarized as follows:
1) We formulate SLF as an inference task in an aug-

mented generative model in the context of a state-space
model (SSM) (Section II). Interestingly, SLF is obtained
through augmenting a generative probabilistic model
rather than by an algorithmic adaptation.

2) We provide a factor graph representation for the aug-
mented SLF state space model (SLF-SSM) (Section
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II-B). Joint estimation of the hidden state sequence
and parameters is executed by VMP (Section III). The
FFG framework allows for modular model extensions to
which VMP can automatically adapt.

3) We present simulations to verify proper functioning of
the augmented SLF-SSM model (Section IV).

II. GENERATIVE MODEL DESCRIPTION

A generative model describes the random process by which
observed data are generated as a probability distribution over
all model variables [17]. Sampling from the generative model
generates artificial data, whose statistics ideally match the
observed data. In this section we describe the generative model
for an SSM with SLF. An SSM is generally described by a
state transition model and an observation model [18]. The state
transition model describes how hidden states evolve over time.
The observation model describes how an observation relates
to the state at a given instant.

Consider the following simple discrete-time SSM for an
observed sequence of data y1, . . . , yK :

xk|xk−1 ∼ N
(
Axk−1,W

−1) ; (1a)

yk|xk ∼ N
(
Cxk, σ

2
)
. (1b)

The hidden states x0, . . . ,xK ∈ Rd are linked through a
transition model (1a) with transition matrix A ∈ Rd×d and
stationary Gaussian process noise with inverse covariance
matrix W ∈ Rd×d. The observation model (1b) relates the
hidden state to observations through CT ∈ Rd, and i.i.d.
Gaussian observation noise. Note the choice for a simple
linear Gaussian observation model and the omission of a
control model for the hidden states. These assumptions are
however for instructive reasons; the described approach allows
for straightforward extensions to more complex observation
models, and the inclusion of control.

SLF is incorporated in the generative model by augmenting
the standard state transition model from (1a) with a time-
dependent binary switch, zk ∈ {0, 1}. This switch determines
whether the state transition at time k is governed by the
standard transition model, or if the next state is drawn from
an alternative fixed distribution (also known as the stable
distribution):

xk|xk−1 ∼

{
N
(
Axk−1,W

−1) if zk = 1 ;

N
(
m,Λ−1

)
if zk = 0 .

(2)

In case zk = 0, this augmented state transition model “forgets”
the information from previous observations about xk, which
allows the model to cope with abrupt state transitions that are
very unlikely under the standard transition model.

To complete the augmented SSM, a model for zk must
be defined. One could assume the switch variables to be
governed by a hidden Markov model. For simplicity however,
but without loss of generality, this paper assumes the switches
to be i.i.d. according to a Bernoulli distribution:

zk ∼ Ber(π) . (3)

If 0 < π < 1, the value of the latent switch variables is uncer-
tain. The augmented state transition model is then formulated
as a linear Gaussian mixture of the standard transition model
and the stable distribution.

The generative model specified in (1b)–(3) implies the
generative model factorization of (4):

p(x0:K , y1:K , z1:K ,W, π,m,Λ, σ2) =

p(W) p(π) p(m) p(Λ) p(σ2) p(x0)

K∏
k=1

p(yk|xk, σ
2)

p(xk|xk−1,W, zk,m,Λ) p(zk|π) . (4)

From this probabilistic model factorization and observed data,
the goal is to estimate the hidden state sequence and tuning
parameters.

A. Forney-style factor graph example

A Forney-style factor graph (FFG) offers both a visually
intuitive representation of factorized probabilistic models as
well as a principled method for solving inference problems
by message passing. An FFG represents variables as edges,
and relations between variables (the factors) as nodes. Edges
in an FFG are undirected. An excellent introduction to FFGs
and message passing is available in [19].

As a practical example, consider a model with the factor-
ization

f(x1, . . . , x5) = fa(x1, x2)× fb(x2, x3, x4)× fc(x4, x5) .
(5)

Now suppose x1, x3 and x5 are observed, and the marginal
distribution of x2 is requested. Then, after rearranging the
integrals through the distributive law, the following nested
integration evaluates to the exact marginal:

f(x2) =

∫
· · ·
∫
f(x1, . . . , x5) dx1 dx3 dx4 dx5

=

∫
fa(x1, x2) dx1︸ ︷︷ ︸

1

×

∫ (∫
fb(x2, x3, x4) dx3 ×

2︷ ︸︸ ︷∫
fc(x4, x5) dx5

)
dx4︸ ︷︷ ︸

3

. (6)

The outcome of each integral can be visualized effectively as
a messages that is passed over an edge of the corresponding
graph, see Fig. 1. The resulting marginal f(x2) is simply the
product of the colliding messages 1 and 3 .

In order to work efficiently with FFGs, it helps to store a
lookup table of message update rules for commonly used fac-
tors. In that case, if we design probabilistic models with factors
from the lookup table, complex inference procedures reduce
to consulting the message update rules in the lookup table.
This makes the FFG an attractive framework for proposing
and testing alternative model hypotheses.

2
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fa fb

fc

x1

→
x2 x3

←

x4

x5↑

1
→

3
←

2 ↑

Fig. 1. Example message passing schedule on a Forney-style factor graph,
for computing the marginal over x2. Solid terminal nodes indicate observed
variables.

B. The SLF Generative Model as an FFG

The factorization of the stabilized linear forgetting model of
(4) is represented by the Forney-style factor graph in Fig. 2. In
order to avoid a cluttered graph, dotted half-edges represent
the tuning parameters of the model. It is possible to apply
priors on these parameters by terminating the half-edges by a
prior distribution node.
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Fig. 2. A Forney style factor graph representation of a single time section of
the augmented state-space model (with stabilized linear forgetting). Ellipses
denote a continuation of the displayed section over time. The complete factor
graph across K time steps is a concatenation of K identical sections. The
network inside the dashed box denoted by GM specifies SLF as a Gaussian
mixture model. Dotted edges denote time-independent parameters.

III. INFERENCE BY VARIATIONAL MESSAGE PASSING

Given the generative model and observations, probabilistic
inference can estimate the hidden state sequence. This is
achieved by conditioning the joint distribution on the observed
signal, and integrating over all variables except the state
sequence. Observation noise parameter σ2 is assumed to be
known, which yields:

p(x0:K |y1:K) =

∫∫
p(x0:K , z1:K , θ|y1:K) dθ dz1:K , (7)

where θ = {W, π,m,Λ} denotes the set of tuning parame-
ters. Other than for a standard linear SSM, this distribution
cannot be computed analytically for the augmented SLF-
SSM. However, variational Bayesian inference approximates
the exact posterior by a simpler distribution q(x0:K , z1:K , θ).
Variational inference searches for an approximate distribution
by minimizing an approximation error that is measured as the
Kullback-Leibler divergence from the exact posterior to the ap-
proximating distribution. This approach replaces computation
of the intractable exact posterior with a well-defined optimiza-
tion problem. With the mean-field approximation, all variables
are governed by independent approximate distributions:

q(x0:K , z1:K , θ)

= q(W)q(π)q(m)q(Λ)q(x0)

K∏
k=1

q(xk)q(zk) . (8)

The factorization of the approximate distribution implicitly
defines the distribution types [17] and free parameters for
each q-factor. The goal is to find the free parameter values
that minimize the approximation error. After optimization, the
approximate posterior assumes the role of the exact posterior
in any further computations. An approximate distribution
for the state sequence is then obtained by substituting the
approximate posterior in (7), which yields:

p(x0:K |y1:K) ≈ q(x0:K) . (9)

The variational inference procedure can be implemented as
a message passing algorithm on the factor graph. This paper
follows the variational message passing (VMP) formulation
from [15], which defines a recipe for iterative message up-
dates, such that the variational approximation is guaranteed to
converge to a local minimum of the KL divergence.

Fig. 3 illustrates the message passing schedule that achieves
approximate posterior inference in the augmented SLF-SSM.
The circled numbers represent the messages and their update
order. Crucially, the message update equations only depend
on local factors (i.e. the Gaussian mixture factor, Bernoulli
factor, etc.), and are not influenced by distant nodes or global
modeling context. As a result, once-derived message update
rules for a factor can be re-applied across many different
models.

IV. SIMULATIONS

As an illustrative example, we tracked the one-dimensional
hidden state from a model for a non-stationary data sequence.
The performance of a standard SSM was compared with the
augmented SLF-SSM. As a model performance measure, the
(natural) logarithm of the state sequence posterior density was
evaluated at the observed state sequence:

Qq = log q(X = x0:K) . (10)

The largest value for this metric identifies the best performing
model in the sense that under this model the observed state
sequence is more likely than for alternative models.

3
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Fig. 3. Variational message passing schedule for the augmented SLF state-
space model. Messages denoted by black circles are computed according to
the variational message update rule (see Appendix). White circles represent
sum-product messages as derived in [20]. Solid black nodes indicate observed
variables, and dotted edges denote time-independent parameters.

A. Training set

The data y in Fig. 4 were generated from the generative
process as defined in (1b)–(3), with parameters: x0 = 0; W =
10; C = A = 1; π = 0.95; m = 0; Λ = 0.01, and σ2 = 3.

B. State estimation

State estimation was performed with the standard SSM and
augmented SLF-SSM. For the standard model, vague priors
were chosen as: x0 ∼ N (0, 100), W ∼ Gam(0.01, 0.01)
(in shape-rate parametrization). For the SLF-SSM, additional
vague priors were chosen as: π ∼ Beta(1, 1), m ∼ N (0, 100),
and Λ ∼ Gam(0.01, 0.01). Estimation results and model
performance after 500 iterations are shown in Fig. 4.

Comparing model performance (10), it is evident that the
SLF-SSM outperforms the standard SSM. For the standard
model, the transition noise precision is estimated lower than
for the augmented model, as a result of the large jumps in
state that are required to track the data. The effects of a
low transition noise precision can be seen in the top diagram
in Fig. 4, where there is almost no smoothing effect. In
contrast, the SLF-SSM model explicitly models jumps through
the augmented state transition model, which is active when
zk = 0. The augmented state transition thus avoids the need to
model large jumps with a low transition noise precision. Small
jumps however, e.g. relating to the third switch activation, can
also occur under high transition noise precision and therefore
remain difficult to identify.

V. CONCLUSIONS

This paper described a probabilistic modeling approach
to stabilized linear forgetting (SLF), and an automatable

Fig. 4. Top diagram: estimated state xest from data y1:K with the standard
SSM; West = 0.060±0.009; performance Qq = −184. Grey bands indicate
the estimated standard deviation. Second diagram: estimated state with aug-
mented SSM; West = 0.39±0.06; πest = 0.96±0.02; mest = −0.85±6.57;
Λest = 0.0030±0.0027; performance Qq = −146. Third diagram: mean of
estimated switch state. Bottom diagram: true switch state.

variational message passing (VMP) algorithm to infer hidden
states and parameters. A Forney-style factor graph (FFG) was
employed to represent the factorized generative SLF-SSM.
The FFG provides an easily adaptable model description, from
which tabulated message updates were locally derived.

In contrast to previous work, the current approach allows
for convenient adaptation of model proposals with automated
updating of the state (and parameter) inference procedures.
SLF was described as a click-on model feature and can easily
be incorporated across a wide range of models. However, more
experiments are required to test the robustness of the VMP
approach to SLF in different modeling contexts.

Our approach builds on previous literature by its capacity to
estimate parameters of the stable distribution. Moreover, the
VMP algorithm can be adapted to online inference [21].

In more general terms, deriving algorithms through auto-
mated inference in generative probabilistic models is gaining
much interest in the machine learning community [22]. VMP
is one among many techniques that are currently under de-
velopment in the effort toward automated inference methods.
In this paper we showed by example that the probabilistic
modeling method also holds promise to advance algorithm
development for adaptive signal processing systems.

4
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APPENDIX

This appendix1 summarizes the non-standard variational
messages in Fig. 3. Variational message updates are computed
in accordance with [15], with shorthand notations for the mean

1Derivations are available at http://biaslab.github.io/pdf/slf/supplement.pdf

f(·) = Eq(·)[f(·)], covariance Cov[f(·)] = Covq(·)[f(·)], and
average energy U[f(·)] = −Eq(·)[log f(·)].

Bernoulli node

Table I summarizes the variational message updates for the
Bernoulli node, with switch z ∈ {0, 1} and parametrized by
π ∈ [0, 1] through node function f(z, π) = πz(1− π)1−z .

TABLE I
MESSAGE UPDATE RULES FOR THE BERNOULLI NODE

Berπ z

1
→

2
←

1 ∝ Ber

z∣∣∣∣∣ exp
(

log π
)

exp
(

log π
)

+ exp
(

log(1− π)
)


2 ∝ Beta(π|z̄ + 1, 2− z̄)

Gaussian mixture node

Table II summarizes the variational message updates for the
Gaussian mixture node, which mixes Gaussian models through
a switch z ∈ {0, 1} through the node function:

f(m1,W1, z,m2,W2,x) =

N
(
x|m1,W

−1
1

)z ×N (x|m2,W
−1
2

)1−z
.

For stabilized linear forgetting, the Gaussian mixture has two
Gaussian components.

TABLE II
UPDATE RULES FOR THE GAUSSIAN MIXTURE NODE

M
U
X

N

N

W2

6
←

m2

5
←

W1

3
←

m1

2
←

z 4↑

x

1
→

1 ∝ N
(
x|m̄1, (z̄W̄1)−1

)
×N

(
x|m̄2, ((1− z̄)W̄2)−1

)
2 ∝ N

(
m1|x̄, (z̄W̄1)−1

)
3 ∝ W(W1|V1, z̄ + d+ 1), with dimensionality d, and
V1 =

(
z̄
[

(m̄1 − x̄)(m̄1 − x̄)T + Cov[m1] + Cov[x]
])−1

4 ∝ Ber

z∣∣∣∣∣ exp
(
−U

[
N
(
x|m1,W

−1
1

)])
∑

i={1,2} exp
(
−U

[
N
(
x|mi,W

−1
i

)])


5 ∝ N
(
m2|x̄,

(
(1− z̄)W̄2

)−1
)

6 ∝ W(W2|V2, 2− z̄ + d), with
V2 =

(
(1− z̄)

[
(m̄2 − x̄)(m̄2 − x̄)T + Cov[m2] + Cov[x]

])−1

5


