
Efficient Model Evidence Computation in
Tree-structured Factor Graphs

Hoang M.H. Nguyen
TU Eindhoven

Eindhoven, Netherlands
m.h.n.hoang@tue.nl

Bart van Erp
TU Eindhoven

Eindhoven, Netherlands
b.v.erp@tue.nl

İsmail Şenöz
TU Eindhoven

Eindhoven, Netherlands
i.senoz@tue.nl

Bert de Vries
TU Eindhoven

Eindhoven, Netherlands
bert.de.vries@tue.nl

Abstract—Model evidence is a fundamental performance mea-
sure in Bayesian machine learning as it represents how well
a model fits an observed data set. Since model evidence is
often an intractable quantity, the literature often resorts to
computing instead the Bethe Free Energy (BFE), which for cycle-
free models is a tractable upper bound on the (negative log-)
model evidence. In this paper, we propose a different and faster
evidence computation approach by tracking local normalization
constants of sum-product messages, termed scale factors. We
tabulate scale factor update rules for various elementary factor
nodes and by experimental validation we verify the correctness
of these update rules for models involving both discrete and
continuous variables. We show how tracking scale factors leads
to performance improvements compared to the traditional BFE
computation approach.

Index Terms—Message Passing, Model Evidence, Probabilistic
Inference, Scale Factors

I. INTRODUCTION

Building probabilistic models to explain sets of observations
is at the core of machine learning, and model evidence is
a powerful metric to evaluate model performance in the
presence of data constraints [1]. The model evidence is the
main mechanism behind model comparison techniques such
as model selection, averaging [2] and combination [3]. Its
computation can be carried out by integrating or summing
over all latent variables. Unfortunately, this naive approach
often suffers from the curse of dimensionality and can lead to
an intractable calculation.

A generic strategy for model evidence computation is to
calculate Bethe free energy (BFE) [4], an approximation
of (negative log) model evidence. If a probabilistic model
submits to exact inference and is tree-structured, the BFE is
equal to the exact value of (negative log) evidence [5]–[7].
Calculating the BFE requires first computing the marginal
posterior distributions of all latent variables in the model,
before computing the actual model evidence. Despite the
generality of this approach, in certain applications, such as
event detection, we might only be interested in computing the
model evidence and do not wish to compute marginal posterior
distributions for efficiency considerations.

In this paper, we provide a different perspective on comput-
ing model evidence for belief propagation. More specifically,
we extend sum-product messages with scale factors to simul-
taneously track the local evolution of the model evidence and

posterior distributions. Our perspective is inspired from the
previous research performed in [8, Ch.6]. The scope of the
current paper limits to conjugate probabilistic models whose
underlying factor graph is a tree.

After motivating our perspective with a concrete example
where the general model evidence computation strategy, i.e.
computing BFE, is suboptimal in Section II, we make the
following contributions:

• In Section III-C, we introduce scale factors for the local
tracking of the normalization constant and tabulate new
scale factor message computation rules in Table I in
addition to the ones presented in [8, Ch.6]. These new
rules add to the already presented factor nodes involving
continuous variables and also extend towards factor nodes
involving discrete variables.

• The new update rules are verified in Section IV for
models containing both discrete and continuous variables.
The results are compared to the general BFE computation
strategy as specified in [5].

• We demonstrate how the use of scale factors results into
a more efficient model performance evaluation of models
submitting to exact inference in Section IV.

Section V discusses our approach and concludes the paper.

II. MOTIVATION

Bethe free energy (BFE) [4] has been shown as a generic
tractable objective for many message passing algorithms in
factor graphs. For example, [5] and [9] indicate that the
update rules of well-known algorithms, e.g. belief propagation
[10] and variational message passing [11], can be derived
by minimizing BFE with appropriate local constraints on the
marginal posterior distributions. Furthermore, BFE defines an
approximate bound to the (negative log-) model evidence, and
both of them are equal when a tree-structured model submits
to exact inference [5]–[7]. Therefore, BFE computation is
a generic approach to compute model evidence in machine
learning.

The BFE computation is a two-step procedure in which
marginal posterior distributions are first computed and then
the BFE. Thus, in the BFE approach, the inference process is
always carried out before computing the (approximate) model
evidence. For exact implementation details of this approach
we refer the interested reader to [5, Sec. 5].

978-1-6654-8524-1/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 W
or

ks
ho

p
on

 S
ig

na
l P

ro
ce

ss
in

g
Sy

st
em

s (
Si

PS
) |

 9
78

-1
-6

65
4-

85
24

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
SI

PS
55

64
5.

20
22

.9
91

92
50

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 07,2022 at 10:33:47 UTC from IEEE Xplore. Restrictions apply.

The BFE computation strategy, however, can be inefficient
in certain models. For example, in applications involving event
detection using fixed-lag smoothers, we are mainly interested
in the model evidence over a sliding window of data. If the
model suddenly badly predicts the data resulting in a drop
in the model evidence, we might speak of an event. The
probabilistic model for a fixed-lag smoother is defined as
follows

p(y, zt:t+T) = p(y1:t, zt)
T∏

τ=t+1

p(yτ | zτ) p(zτ | zτ−1),

where y
∆
= y1:T = [y1, . . . ,yT]

⊤ denotes a sequence of
observations and zt is the latent state. Using the BFE strategy
for this application is highly inefficient, especially for large
segments lengths and small step sizes, since the computation
of the BFE requires the smoothing over the latent states of the
entire segment, an operation which has to be performed for
every sliding window again.

In Section III, we present an efficient strategy of model
evidence computation for belief propagation in tree-structured
models. This strategy only requires one step to compute model
evidence, and thus is more suitable for applications which
mainly need the knowledge of model evidence.

III. METHODS

In this section, we first briefly review Forney-style factor
graphs and the sum-product algorithm [12], which encom-
passes belief propagation [10]. Next we introduce scale factors
and present our new message computation rules including
scale factors.

A. Forney-style factor graphs

Consider a factorizable function f that factorizes as
f(s) =

∏
a∈V

fa(sa), (1)

where sa refers to a set of factor-bound local variables such
that ∪asa = s. The individual factors fa are indexed by
a from the set of factor indices V and are assumed to be
integrable. Throughout this paper we will use Forney-style
factor graphs (FFGs) [13] with notational conventions adopted
from [14] to visualize these factorizable functions. An FFG
is a graphical model that visualizes the factorization of a
function as a graph, where nodes and edges represent factors
and variables, respectively. An edge connects to a node only
if the variable associated with the edge is an argument of the
function associated with the node.

B. Sum-product message passing

Consider the global integration of (1) over all variables
except for sj as

∫
f(s)ds\j

1. As a result of the assumed
factorization of f , this global integration can be performed
through a set of smaller local computations, which summa-
rize parts of the graph that has been integrated over. These

1Integrals are taken over the support of the variables. If a variable is discrete
valued, integral operators will be replaced with summation operators. For
simplicity, we use integral signs throughout the paper.

fa
→
µ⃗sj

(sj)

→
µ⃗
s
1 (s

1)

→
µ⃗sK

(sK
)

...

Fig. 1. A node fa(s1, s2, . . . , sj , . . . , sK). The sum-product message
µ⃗sj (sj) is specified by (2).

fa fb fd

fc

s1
→
µ⃗s1

(s1)

s2
→

µ⃗s2
(s2)

←
⃗µs2
(s2)

s3 ⃗µs3
(s3)↑

s4

Fig. 2. A Forney-style factor graph representation of the factorized function
in (3). The messages are specified in the example of Section III-B.

summaries are termed messages and are propagated along
the edges of the graph. These messages are denoted by µ
and can be locally computed on the graph. The sum-product
message µ⃗sj (sj) flowing out of the node fa(s1, s2, . . . , sK)
with incoming messages µ⃗sk(sk) is given by [12]

µ⃗sj (sj) =

∫
fa(s1, s2, . . . , sK)

∏
k ̸=j

µ⃗sk(sk) ds\j . (2)

Figure 1 visualizes this sum-product message computation
rule. We represent the edges by arbitrarily directed arrows in
order to distinguish between forward and backward messages
propagating in or against the direction of an edge sj as µ⃗sj (sj)
and ⃗µsj (sj), respectively. Following this approach, the global
integration reduces to the product of the messages of the
variable of interest as

∫
f(s)ds\j = µ⃗sj (sj) ⃗µsj (sj).

Example: Given a model f(s1, s2, s3, s4) with factorization
f(s1, s2, s3, s4) = fa(s1)fb(s1, s2)fc(s3)fd(s2, s3, s4) (3)

The FFG representation of (3) is shown in Fig. 2. We can
integrate over all variables except for s2 by executing

f(s2)=

∫
f(s1, s2, s3, s4)ds\2,

=

∫
fa(s1)︸ ︷︷ ︸
µ⃗s1 (s1)

fb(s1, s2)ds1

︸ ︷︷ ︸
µ⃗s2 (s2)

∫
fc(s3)︸ ︷︷ ︸

⃗µs3
(s3)

fd(s2, s3, s4)ds3ds4

︸ ︷︷ ︸
⃗µs2
(s2)

.

Here, the integration is decomposed into the product of nested
integrations, representing sum-product messages, as illustrated
in Figure 2.

C. Scale factors
The probability distribution p(s) of a model f(s) can be

computed as p(s) = f(s)/Z, where

Z =

∫
f(s)ds (4)

is the normalization constant, under the assumption that f(s)
is integrable. When f(s) is a probabilistic model constrained

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 07,2022 at 10:33:47 UTC from IEEE Xplore. Restrictions apply.

by observed data, the normalization constant is better known
as the model evidence. Often we are interested in calculating
the marginal distributions of the variables in our model,
for applications such as latent state tracking or parameter
estimation. The marginal distribution of sj can be computed as
p(sj) =

∫
p(s)ds\j . However, as the normalization constant

Z is not directly available, we instead compute the product

Zp(sj) =

∫
f(s)ds\j , (5)

where the normalization constraint of the marginal distribution
p(sj) allows for the retrieval of the normalization constant Z
of the entire model f(s) at the edge representing sj .

The literature on message passing-based inference is largely
focused on inferring the marginal distributions p(sj) only and
not on tracking Z (e.g. [15], [16]). This means that only
functions are propagated along the graph, often in the form
of (normalized) distributions. The normalization constant then
becomes a secondary objective which is often determined post-
hoc using the methodology as BFE.

However, we argue that the computation of the normaliza-
tion constant is an essential objective of probabilistic inference
for the simple reason that the posterior distributions are much
less useful for models with low evidence. Consequently, we
follow [8, Ch.6] to jointly update the marginal distributions
and the normalization constant using (5) through (2) by
tracking the scaling of the messages.

From that perspective, a message µ⃗sj (sj) can be decom-
posed as

µ⃗sj (sj) = β⃗sj p⃗sj (sj), (6)

where p⃗sj (sj) denotes the probability distribution representing
the normalized functional form of the message µ⃗sj (sj). The
term β⃗sj denotes the scaling of the message µ⃗sj (sj), also
known as the scale factor. Based on this definition, the
normalization constant of a tree-structured model f can be
computed at any edge in the corresponding FFG as follows
[8, Ch.6]

Z =

∫
µ⃗sj (sj) ⃗µsj (sj)dsj = β⃗sj

⃗βsj

∫
p⃗sj (sj) ⃗psj (sj)dsj .

(7)
The introduction of scale factors in the messages of (2)

allows for the automatable joint computation of the marginal
posterior distributions and the normalization constant using
message passing. Probabilistic inference can then be auto-
mated by deriving the message computation rules for specific
factor-message combinations, in which the scaling of the
messages is no longer neglected. The rules can be saved in
a look-up table and can be used to automatically perform
probabilistic inference in an arbitrary probabilistic model as
a result of the locality property of the sum-product algorithm.
The main contribution of this paper is Table I, in which we
have derived the message computation rules2 for various factor
nodes and message combinations as an extension to [8, Ch.6].

2All derivations of the message computation rules are available
at https://github.com/biaslab/SiPS2022-EfficientModelEvidenceComputation/
blob/main/sips2022 scalefactor supplement.pdf.

In the next section we will show the benefits of the scale factor
approach.

IV. EXPERIMENTS

In this section we describe a set of verification experiments3

of our newly derived message computation rules including
scale factors. Sections IV-A-IV-C formally introduce the three
probabilistic models used in the experiments, consisting of a
linear Gaussian state space model, a hidden Markov model and
a coin toss model. Finally, Section IV-D presents and discusses
the results.

All experiments have been performed using the scientific
programming language Julia [17] with the state-of-the-art
probabilistic programming package ReactiveMP.jl [18].
BenchmarkTools.jl [19] has been used for benchmark-
ing the different model evidence computation strategies. The
experiments were performed on an Intel Core i7-9750H Pro-
cessor with 32 GB of RAM running Windows 10 Enterprise.

A. Linear Gaussian state space model

The first probabilistic model concerns a linear Gaussian
state space model (LGSSM), defined as

p(y, z) = p(z0)
N∏

n=1

p(yn | zn)p(zn | zn−1),

with observed and latent variables y = [y1,y2, . . . ,yN]⊤ and
z = [z0, z1, . . . ,zN]⊤, respectively. N denotes the number of
observations. The individual factors are specified as

p(yn | zn) = N (yn | Bzn, P),

p(zn | zn−1) = N (zn | Azn−1, Q),

p(z0) = N (z0 | µz,Σz),

where N (x | µ, Σ) denotes the Gaussian distribution with
mean vector µ and covariance matrix Σ. The (square) state
transition and observation matrices are denoted by A and B,
respectively. P and Q represent the covariance matrices of the
observation and process noise, respectively. Finally µz and Σz

denote the parameters of the prior distribution of z0. In the
experiments of this model the latent and observed variables
are both set to be two-dimensional.

B. Hidden Markov model

The hidden Markov model (HMM) represents the second
probabilistic model, whose factorization is defined as

p(y, z) = p(z0)
N∏

n=1

p(yn | zn)p(zn | zn−1),

with observed and latent variables y = [y1,y2, . . . ,yN]⊤ and
z = [z0, z1, . . . ,zN]⊤, respectively. The individual factors are
defined as

p(yn | zn) = Cat(yn | Bzn),

p(zn | zn−1) = Cat(zn | Azn−1),

p(z0) = Cat(zo | πz),

3All experiments are available at https://github.com/biaslab/
SiPS2022-EfficientModelEvidenceComputation.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 07,2022 at 10:33:47 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MESSAGE COMPUTATION RULES FOR VARIOUS NODE-MESSAGE COMBINATIONS INVOLVING SCALE FACTORS. THE INCOMING MESSAGES ARE

CONSTRAINED TO BE PROPER PROBABILITY DISTRIBUTIONS AND IN PARTICULAR δ(·) DENOTES A PROPER REALIZATION OF THE STOCHASTIC PROCESS.

Factor node Incoming messages Outgoing messages

Berx →
µ⃗x(x)

←
⃗µx(x)

y→
µ⃗y(y)

←
⃗µy(y)

f(x, y) = Ber(y | x)

µ⃗x(x) = β⃗x Beta(x | a, b) µ⃗y(y) = β⃗x Ber

(
y
∣∣∣ a

a+ b

)

⃗µy(y) =
⃗βy δ(y − ŷ) ⃗µx(x) =

1

2
⃗βy Beta (x | ŷ + 1, 2− ŷ)

Catx →
µ⃗x(x)

←
⃗µx(x)

y→
µ⃗y(y)

←
⃗µy(y)

f(x,y) = Cat(y | x)

µ⃗x(x) = β⃗x Dir(x | π) µ⃗y(y) = β⃗x Cat

(
y
∣∣∣ π

∥π∥1

)

⃗µy(y) =
⃗βy δ(y − ŷ)

⃗µx(x) =
1

K!
⃗βy Dir(x | ŷ + 1)

where K = dimR(ŷ)

Catx →
µ⃗x(x)

←
⃗µx(x)

y→
µ⃗y(y)

←
⃗µy(y)

A

f(y,x,A) = Cat(y | Ax)

µ⃗x(x) = β⃗x Cat(x | π) µ⃗y(y) = β⃗x Cat(y | Aπ)

⃗µy(y) =
⃗βy Cat(y | π) ⃗µx(x) =

⃗βy ∥A⊤π∥1 Cat

(
x
∣∣∣ A⊤π

∥A⊤π∥1

)

Nx →
µ⃗x(x)

←
⃗µx(x)

V

y→
µ⃗y(y)

←
⃗µy(y)

f(y,x,V) = N (y | x,V)

µ⃗x(x) = β⃗xN (x |m,Σ) µ⃗y(y) = β⃗y N (y |m,Σ+V)

⃗µy(y) =
⃗βy N (y |m,Σ) ⃗µx(x) =

⃗βy N (x |m,Σ+V)

=x y

z

→
µ⃗x(x)

↓ µ⃗z(z)

→
µ⃗y(y)

f(x, y, z) = δ(y − x)δ(y − z)

The equality node is symmetric in
its arguments. The outgoing

messages ⃗µx(x) and ⃗µz(z) can
be computed similarly as µ⃗y(y)
by using the parameters of the 2
incoming messages on the other

edges.

µ⃗x(x) = β⃗x Beta(x | ax, bx)
µ⃗z(z) = β⃗z Beta(z | az , bz)

µ⃗y(y) = β⃗xβ⃗z
B(ay , by)

B(ax, bx)B(az , bz)
Beta(y | ay , by)

where ay = ax + az − 1 and by = bx + bz − 1

µ⃗x(x) = β⃗x Ber(x | πx)

µ⃗z(z) = β⃗z Ber(z | πz)

µ⃗y(y) = β⃗xβ⃗zaBer
(
y |

πxπz

a

)
where a = ((1− πx)(1− πz) + πxπz)

µ⃗x(x) = β⃗x Dir(x | πx)

µ⃗z(z) = β⃗z Dir(z | πz)

µ⃗y(y) = β⃗xβ⃗z
B(πy)

B(πx)B(πz)
Dir(y | πy)

where πy = πx + πz − 1

µ⃗x(x) = β⃗x Cat(x | πx)

µ⃗z(z) = β⃗z Cat(z | πz)
µ⃗y(y) = β⃗xβ⃗zπ

⊤
x πz Cat

(
y
∣∣∣πx ◦ πz

π⊤
x πz

)

µ⃗x(x) = β⃗x Gam(x | ax, bx)
µ⃗z(z) = β⃗z Gam(z | az , bz)

µ⃗y(y) = β⃗xβ⃗z
Γ(ay)b

ax
x baz

z

Γ(ax)Γ(az)b
ay
y

Gam(y | ay , by)

where ay = ax + az − 1 and by = bx + bz

µ⃗x(x) = β⃗xWp(x | Vx, nx)

µ⃗x(z) = β⃗zWp(z | Vz , nz)

µ⃗y(y) = β⃗xβ⃗z
B

A
W(y | Vy , ny)

where A = 2
p(nx+nz)

2 |Vx|
nx
2 |Vy |

ny
2 Γp

(nx

2

)
Γp

(ny

2

)
B = 2

p ny
2 |Vy |

ny
2 Γp

(ny

2

)
ny = nx + nz − p− 1; Vy =

(
V−1

x +V−1
z

)−1

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 07,2022 at 10:33:47 UTC from IEEE Xplore. Restrictions apply.

where Cat(x | π) =
∏K

k=1 π
xk

k denotes the categorical
distribution with event probabilities π = [π1, π2, . . . , πK]⊤,
with K denoting the number of categories. The modeled
variable x = [x1, . . . , xK]⊤ denotes a 1-of-K binary vector
with elements xk ∈ {0, 1}, constrained by

∑
k xk = 1 [1].

A and B denote the transition matrices, whose elements are
constrained to Aij ∈ [0, 1] and whose columns are also
constrained by

∑
i Aij = 1. In the experiments using this

model we set K = 3 for both the latent and observed variables.

C. Coin toss model

Lastly we introduce the coin toss model (CTM), which mod-
els the binary outcome of a coin toss. This model factorizes
as

p(y, θ) = p(θ)
N∏

n=1

p(yn | θ),

with outcomes y = [y1, y2, . . . , yN]⊤, where yn ∈ {0, 1}. θ
denotes the overall latent success probability. The factorization
is further specified by

p(yn | θ) = Ber(yn | θ),
p(θ) = Beta(θ | αθ, βθ),

where Ber(x | θ) denotes the Bernoulli distribution with
success probability θ ∈ [0, 1]. Beta(x | α, β) represents the
Beta distribution with shape parameters α, β ∈ R>0.

D. Results and benchmarks

For each of the models from Sections IV-A to IV-C data is
generated for N = {10, 100, 1000}. Using these observations
both the marginal distributions of the latent variables in the
model and the corresponding model evidence is calculated.
These quantities are computed simultaneously for the scale
factor approach. Here, the model evidence is available at all
edges in the graph. The Bethe free energy approach first
computes the marginal distributions and sequentially computes
the model evidence according to [5, Sec.5] Both approaches
are solely implemented in ReactiveMP.jl as it provides
superior performance with respect to alternative probabilistic
programming packages such as ForneyLab.jl [20] or
Turing.jl [21] as demonstrated in [18].

The computed model evidences are presented in Table II
for all three model and different values of N , accompanied
by the duration of their computations. For numerical stability
we report the natural logarithm of the model evidence in both
cases. Table II shows that both the approaches of Section III-C
and BFE return the same value of the model evidence. Further-
more, we observe a decrease in run-time of 58.3%, averaged
over the different models and values of N . This improvement
illustrates the usefulness and applicability of scale factors for
computing the model evidence for purposes such as model
comparison or selection.

V. DISCUSSION AND CONCLUSIONS

For most applications involving scale factors where numer-
ous observations are present, it is beneficial to propagate the
logarithms of the scale factors instead of the scale factors

themselves. This creates a more numerically stable algorithm
that is less prone to exceed the maximum and minimum
values of the floating points number representing the scale
factor. Consequently, the update rules for the scale factors will
involve summations instead of product, possibly simplifying
some update rules.

The current approach is tailored for probabilistic model
without loops submitting to tractable exact inference. Inter-
esting directions for future research are to extend the current
methodology to models with loops and to models that employ
alternative inference procedures based on constrained Bethe
free energy minimization [5], such as (structured) variational
message passing [11], [22], expectation propagation [23] and
expectation maximization [24].

This paper has extended the set of scale factor update
rules in [8, Ch.6] to factor nodes involving discrete random
variables. These update rules can be used as an extension
to conventional message passing-based probabilistic inference
algorithms, allowing for the automatable computation of the
model evidence in probabilistic models submitting to exact
inference. The automated model evidence computation strat-
egy using scale factors has been implemented as an extension
to the probabilistic programming package ReactiveMP.jl.
Here, we highlighted the benefits of scale factors in terms of
computational speed with respect to the universal Bethe free
energy computation strategy for the model evidence. Inference
run times for three different probabilistic model for a varying
number of observations are benchmarked, demonstrating an
average computation speed increase of 58.3%.

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. Springer-
Verlag New York, Inc., 2006. [Online]. Available: http://www.springer.
com/computer/image+processing/book/978-0-387-31073-2

[2] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian
Model Averaging: A Tutorial,” Statistical Science, vol. 14, no. 4, pp.
382–401, 1999, publisher: Institute of Mathematical Statistics. [Online].
Available: https://www.jstor.org/stable/2676803

[3] K. Monteith, J. L. Carroll, K. Seppi, and T. Martinez, “Turning Bayesian
model averaging into Bayesian model combination,” in The 2011 Inter-
national Joint Conference on Neural Networks, San Jose, CA, USA, Jul.
2011, pp. 2657–2663, iSSN: 2161-4407.

[4] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Bethe free energy, Kikuchi
approximations, and belief propagation algorithms,” Advances in neural
information processing systems, vol. 13, p. 24, 2001.

[5] İ. Şenöz, T. van de Laar, D. Bagaev, and B. de Vries, “Variational
Message Passing and Local Constraint Manipulation in Factor Graphs,”
Entropy, vol. 23, no. 7, p. 807, Jul. 2021, number: 7 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/1099-4300/23/7/807

[6] M. J. Wainwright and M. I. Jordan, “Graphical Models, Exponential
Families, and Variational Inference,” Foundations and Trends® in
Machine Learning, vol. 1, no. 1–2, pp. 1–305, Nov. 2008. [Online].
Available: https://www.nowpublishers.com/article/Details/MAL-001

[7] M. Chertkov and V. Y. Chernyak, “Loop Calculus in Statistical
Physics and Information Science,” Physical Review E, vol. 73,
no. 6, Jun. 2006, arXiv: cond-mat/0601487. [Online]. Available:
http://arxiv.org/abs/cond-mat/0601487

[8] C. Reller, “State-Space Methods in Statistical Signal Processing: New
Ideas and Applications,” Ph.D. dissertation, ETH Zurich, 2012.

[9] D. Zhang, W. Wang, G. Fettweis, and X. Gao, “Unifying Message
Passing Algorithms Under the Framework of Constrained Bethe Free
Energy Minimization,” arXiv:1703.10932 [cs, math], Mar. 2017, arXiv:
1703.10932. [Online]. Available: http://arxiv.org/abs/1703.10932

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 07,2022 at 10:33:47 UTC from IEEE Xplore. Restrictions apply.

. . . A N = . . .

B

N

zn−1

Q

zn

yn

P

. . . Cat = . . .

Cat

zn−1

A

zn

B

yn

Beta

=

Ber

=

Ber

. . .

θ

y1 y2

Fig. 3. Factor graph representation of the different model used throughout the experiments. (left) Single time slice of the linear Gaussian state space model
of Section IV-A. (middle) Single time slice of the hidden Markov model of Section IV-B. (right) Two observations of the coin toss model of Section IV-C.

TABLE II
OVERVIEW OF THE OBTAINED (LOG) MODEL EVIDENCES AND CORRESPONDING MEDIAN RUNTIMES FOR THE MODELS SPECIFIED IN SECTION IV. THE

RESULTS ARE PRESENTED FOR BOTH THE BETHE FREE ENERGY COMPUTATIONS AND THE PROPOSED SCALE FACTORS OF SECTION III-C. THE FASTEST
RUNTIME IS PRESENTED IN BOLD.

model LGSSM HMM CTM

N 10 100 1000 10 100 1000 10 100 1000

Bethe free
energy

ln p(ŷ) [nats] -6.54e1 -6.37e2 -6.53e-3 -1.08e1 -1.05e2 -1.06e3 -7.35e0 -5.76e1 -6.17e2
runtime [ns] 2.57e5 2.84e6 3.65e7 9.66e4 9.82e5 1.53e7 2.83e4 2.45e5 3.78e6

scale
factors

ln p(ŷ) [nats] -6.54e1 -6.37e2 -6.53e3 -1.08e1 -1.05e2 -1.06e3 -7.35e0 -5.76e1 -6.17e2
runtime [ns] 1.30e5 1.49e6 2.03e7 4.16e4 4.71e5 8.37e6 6.96e3 6.79e4 6.99e5

[10] J. Pearl, “Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach,” in Proceedings of the Second AAAI Conference
on Artificial Intelligence, ser. AAAI’82. Pittsburgh, Pennsylvania:
AAAI Press, 1982, pp. 133–136. [Online]. Available: http://www.aaai.
org/Papers/AAAI/1982/AAAI82-032.pdf

[11] J. Winn and C. M. Bishop, “Variational Message Passing,” Journal
of Machine Learning Research, vol. 6, no. 23, pp. 661–694, 2005.
[Online]. Available: http://jmlr.org/papers/v6/winn05a.html

[12] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Transactions on information
theory, vol. 47, no. 2, pp. 498–519, 2001. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=910572

[13] G. Forney, “Codes on graphs: normal realizations,” IEEE Transactions
on Information Theory, vol. 47, no. 2, pp. 520–548, Feb. 2001. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/910573

[14] H.-A. Loeliger, “An introduction to factor graphs,” Signal Processing
Magazine, IEEE, vol. 21, no. 1, pp. 28–41, Jan. 2004. [Online].
Available: https://ieeexplore.ieee.org/document/1267047

[15] R. J. Drost and A. C. Singer, “Factor-Graph Algorithms for
Equalization,” IEEE Transactions on Signal Processing, vol. 55,
no. 5, pp. 2052–2065, May 2007. [Online]. Available: http:
//ieeexplore.ieee.org/document/4156381/

[16] S. Korl, H. Loeliger, and A. Lindgren, “AR model parameter
estimation: from factor graphs to algorithms,” in 2004 IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. 5. Montreal, Que., Canada: IEEE, 2004, pp. V–509–12. [Online].
Available: http://ieeexplore.ieee.org/document/1327159/

[17] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, “Julia: A Fresh
Approach to Numerical Computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, Jan. 2017. [Online]. Available: https://epubs.siam.org/doi/abs/
10.1137/141000671

[18] D. Bagaev and B. de Vries, “Reactive Message Passing for Scalable
Bayesian Inference,” arXiv:2112.13251 [cs], Dec. 2021, arXiv:

2112.13251. [Online]. Available: http://arxiv.org/abs/2112.13251
[19] J. Chen and J. Revels, “Robust benchmarking in noisy environments,”

arXiv:1608.04295 [cs], Aug. 2016, arXiv: 1608.04295. [Online].
Available: http://arxiv.org/abs/1608.04295

[20] M. Cox, T. van de Laar, and B. de Vries, “A factor graph approach
to automated design of Bayesian signal processing algorithms,”
International Journal of Approximate Reasoning, vol. 104, pp. 185–
204, Jan. 2019. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0888613X18304298

[21] H. Ge, K. Xu, and Z. Ghahramani, “Turing: A Language for
Flexible Probabilistic Inference,” in International Conference on
Artificial Intelligence and Statistics, Mar. 2018, pp. 1682–1690,
iSSN: 1938-7228 Section: Machine Learning. [Online]. Available:
http://proceedings.mlr.press/v84/ge18b.html

[22] J. Dauwels, “On Variational Message Passing on Factor Graphs,” in
IEEE International Symposium on Information Theory, Nice, France,
Jun. 2007, pp. 2546–2550. [Online]. Available: http://ieeexplore.ieee.
org/abstract/document/4557602

[23] T. P. Minka, “Expectation Propagation for Approximate Bayesian
Inference,” in Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, ser. UAI’01. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2001, pp. 362–369. [Online].
Available: http://dl.acm.org/citation.cfm?id=2074022.2074067

[24] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation maximization as
message passing,” in International Symposium on Information Theory,
2005. ISIT 2005. Proceedings, Sep. 2005, pp. 583–586.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on November 07,2022 at 10:33:47 UTC from IEEE Xplore. Restrictions apply.

