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Abstract—This paper addresses the problem of implementing
robust and hyperparameter-free natural gradient variational
inference. Natural gradient methods are often employed in
variational inference strategies, which maximize a variational
lower bound on the model evidence. Generally, gradient-based
optimization algorithms require the user to pre-specify values
for hyperparameters such as step size and number of iterations.
Optimal values for these hyperparameters are problem-specific
and may significantly affect the algorithm’s performance. We
propose a model-aware optimizer that adaptively adjusts its step
size parameter. The proposed optimizer determines the necessary
number of iterations and evaluates the accuracy of the variational
approximation, compared to the actual posterior distribution,
using convergence diagnostics. We verify in this paper that the
proposed adaptive optimizer alleviates the fine tuning problem
with no manually initialized step size and a number of iterations.
The performance of the optimization results is reported using
the convergence diagnostics implemented within the proposed
optimizer.

Index Terms—Bayesian Diagnostics, Constrained Bayesian In-
ference, Exponential-family Distributions, Hyper-parameter Free
Optimization, Natural Gradient Variational Inference, Stochastic
Gradients

I. INTRODUCTION

WE address the problem of implementing robust and
hyper-parameter free natural gradient variational in-

ference. When exact Bayesian inference to find a posterior
distribution of a parameter is not tractable, an approximate
distribution for the posterior estimate is searched. Finding
this approximate posterior using optimization and through
variational calculus is known as variational inference [1].
Conjugate-computation variational inference (CVI) is a varia-
tional inference algorithm that uses stochastic gradients on the
non-conjugate term whereas using efficient conjugate compu-
tations on the conjugate term [2]. CVI is highly dependent
on the choice of hyper parameters, such as the step size
and the number of iterations. The optimal choice of these
hyper-parameters differs for each problem, so it requires fine
tuning, which is time consuming. This paper focuses on
developing an automatized optimizer by making modifications
to the CVI algorithm with already existing methods on the
variational inference literature and adding more heuristics to
the approaches when necessary. In this paper we will show:

• Limitations of vanilla implementations of the CVI algo-
rithm in Sec. II-C and how to address them in Sec. III.

• Methods to automate the inference process by auto-
matically determining proper step size and number of
iterations to prevent manual fine tuning in Sec. III-B and
Sec. III-C, respectively.

• How to evaluate the accuracy of our variational approxi-
mation in Sec. III-D.

II. CONJUGATE COMPUTATION VARIATIONAL INFERENCE

A. Variational Objective

In Bayesian inference, a model is specified as joint distri-
bution:

p(y, z) = p(y|z)p(z) (1)

where y stands for observations and z stands for latent
variables of the model. Having observed y, we can use the
Bayes rule to calculate the posterior distribution of latent
variables z as:

p(z|y) = p(y|z)p(z)∫
p(y|z)p(z) dz (2)

The problem is, the marginal likelihood term(∫
p(y|z)p(z) dz

)
might be intractable. This usually happens

when the prior term is not a conjugate prior to the likelihood..
p(z) is called a conjugate prior for the likelihood p(y|z) if
the posterior p(z|y) is in the same probability distribution
family as the prior distribution p(z) [3, Ch. 2].

A workaround would be to introduce another distribution
q(z) that will approximate the exact posterior p(z|y) [1]. Then
the marginal likelihood term can be rewritten as:

p(y) =

∫
p(y|z)p(z) dz =

∫
p(y|z)p(z)

q(z)
q(z) dz (3)

Using Jensen’s inequality [4], we obtain a lower bound on
the log-likelihood function, also known as the evidence lower
bound ELBO, given by the expression:

L[q] ≜
∫

log

(
p(y, z)

q(z)

)
q(z)dz = Eq

[
log

(
p(y, z)

q(z)

)]
. (4)

Our objective is to maximize L[q] with respect to our approx-
imate variational distribution q(z).

Note that ELBO L[q] is a functional, a function of functions,
in this setting, without further assumptions on q(z). In varia-
tional inference, we further assume a fixed-form variational
approximation qλ(z), parametrized by λ. Then, functional
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maximization problem reduces to maximization of a function
L(λ) with respect to its parameters. Thus, we are trying to
find optimal values for the parameters λ by the following
optimization problem:

max
λ∈Ω
L(λ) = Eq

[
log

(
p(y|z)p(z)

qλ(z)

)]

= Eq

[
log (p(y|z))− log

(
qλ(z)

p(z)

)] (5)

where Ω is the space of valid parameters [1].

B. CVI Algorithm

CVI method utilizes conjugate computations on the con-
jugate part of the model, whereas it computes the natural
gradients on the non-conjugate part of the model [2]. For
CVI, the variational approximation is chosen to be in the
minimal exponential family of distributions. A distribution
qλ(z) in the exponential family with natural parameters λ has
the probability density function of the following form:

qλ(z) = h(z) exp
(
ϕ(z)Tλ−A(λ)

)
(6)

where h(z) is the base measure, ϕ(z) is the sufficient statistics
vector and the A(λ) is the log-partition function. An exponen-
tial family representation is called minimal if the components
of the sufficient statistics vector are linearly independent [5,
Ch. 3] . We would assume that our prior distribution pλp(z)
is in the same minimal exponential family as the variational
approximation, with natural parameters λp. Thus, the conju-
gate part is the prior term pλp

(z), and the non-conjugate term
is the log-likelihood term p(y|z) . CVI algorithm updates the
parameters using a natural gradient descent approach:

λ← λ+ βĝ (7)

The natural gradient of the ELBO ĝ ≜ ∇mL is the
Euclidean gradient with respect to the expectation parameters
m ≜ Eq [ϕ(z)] and can also be computed as m = ∇λA(λ) for
minimal exponential family distributions. Calculating natural
gradients also give rise to local exponential-family approxima-
tions of the non-conjugate terms. Then, combining (5) and (7),
the natural gradient update for the CVI algorithm becomes:

λ← λ+ β [∇mEq [log (p(y|z))] + λp − λ] (8)

using the property that:

∇m

(
Eq

[
log

(
pλp(z)

qλ(z)

)])
= λp − λ. (9)

For more details about the derivation of (8), we refer the
interested reader to [2].

C. Considerations Using CVI

In CVI, the parameters of qλ(z) are updated using natural
gradients to optimize ELBO. Using such an approach comes
with practical considerations, such as:

• The update scheme does not take into account the con-
straints of the parameters by default. For example, the
precision parameter of a Gaussian distribution must be

positive-definite. Since there are no constraints on the
values of step size or the natural gradient vector can take,
this constraint may be violated in (8). The constraints are
addressed in Sec. III-A.

• Convergence of gradient-based methods are dependent on
the hyper-parameters, which are step size and the number
of iterations, and the optimal choice of these parameters
differ for different model specifications. CVI algorithm
does not offer any specification for these parameters.
Finding appropriate parameters for the step size and the
number of iterations are addressed in Sec. III-B and
Sec. III-C, respectively.

• After a given number of iterations, CVI algorithm does
not give information about the convergence of the param-
eters. A metric to evaluate the posterior approximation is
given in Sec. III-D.

III. ADAPTIVE OPTIMIZER DESIGN FOR CONSTRAINED
CVI

Our proposed optimizer addresses the problems mentioned
in Sec. II-C. We propose a modification to the CVI update
using existing methods in the variational inference literature
and adding more heuristics to the approaches when necessary.
The proposed optimizer is capable of initializing and updating
the hyper-parameters of the inference process, adapting to the
given model.

A. Handling Positive Definite Constraints of the Parameters

A modified version of the CVI update (8) is proposed in [6],
which is called the improved Bayesian Learning Rule (iBLR).
This update scheme handles the positive-definite constraints
of the valid parameter space when the approximation qλ(z)
attains a certain parameterization, which the authors call block-
coordinate natural parameterization(BCN). This modification
allows us to freely choose the step size parameter βt. For the
sake of completeness, we briefly summarize iBLR approach
below.

Let BCN parameters are denoted with λ and λ contains
blocks of parameters as λ = {λ[1], ...,λ[n]}. Let λai denote
the parameter at a−th entry of the i−th block parameter λ[i],
ĝci denote the c-th entry of natural gradient ĝi with respect
to λ[i]. Then, modified gradient ascent update takes the form:

λci ← λci + βtĝ
ci − β2

t

2

∑

ai

∑

bi

Γci
aibi

ĝai ĝbi (10)

where each summation is to sum over all entries of the i−th
block, Γci

aibi
:= 1

2∂mci
∂λai∂λbiA(λ) and mci is the c−th entry

of the expectation parameter m[i] := ∇λ[i]A(λ).
Note that (10) only differs from CVI update by the last

term −β2
t

2

∑
ai

∑
bi
Γci
aibi

ĝai ĝbi , which is to take the curvature
information in a Riemannian manifold into account. For some
of the BCN parameterizations, such as for the Gaussian
distribution, (10) can be efficiently applied. For the list of BCN
parameterizations in the exponential family of distributions,
their simplified update rules and the detailed derivation of their
update rules, see [6].
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B. Determining Step Size

In this section, a fast heuristic approach and an adaptive
method are presented to find an appropriate step size parameter
βt.

1) Inexact Line Search to Determine Step Size: To deter-
mine the step size, our optimizer uses an inexact line search
method, which is a heuristic approach. Note that inexact
line search inequality conditions used in Euclidean spaces
cannot be utilized directly since our parameter space induces
a Riemannian manifold. An adaptation of line search methods
to manifolds can be utilized, but the study of it is left for
future work.

Our heuristic approach searches for an appropriate step size
only for the first iteration to be computationally efficient.
Found step size is kept fixed throughout the optimization.

2) Adaptive Step Size: Adaptive step size approach is
based on [7], which is developed for stochastic variational
inference. Stochastic variational inference is used to scale
variational inference to models with large data sets by instead
of computing a batch gradient, a sample data from the data
set is used to calculate the gradient for its computational
efficiency. The proposed method determines the step size βt

such that it minimizes the expected distance between updated
parameters λt+1, where the update from λt to λt+1 is the
CVI update given in (7), and the updated parameters using
the whole batch λ∗, by minimizing the expectation of the
following cost function:

J(βt) = (λt+1(βt)− λ∗)
T (λt+1(βt)− λ∗) (11)

The cost function J is a function of step size βt through
λt+1 term and is a random variable since update from λt to
λt+1 includes the natural gradient term ĝt in (7). Thus, the
minimization is done for its expectation value E [J |λt], given
the current iterate λt. Minimizing the expectation yields the
optimal step size as:

β∗
t =

E[ĝt]TE[ĝt]
E[ĝtT ĝt]

(12)

and the expectations can be calculated using moving average
windows and they can be plugged in (12), to calculate βt

at each time step t. For the detailed derivation of the result,
see [7].

C. Determining the Number of Iterations

Convergence of CVI optimization scheme is highly depen-
dent on the number of iterations. Doing too many iterations
might result in unnecessary increase in the computation time,
whereas small number of iterations might result in premature
termination of the optimization process before convergence.
Unfortunately, there does not exist a specified number of
iterations, which is optimal for any optimization problem. But,
if the convergence of the parameters can be checked using
some diagnostics, we can come up with a stopping criteria
which will be used to terminate the optimization process.
In our proposed optimizer, a method based on tracking the

relative change of the variational objective L(λ), to determine
the stopping criterion is implemented.

This stopping criteria is similar to the Automatic Variational
Inference in Stan algorithm [8]. For a (optional) specified
number k ∈ Z+, the variational objective and the relative
change of variational objective is calculated. If one iteration
index at which the calculation occurred is T , then the relative
change for that step is calculated as:

∆LT = 100 ·
∣∣∣∣
L(λT )− L(λT−k)

L(λT−k)

∣∣∣∣ (13)

LT = Eq

[
log (p(y|z))− log

(
qλT

(z)

p(z)

)]
, (14)

and stored in a vector ∆Lvect = [...,∆LT−k,∆LT ]. Then,
the running mean and median of this vector is calculated and
compared to a threshold and the algorithm is terminated when
either of the criteria are satisfied.

Downside of this algorithm is that it can prematurely end
the optimization algorithm. This is shown with a simulated
example displayed in Fig. 1. The variational objective is Free
Energy, which is calculated as the negative of ELBO. As we
are using the relative change in the free energy, this algorithm
will be referred as ∆FE. Since there are no guarantees to
reduce the free energy in each step with a given step size,
simulated scenario involves an increase in the free energy
at first then it converges to a lower value after considerable
amount of iterations. The convergence algorithm ∆FE cal-
culates the relative change in the free energy and compares
the running mean and median to the threshold, which is set as
3%. Then, the algorithm would terminate prematurely, where
the termination point is shown with red dashed line in Fig. 1.

To solve this problem, we have defined a burn-in period
where the algorithm would not look for convergence until a
specified number of iterations are carried out or the initial
free energy decreases until a certain amount. With the latter
condition, the algorithm will not search for convergence before
the free energy decreases compared to the initial value, thus
skipping the points where the vanilla implementation would
prematurely terminate the optimization process.

D. Evaluating Variational Inference Using Generalized Pareto
Distribution

A diagnostic which can be used to assess the goodness of
the fit of variational distribution qλ(z) is fitting a generalized
pareto distribution to the largest importance ratios and looking
at the shape parameter k of the fitted distribution [9]. The
motivation to use such a diagnostic comes from importance
sampling literature [10, Ch. 9].

We treat our variational approximation qλ(z) as if it were
a proposal distribution in importance sampling. When the
proposal distribution qλ(z) is a poor approximation to the
target distribution p(z|y), the distribution of importance ratios
can have a heavy right tail [11]. Thus, checking if distribution
of importance ratios having a heavy tailed would indicate the
accuracy of our variational approximation.
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Fig. 1: A simulated example where ∆FE algorithm would
result in premature termination. The threshold is set as 3%
and the dashed line shows the termination point. Premature
termination prevents the algorithm to converge to a lower free
energy than the initial free energy.

A distribution used to model tails of another distribution
is generalized Pareto distribution. A generalized Pareto dis-
tribution with a shape parameter k has finite moments up
to the order 1/k. If the fitted importance ratios have more
than 2 finite moments, the convergence rate of the estimator
improves [11], then if we have k < 0.5, it can be concluded
that the variational distribution is close enough to the true
posterior. Empirical studies show the number of samples you
would need to have reliable estimators increases drastically
after k > 0.7 [11]. Thus, for the fitted values of 0.5 < k < 0.7,
the variational distribution can still be practically useful.

This diagnostic is used as follows in our optimizer: After
updating qλ(z) after a certain number of iterations, which can
be fixed or determined by a stopping criterion, S samples from
variational distribution are obtained and importance ratios are
calculated as:

rs(z) =
p(y|zs)p(zs)

qλ(zs)
(15)

where zs ∼ qλ(zs), i = 1, ..., S. Then, a generalized Pareto
distribution is fitted to M largest importance ratios, where M
is a function of S and fitted shape parameter k is reported.
If k > 0.7, the user is warned that the variational inference
may not have converged. For the negative values of k, it is
predicted that the importance ratios are bounded from above.
For detailed explanation of how to fit the generalized Pareto
distribution, we refer the interested reader to [12], and for more
details about the convergence properties of the generalized
Pareto distribution, we refer the interested reader to [11]
and [9].

E. Overall Algorithm

We have addressed the practical considerations of the vanilla
implementation of the CVI algorithm mentioned in Sec. II-C,
with the methods given in Sec. III. Using these methods,
we propose our adaptive optimizer in Algorithm 1 which
finds the appropriate step size using an adaptive step size
algorithm and tracks the relative change of the variational
objective to terminate the algorithm. Finally, the accuracy of
the approximation is diagnosed by fitting a generalized Pareto
distribution to the largest importance ratios.

Algorithm 1 Adaptive Optimizer for Constrained CVI using
Relative Change of Variational Objective

Define: Number of iterations of burn-in period: τ
Define: Mean threshold ϵ1
Define: Median threshold ϵ2
Define: Window size to evaluate the variational objective
W
Require: τ ,ϵ1,ϵ2,W
check = false
∆Lvect = []
for t=1,...,Tmax do

if t = 1 then
Compute F thr = L(λ0)

end if
Compute ĝ = ∇mL
Compute β via (12)
Compute λt via (10)
λ← λt

if t ≤ τ then
continue ▷ First additional heuristic

else if t mod W = 0 then
Compute L(λt)
if check = false and L(λt) ≥ F thr then

check = true ▷ Second additional heuristic
end if
if check = true then

Compute ∆Lt via Eq 13
Append ∆Lvect = [∆Lvect,∆Lt]
Compute mean m1 and median m2 of ∆Lvect

end if
if m1 ≤ ϵ1 or m2 ≤ ϵ2 then

break
end if

end if
end for
Sample zs, s = 1, ..., S from qλ(z)
Compute importance ratios rs, s = 1, ..., S via Eq 15
Fit generalized Pareto distribution to M largest importance
ratios and return shape parameter estimate k̂
if k̂ > 0.7 then

Warn user that variational inference may not have con-
verged.
end if
return λ
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IV. EXPERIMENTS

In this section, the experiment results on simulated examples
which investigate how the choice of step size and the number
of iterations affect the convergence of the variational distribu-
tion are shown. Motivation of using simulated examples is to
observe the behavior of the current algorithms with arbitrary
nonlinearities/functions to test their robustness.

A. First Experiment:Nonlinear Measurement Model

In the first experiment, the effect of the step size parameter
and the number of iterations is studied. The prior distribution
of the latent variable z is the Gaussian distribution. Observa-
tions y are also Gaussian distributed with known precision γ
and the mean parameter is a non-linear function g(·) of latent
variables z. The model is given as:

p(y | z) = N
(
y | g(z), γ−1

)
(16a)

p(z) = N
(
z | µp, S

−1
p

)
(16b)

The Gaussian prior and the measurement precision are set as:

µp = 0, S−1
p = 0.01, γ−1 = 0.01 ,

respectively.
The nonlinear expression g(·) is given as:

g(z) = −z3 · exp (−0.005 · |z|) (17)

A measurement ŷ = g(120) + ϵ, ϵ ∼ N (0, 1) is observed
and a variational approximation qλ(z), which is a Gaussian
distribution, of the true posterior p(z|ŷ) is calculated. The
selected variational objective to find qλ(z) is the free energy,
defined as the negative of the ELBO. Non-linearity g(z) is
selected such that g(120) evaluates to a large number, which
also tests numerical stability of the algorithms. For the given
nonlinearity g(·), the likelihood p(ŷ|z) has two local optima,
around z ≈ 120 and z ≈ 1716. Having a weak prior p(z), the
local variational approximation should converge to a Gaussian
distribution with mean around either of the local optima. The
posterior with mean value of 120 is the global optimum, since
it is closer to the prior, which has lower free energy than the
posterior with mean value of 1716, but the noisy estimate of
the expectation of the log-likelihood term makes it impossible
to distinguish the global optimum.

The parameters of variational approximation qλ(z) are op-
timized using both the CVI update rule with gradient descent
and Adam optimizers and the iBLR update rule. All optimiza-
tion schemes are tested with various number of iterations and
step size hyper-parameters. Step size parameters are set as
ssi = 10−i, i = 0, 1, ..., 10, number of iterations are set as
itrj = 10j , j = 1, 2, ..., 6 to cover a variety of hyperparameter
combinations. Then, for each point (ssi, itrj) in the hyper-
parameter space for all three update rules, we perform the
experiment with the same hyper-parameter configuration 10
times, and report the median value of 10 experiments.

Fig. 2 and Fig. 3 show the estimated posterior mean
parameter of the variational distribution qλ(z) using the iBLR
algorithm and the CVI algorithm with Descent optimizer,

respectively. Only the results that are in the vicinity of the
true posterior mean are shown in the figures, as failed cases
have arbitrarily large values and cannot be plotted on the same
graph. The results using CVI algorithm with Adam optimizer
are not shown since none of the 66 different configurations
of hyper-parameters yield a close approximation to the true
posterior mean.

As seen in Fig. 2 and Fig. 3, both iBLR and CVI algorithm
with Descent converge only for the cases where the step size
parameter is less than a certain threshold, which is 10−6 for
the iBLR case and 10−7 for the CVI case. Moreover, if the
user selects smaller step sizes, then the optimal number of
iterations varies.
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Fig. 2: Hyper-parameter sweep results using iBLR algorithm.
It is observed that using stepsizes larger than 10−6 yield in
algorithm to fail, whereas a certain number of iterations are
necessary if one uses very small step sizes, such as 10−10.
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Fig. 3: Hyper-parameter sweep results using CVI algorithm
with Descent optimizer. It is observed that using step sizes
larger than 10−7 yield in algorithm to fail, whereas a certain
number of iterations are necessary if one uses very small step
sizes, such as 10−10.

Fig. 4 shows the comparison of 3 optimization schemes with
a fixed step size of 10−7. It is observed that ADAM needs too
many samples for this problem to converge, which is more
than a million samples, whereas you would need much less
samples for the iBLR case and at least 100000 samples for
the CVI case to converge.

Fig. 2, Fig. 3 and Fig. 4 show how hyper-parameters affect
the inference performance. The optimal parameters varies with
every design choice, and finding suitable parameters requires
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Fig. 4: Comparison of three optimization schemes. It is
observed that the optimal number of iterations also changes
greatly depending on the optimization algorithm chosen.

tedious work. Our proposed optimization scheme relieves the
user of choosing step sizes and the number of iterations. We
used our proposed optimizer given in Algorithm 1 for the given
problem without any specifications on the initial step size or
how many iterations to perform. The step size is selected to be
determined by the heuristic based on the inexact line search
method in Sec III-B1 to see if the optimizer can propose
an appropriate step size for the problem. Initial step size is
determined as 7.62 · 10−6, which is an appropriate step size
according to the results of Fig 2, and the algorithm terminated
itself after 90000 iterations, converging to the value 120, which
is the mean parameter value minimizing the current variational
objective.

B. Second Experiment: Variational Message Passing

In the second example, variational message passing(VMP)
example introduced in [13] is studied. The model in [13] can
be formed using the same factorization in Eq. 16 with two
differences. First, the non-linear function g(·) is changed to
identity mapping, i.e., g(z) = z and we put a Gamma prior
on the measurement precision γ with the shape parameter a
and the rate parameter β. VMP example in [13] approximates
the posterior p(x, γ | y) with a variational approximation
q(x, γ). If we also assume mean-field factorization q(x, γ) =
qx(x)qγ(γ), the model is conditionally conjugate and VMP
algorithm updates the posterior parameters analytically. 5
observations are generated as:

yn = 15 + ϵ, ϵ ∼ N (0, 1) , n = 1, . . . , 5 (18)

Using VMP on the given problem setting resulted in the
posterior mean of z as µz = 14.938. We will take this result
as the ground truth and test our gradient-based algorithm’s
performance.

In the first experiment in Sec. IV-A, we have used our
heuristic line-search-based approach to find an appropriate step
size. In this example, we let our optimizer decide the step size
using adaptive step size algorithm mentioned in Section III-B2.

500 Monte Carlo simulations were performed and we cal-
culated the mean and variance of the estimate as µ̂z = 14.90
and σ2

µ̂z
= 0.40, respectively. As expected, the mean is in the

vicinity of the ground truth with a small variance value.

We also ran the algorithm using a fixed step size of 0.5
and 10−6 and we observe that even though we only needed
20 iterations using a step size of 0.5, we needed at least 106

iterations for the step size of 10−6. Even if the VMP model
is simple, it still shows how important the hyper-parameters
are for performance of the algorithm.

V. CONCLUSION

We illustrated the practical considerations of implementing
a natural gradient based variational inference optimization
and what can be done in order to automatize the hyper-
parameter tuning process, with their limitations. We proposed
an automated optimizer for conjugate computation variational
inference, which determines the initial step size, adaptation
of step size over the iterations and when to terminate the
inference procedure, along with diagnosing the accuracy of
the posterior approximation to the true posterior. Its working
principle can be improved by careful design of heuristics and
implementing more robust solutions from the literature. This
paper paves the way for a novel approach of gradient based
variational inference algorithms which has its own robust
convergence diagnostics and adaptive to the different types
of non-conjugate terms in the generative model.
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