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We introduce reactive message passing (RMP) as a framework for executing schedule-free, scalable, and, potentially, more robust
message passing-based inference in a factor graph representation of a probabilistic model. RMP is based on the reactive
programming style, which only describes how nodes in a factor graph react to changes in connected nodes. We recognize reactive
programming as the suitable programming abstraction for message passing-based methods that improve robustness, scalability,
and execution time of the inference procedure and are useful for all future implementations of message passing methods. We also
present our own implementation ReactiveMP.jl, which is a Julia package for realizing RMP throughminimization of a constrained
Bethe free energy. By user-defned specifcation of local form and factorization constraints on the variational posterior dis-
tribution, ReactiveMP.jl executes hybrid message passing algorithms including belief propagation, variational message passing,
expectation propagation, and expectation maximization update rules. Experimental results demonstrate the great performance of
our RMP implementation compared to other Julia packages for Bayesian inference across a range of probabilistic models. In
particular, we show that the RMP framework is capable of performing Bayesian inference for large-scale probabilistic state-space
models with hundreds of thousands of random variables on a standard laptop computer.

1. Introduction

In this paper, we develop a reactive approach to Bayesian
inference on factor graphs. We provide the methods,
implementation aspects, and simulation results of message
passing-based inference realized by a reactive programming
paradigm. Bayesian inference methods facilitate the re-
alization of a very wide range of useful applications, but in
our case, we are motivated by our interest in the execution of
real-time Bayesian inference in state-space models with data
streams that potentially may deliver an infnite number of
observations over an indefnite period of time.

Te main idea of this paper is to combine message
passing-based Bayesian inference on factor graphs with
a reactive programming approach to build a foundation for
an efcient, scalable, adaptable, and robust Bayesian in-
ference implementation. Efciency implies less execution
time and less memory consumption than alternative ap-
proaches; scalability refers to running inference in large
probabilistic models with possibly hundreds of thousands of

random variables; adaptability implies real-time in-place
probabilistic model adjustment, and robustness relates to
protection against failing sensors and missing data. We
believe that the proposed approach, which we call Reactive
Message Passing (RMP), will lubricate the transfer of re-
search ideas about Bayesian inference-based agents to real-
world applications. To that end, we have developed and also
present ReactiveMP.jl, which is an open-source Julia
package that implements RMP on a factor graph repre-
sentation of a probabilistic model. Our goal is that Reac-
tiveMP.jl grows to support practical, industrial applications
of inference in sophisticated Bayesian agents and hopefully
will also drive more research in this area.

In Section 2, we motivate the need for RMP by analyzing
some weaknesses of alternative approaches. Section 3 re-
views the background knowledge on message passing-based
inference on factor graphs and variational Bayesian in-
ference as a constrained Bethe free energy optimization
problem. Te rest of the paper discusses our main
contributions:
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(i) In Section 4, we present the idea of reactive message
passing as a way to perform event-driven reactive
Bayesian inference by message passing in factor
graphs. RMP is a surprisingly simple idea of
combining two well-studied approaches from dif-
ferent felds: message passing-based Bayesian in-
ference and reactive programming.

(ii) In Section 5, we present an efcient and scalable
implementation of RMP for automated Bayesian
inference in the form of the ReactiveMP.jl package
for the Julia programming language. We also in-
troduce a specifcation language for the probabilistic
model and inference constraints;

(iii) In Section 6, we benchmark the ReactiveMP.jl on
various standard probabilistic signal processing
models and compare it with existing message
passing-based and sampling-based Bayesian in-
ference implementations. We show that our new
implementation scales easily for selected models
that include hundreds of thousands of random
variables on a regular MacBook Pro laptop com-
puter. For these models, in terms of execution time,
memory consumption, and scalability, the proposed
RMP implementation Bayesian inference out-
performs the existing solutions by hundreds of
orders of magnitude and takes roughly a couple of
milliseconds or a couple of minutes depending on
the size of a data set and a number of random
variables in a model.

Finally, in Section 7, we discuss work-in-progress and
potential future research directions.

2. Motivation

Open access to efcient software implementations of strong
mathematical or algorithmic ideas often leads to sharply
increasing advances in various practical felds. For example,
backpropagation in artifcial neural networks stems from at
least the 1980s, but practical applications have skyrocketed
in recent years due to new solutions in hardware and cor-
responding software implementations such as TensorFlow
[1] or PyTorch [2].

However, the application of Bayesian inference for real-
world signal processing problems still remains a big chal-
lenge. If we consider an autonomous robot that tries to fnd
its way in new terrain, we would want it to reason about its
environment in real time as well as to be robust to potential
failures in its sensors. Furthermore, the robot preferably has
the ability to not only adapt to new observations but also to
adjust its internal representation of the current environment
in real time. Additionally, the robot will have limited
computational capabilities and should be energy-efcient.
Tese issues form a very challenging barrier in the de-
ployment of real-time Bayesian inference-based synthetic
agents to real-world problems.

In this paper, our goal is to build a foundation for a new
approach to efcient, scalable, and robust Bayesian inference
in state-space models and release an open-source toolbox to

support the development process. By efciency, we imply the
capability of performing real-time Bayesian inference with
a limited computational and energy budget. By scalability,
we mean that inference execution is performed to an ac-
ceptable accuracy with limited resources even if the model
size and number of latent variables are very large. Ro-
bustness is also an important feature, by which we mean that
if the inference system is deployed in a real-world setting,
then it needs to stay continually operational even if part of
the system collapses.

We propose a combination of message passing-based
Bayesian inference on Forney-style factor graphs and the
reactive programming approach, which, to our knowledge, is
less well known and new in the message passing literature.
Our approach is inspired by the neuroscience community
and the Free Energy Principle [3] because the brain is a good
example of a working system that already realizes robust and
real-time Bayesian inference at a large scale for a small
energy consumption budget.

2.1. Message Passing. Generative models for complex real-
world signals such as speech or video streams are often
described by highly factorized probabilistic models with
sparse structure and few dependencies among latent variables.
Bayesian inference in such models can be performed ef-
ciently by message passing on the edges of factor graphs. A
factor graph visualizes a factorized representation of a prob-
abilistic model where edges represent latent variables, and
nodes represent functional dependencies among these vari-
ables. Generally, as the models scale up to include more latent
variables, the fraction of direct dependencies among latent
variables decreases, and as a result, the factor graph becomes
sparser. For highly factorized models, efcient inference can
be realized by message passing, as it naturally takes advantage
of the conditional independencies among variables.

State-of-the-art Bayesian inference algorithms based on
message passing are traditionally designed with the notion of
a globally fxed message passing schedule [4]. Te presence
of a fxed message passing update schedule comes with
a number of disadvantages relative to a reactive system
architecture. We rehearse a few issues as follows:

(i) Unpredictable or diferent update rates in multiple
sensor data streams. Consider a model that expects
streaming data from two diferent sensors that may
produce samples at diferent update rates or with
unpredictable delays. In this case, a consistent and
robust implementation of a fxed message passing
schedule is not suitable.

(ii) Robust operability. In many signal processing ap-
plications, we would like to be robust against
missing data from a failing sensor. Technically,
a failing sensor implies a model structure update
that would require a temporary system reset to
recompute an appropriate global message passing
schedule. A reactive system does not need this reset
since it does not rely on a message passing schedule
that is tightly linked to the model structure.
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(iii) Lazy computations. A fxed global schedule does not
support executing operations “lazily” and on-
demand in diferent parts of the graph as soon as
data arrive. Instead, when the external world
changes, the message passing schedule should adapt
accordingly. A reactive system does not rely on
a schedule and automatically only computes mes-
sage updates when they are needed.

(iv) Computational complexity. Building an efcient
fxed schedule for a large graph with conditional
loops is an extremely hard problem that consumes
a signifcant amount of computer resources because
it requires a full traversal of the model’s graph.

(v) Which schedule is optimal? Tere are a number of
papers that debate the merits of various strategies
for building message passing schedules is better
[5–7]. However, the problem lies in fxing the
schedule per se.Te world may change and is always
to some degree unpredictable. Since the objective of
backward message passing is to absorb (squeeze)
prediction errors, a proper schedule cannot be fxed
a priori.

While specialized fxed schedule schemes can be highly
benefcial in some circumstances [8], in the current paper,
we investigate a diferent implementation paradigm, which
does not require explicit scheduling and comes with
a number of additional benefts.

2.2.ReactiveProgramming. In this paper, we provide a fresh
look at message passing-based inference from an imple-
mentation point of view. We explore the feasibility of using
the reactive programming (RP) paradigm [9] as a solution
to the problems mentioned above. Essentially, RP supports
running computations by dynamically reacting to changes
in data sources, thus eliminating the need for a pre-
computed synchronous message update scheme. Te
benefts of using RP for diferent problems have been
studied in various felds from physics simulations [10] to
neural networks [11] and probabilistic programming as
well [12]. We recognize the RP paradigm as the suitable
programming abstraction for message passing algorithms
and propose a new reactive version of the message passing
framework, which we simply call Reactive Message Passing
(RMP). Te new framework is designed to run without any
prespecifed schedule, autonomously reacts to changes in
data, scales to large probabilistic models with hundreds of
thousands of unknowns, and, in principle, allows for more
advanced features, such as run-time probabilistic model
adjustments, parallel inference execution, and built-in
support for asynchronous data streams with diferent
update rates.

To support further development, we present our own
implementation of the RMP framework in the form of
a software package for the Julia programming language
called ReactiveMP.jl. We show empirical results and
benchmarks of the new implementation for diferent
probabilistic models including a Gaussian linear

dynamical system, a hidden Markov model, and a non-
conjugate hierarchical Gaussian flter model. More ex-
amples, including regression models, mixture models,
autoregressive models, normalizing fow models, real-
time processing, update rules based on the expectation
propagation algorithm, and others are available in the
ReactiveMP.jl repository on GitHub. In addition, our
implementation has already been tested in battle on so-
phisticated large-scale models with real-world data sets
[13–16].

3. Background

Tis section frst briefy introduces message passing-based
exact Bayesian inference on Forney-style factor graphs.
Ten, we extend the scope to approximate Bayesian in-
ference by variational message passing based on the mini-
mization of the constrained Bethe free energy.

3.1. Forney-Style FactorGraphs. In our work, we use Forney-
style factor graphs (FFG) to represent and visualize con-
ditional dependencies in probabilistic models [17–19], but
the concept of RMP should be compatible with all other
graph-based model representations.

An FFG is an undirected graph with nodes a ∈ V and
edges i ∈ E that can be used to represent a factorized
function

p(s) � 􏽙
a∈V

pa sa( 􏼁, (1)

where pa are positive functions, and sa ∈ s are sets of ar-
gument variables for each pa. Each node a is associated with
a corresponding factor pa, and each edge i is associated with
one and only one variable si ∈ s. An edge i is connected to
a node a if and only if si ∈ sa. We use (see Figure 1) square
boxes with letters f, g, and h to represent factors, together
with the edges and associated letters x, z, si, y etc. to
represent variables.

Troughout the paper, we fnd it convenient to work
with Terminated FFGs (TFFG) that do not contain half-
edges; i.e., each edge is connected to two nodes. Tis re-
striction does not afect the class of representable functions
since each dangling edge si in an FFG can be terminated by
a factor p(si) � 1 without changing the global function. In
all of our examples, we assume a TFFG representation unless
stated otherwise.

3.2. Inference by Message Passing. We consider a probabi-
listic model with probability density function (pdf) p(s, y) �

p(y | s)p(s) where y represents observations and s repre-
sents latent variables. Te general goal of Bayesian inference
is to estimate the posterior probability distribution
p(s | y � 􏽢y). Often, it is also useful to estimate marginal
posterior distributions

p si

􏼌􏼌􏼌􏼌 y � 􏽢y􏼐 􏼑 � 􏽚 p(s | y � 􏽢y)ds∖i, (2)
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for the individual components si of s. In the case of discrete
states or parameters, the probability density function is
replaced by a probability mass function (pmf), and the
integration is replaced by a summation.

In high-dimensional spaces, the computation of (2)
quickly becomes intractable due to an exponential explosion
of the size of the latent space [20]. Te TFFG framework
provides a convenient solution for this problem. As a simple
example, consider the factorized distribution

p(x, θ | y � 􏽢y)∝f(θ) · g(x, θ) · h(y, x) · δ(y − 􏽢y), (3)

where f, g, and h are positive functions, x and θ are latent
variables, y � 􏽢y is observed, and δ(·) denotes either a Kro-
necker delta or a Dirac delta, depending on the context. Te
underlying factorization of p allows the application of the
algebraic distributive law, which simplifes the computation
of (2) to a nested set of lower-dimensional integrals, as
shown in (4), efectively reducing the exponential com-
plexity of the computation to linear. Tis model can be
represented by a TFFG shown in Figure 1, and each nested
integral can be interpreted as a message that fows on the
edges among nodes.

p(x | y � 􏽢y)∝ 􏽚 􏽚 p(x, y, θ) · δ(y − 􏽢y)dydθ �

� 􏽚 f(θ)
􏽼√􏽻􏽺√􏽽
μf⟶θ(θ)

g(x, θ)dθ
􏽺√√√√√√√√􏽽􏽼√√√√√√√√􏽻

μg⟶ x(x)

· 􏽚 h(y, x)δ(y − 􏽢y)
􏽺√√√􏽽􏽼√√√􏽻
μy⟶h(y)

dy
􏽼√√√√√√√√√􏽻􏽺√√√√√√√√√􏽽

μh⟶x(x)

.

(4)

Te resulting marginal p(x | y � 􏽢y) in (4) is simply equal
to the product of two incoming (or colliding) messages on
the same edge, divided by the normalization constant

p(x | y � 􏽢y) �
μg⟶x(x) · μh⟶x(x)

􏽒 μg⟶x(x) · μh⟶x(x)dx
. (5)

Tis procedure for computing a posterior distribution is
known as the Belief Propagation (BP) or Sum-Product (SP)
message passing algorithm, and, generally, it requires only
the evaluation of low-dimensional integrals over local var-
iables. In some situations, for example, when all messages
μxi⟶ f(xi) have the form of a Gaussian distribution and the
factors are linear, it is possible to use closed-form analytical
solutions for the messages. Tese closed-form formulas are
also known as message update rules.

3.3. Variational Bayesian Inference. Inference problems in
practical models often involve computing messages in (5)
that are difcult to evaluate analytically. In these cases, we
may resort to approximate Bayesian inference solutions
with the help of variational Bayesian inference methods
[21–23]. In general, the variational inference procedure
introduces a variational posterior q(s) ∈ Q that acts as an
approximate distribution to the Bayesian posterior
p(s | y � 􏽢y). Te set Q is called a variational family of
distributions. Typically, in variational Bayesian inference
methods, the aim is to minimize the variational free
energy (VFE) functional

F[q]≜ 􏽚 q(s)log
q(s)

p(s | y � 􏽢y)
ds

􏽼√√√√√√√√√√􏽻􏽺√√√√√√√√√√􏽽
KL[q(s)‖p(s | y�􏽢y)]

−logp(y � 􏽢y),
(6)

q
∗
(s) � argmin

q(s)∈Q
F[q]. (7)

In most cases, additional constraints on the set Q make
the optimization task (7) computationally more efcient
than the belief propagation but only give an approximate
solution for (2). Te literature distinguishes two major types
of constraints on Q: form constraints and factorization
constraints [24]. Form constraints force the approximate
posterior q(s) or its marginals qi(si) to be of a specifc
parametric functional form, for example, a Gaussian dis-
tribution q(s) � N(s | μ,Σ). Factorization constraints in the
posterior q(s) introduce additional conditional in-
dependence assumptions that are not present in the gen-
erative model p(y, s).

3.4. Constrained Bethe Free Energy Minimization. Te VFE
optimization procedure in (7) can be framed as a message
passing algorithm, leading to the so-called Variational
message passing (VMP) algorithm. A very large set of
message passing algorithms, including BP and VMP, can
also be interpreted as VFEminimization augmented with the
Bethe factorization assumption

q(s) � 􏽙
a∈V

qa sa( 􏼁 􏽙
i∈E

qi si( 􏼁
−1

, (8a)

􏽚 qi si( 􏼁dsi � 1, ∀i ∈ E, (8b)

􏽚 qa sa( 􏼁dsa � 1, ∀a ∈ V, (8c)

􏽚 qa sa( 􏼁dsa\i � qi si( 􏼁, ∀a ∈ V,∀i ∈ a, (8d)

on the setQ [25]. In (8a),E is a set of variables in a model,V
is a set of factors fa in the corresponding TFFG, (sa, ya) is
a set of (latent and observed, respectively) variables con-
nected to the corresponding node of fa, qa(sa) refers to
a variational posterior for factor fa(sa, ya), and qi(si) is
a variational posterior for marginal p(si | y � 􏽢y).

f
θ

μf→θ (θ)

μh→x (x)

μg→x (x) μy→h (y)
g x h

y

Figure 1:Temessage passing scheme for (3).Te factors f, g, and
h are represented by nodes and the variables θ, x, and y are as-
sociated with edges. Te small black node indicates that y has been
observed and the posterior for y is therefore clamped to its ob-
served value 􏽢y. Technically, one can interpret the small black node
as an additional factor δ(y − 􏽢y) that extends the original model.
Each nested integral in (3) can be interpreted as a message that
fows between nodes on the TFFG.
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We refer to the Bethe-constrained variational familyQ as
QB. Te VFE optimization procedure in (8a) with Bethe
assumption of (8a)–(8d) and extra factorization and form
constraints for the local variational distributions qa(sa) and
qi(si) is called the constrained Bethe free energy (CBFE)
optimization procedure. Many of the well-known message
passing algorithms, including belief propagation, message
passing-based expectation maximization, structured VMP,
and others, can be framed as CBFE minimization tasks
[26, 27]. Moreover, diferent message passing algorithms in
a TFFG can be straightforwardly combined [24], leading to
a very large set of possible hybrid message passing-based
algorithms. All these hybrid variants still allow for a proper
and consistent interpretation by performing message
passing-based inference through CBFE minimization. Tus,
the CBFE minimization framework provides a principled
way to derive new algorithms within message passing-based
algorithms and provides a solid foundation for a reactive
message passing implementation.

4. Reactive Message Passing

Tis section provides an introduction to reactive pro-
gramming and describes the core ideas of the reactive
message passing framework [9, 28]. First, we discuss the
reactive programming approach as a standalone pro-
gramming paradigm without its relation to Bayesian in-
ference (Section 4.1). Ten, we discuss how to connect
message passing-based Bayesian inference with reactive
programming (Section 4.2).

4.1. Reactive Programming. Tis section briefy describes the
essential concepts of the reactive programming (RP) para-
digm, such as observables, subscriptions, actors, subjects,
and operators. Generally speaking, RP provides a set of
guidelines and ideas to simplify the application of asyn-
chronous streams of data and/or events.

4.1.1. Observables. Te core idea of the reactive pro-
gramming paradigm is to replace variables in the context of
programming languages with observables. Observables are
lazy push collections, while regular data structures, such as
arrays, lists, or dictionaries, are pull collections. Te term
pull refers here to the fact that a user can directly ask for the
state of these data structures or “pull” their values. Ob-
servables, in contrast, push or emit their values over time,
and it is not possible to directly ask for the state of an
observable but only to subscribe to future updates. Te term
lazymeans that an observable does not produce any data and
does not consume computing resources if no one has
subscribed to its updates. Figure 2 shows a standard visual
representation of observables in the reactive programming
context. We denote an observable of some variable x as�x. If
an observable emits functions (for example, a probability
density function) rather than just primitive values such as
foats or integers, we write such an observable as �f(x). Tis
notation does not imply that the observable is a function of
x, but rather than it emits functions of x.

4.1.2. Subscriptions. To start listening to new updates from
some observable, RP uses subscriptions. A subscription
(Figure 3(a)) represents the execution of an observable. Each
subscription creates an independent observable execution
and consumes computing resources.

4.1.3. Actors. An actor (Figure 3(b)) is a special computa-
tional unit that subscribes to an observable and performs
some actions whenever it receives a new update. In the
literature, actors are also referred to as subscribers or
listeners.

4.1.4. Subject. A subject is a special type of actor that
receives an update and simultaneously re-emits the same
update to multiple actors. In other words, a subject utilizes
a single subscription to some observable and replicates
updates from that observable to multiple subscribers. Tis
process of re-emitting all incoming updates is called
multicasting. One of the goals of a subject is to share the
same observable execution and, therefore, save computer
resources. A subject is efectively an actor and an ob-
servable at the same time.

4.1.5. Operators. An operator is a function that takes one or
more observables as its input and returns another observ-
able. An operator is always a pure operation in the sense that
the input observables remain unmodifed. Next, we discuss
a few operator examples that are essential for the RMP
framework.

Te frst essential operator is the map operator that
applies a given mapping function to each value emitted
by a source observable and returns a new modifed
observable (Figure 4(a)). When we apply the map op-
erator with a mapping function M to an observable, we
say that this observable is mapped by a function M, see
Listing 1.

Te second essential operator is the combineLatest
operator that combines multiple observables to create
a new observable whose values are calculated from the
latest values of each of the original input observables
(Figure 4(b)). We show an example of combineLatest
operator application in Listing 2. Te combineLatest
operator has diferent update strategies that specify when
a resulting observable should emit new updates. For ex-
ample, emit a new update only after all inner observables
have been updated with a new value or emit a new value
any time a single inner observable has been updated and
reuse previous cached values for the remaining inner
observables. Te combineLatest operator stores a snap-
shot only of the latest values in all inner observables and
does not store subsequent previous updates in case one of
the inner observables is delayed (unbounded bufering is
possible with the zip operator instead).

Te reactive programming paradigm has many small
and basic operators, for example, flter, count, start_with,
but the map and combineLatest operators form the foun-
dation for the RMP framework.
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x̊
1 2 3 4

subscription

(a)

x̊
1 2 3 4

(v) → println (v)

(b)

Figure 3: A visual representation of a subscription execution and a simple actor. An arrow represents a timeline. Circles denote updates at
a specifc point on a timeline. Values inside circles denote the corresponding data of the update. Te bar at the end of the timeline indicates
a completion event after which the observable stops sending new updates. (a)Te subscription happens at a specifc point in time and allows
actors to receive new values. In this example, an actor would receive only update②, since the subscription was executed after update① but
was cancelled before updates③,④. (b) An actor subscribes to an observable, listens to its updates, reacts, and performs some actions. In this
example, the actor simply prints one single value it receives and unsubscribes.

x̊
1 2 3 4

(a)

f̊  (x)

(b)

Figure 2: A visual representation of an observable collection over time. An arrow represents a timeline. Circles denote updates at a specifc
point on that timeline. Values inside circles denote the corresponding data of the update. Te bar at the end of the timeline indicates
a completion event after which the observable stops sending new updates. (a) An observable emitting primitive (integer) values. (b) An
observable emitting functions of x.

x̊
1

1

2 3 4

4 9 16

map (x̊, x → x2)

(a)

x̊

ẙ
1

1 1

1

2

2 2

2

3

3

3

4

4

4
combineLatest (x̊, ẙ)

,,,

(b)

Figure 4: A visual representation of the reactive operators’ application. All reactive operators do not change the original observables. It is
still possible to subscribe to the original observables and observe their values over time. (a) Te map operator creates a new observable that
mirrors the original observable but with transformed values using the provided mapping function. (b) Te combineLatest operator
combines two or more source observables into a single one and emits a combination of the latest values of all inner source observables.

# We create the mapped observable of squared values
# of the original “source” observable
source� get_source ()
squared_source�map (source, x −> x ∧ 2)

LISTING 1: An example of the map operator application. We apply the map operator withM(x) � x2 to obtain a new observable that emits
squared values from the original observable. Te original observable remains unmodifed.

# We assume that “source1” and “source2” are both observables of integers
source1� get_source1 ()
source2� get_source2 ()
# We create a new observable by applying a combineLatest operator to it
combined� combineLatest (source1, source2)
# We can go further and apply a “map” operator to the combined observable
# and create a stream of the sum of squares of the latest values
# from “source1” and “source2”
combined_sum�map (combined, (x1, x2) −> x1̂ 2 + x2̂ 2)

LISTING 2: An example of the combineLatest operator application.We use the combineLatest operator to combine the latest values from two
integer streams and additionally apply the map operator withM(x1, x2) � x2

1 + x2
2.Te resulting observable emits the sum of squared values

of x1 and x2 as soon as both of them emit a new value.
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4.2. Te Reactive Message Passing Framework. In the next
section, we show how to formulate message passing-based
inference in the reactive programming paradigm. First, we
interpret all variables of interest as observables that change
in value over time. Tese include messages μfj⟶xi

(xi) and
μxi⟶fj

(xi), marginals q(si) over all model variables, and
local variational posteriors qa(sa) for all factors in the
corresponding TFFG of a probabilistic generative model.
Next, we describe nodes and edges as special types of
subjects that react on updates in the message and marginal
observables, multicast these updates with the combineLatest
operator, and compute the corresponding integrals with the
map operator. We use the subscription mechanism to start
listening for new updates from marginals in a model. Te
resulting reactive system resolves message (passing) updates
locally, automatically reacts to fowing messages, and up-
dates itself accordingly when new data arrive.

4.2.1. Factor Node Updates. In the context of TFFG, a node
consists of a set of connected edges, where each edge refers to
a variable in a probabilistic model. Te main purpose of
a node in the reactive message passing framework is to
accumulate updates from all connected edges in the form of
message observables �μsi⟶f(si) and marginal observables
�q(si) with the combineLatest operator, followed by com-
puting the corresponding outbound messages with the map
operator. We refer to a combination of the combineLatest
and map operators as the default computational pipeline.

To support diferent message passing algorithms, each
node handles a special object that we refer to as a node
context. Te node context essentially consists of the local
factorization, the outbound messages form constraints, and
optional modifcations to the default computational pipe-
line. In this setting, the reactive node decides, depending on
the factorization constraints, what to react on and,
depending on the form constraints, how to react. As a simple
example, consider the belief propagation algorithm with the
following message computation rule:

μz⟶h(z) � 􏽚 􏽚 μx⟶f(x)μy⟶f(y)f(x, y, z)dxdy, (9)

where f is a factor with three arguments x, y, z, μz⟶h(z) is
an outbound message on edge z towards node h, and
μx⟶f(x) and μy⟶f(y) are inbound messages on edges x

and y, respectively. Tis equation does not depend on the
marginals q(x) and q(y) on the corresponding edges; hence,
combineLatest needs to take into account only the inbound
message observables (Figure 5(a)). In contrast, the varia-
tional outbound message update rule for the same node with
mean-feld factorization assumption

μz⟶h(z) � exp􏽚 􏽚 q(x)q(y)logf(x, y, z)dxdy, (10)

does not depend on the inbound messages but rather de-
pends only on the corresponding marginals (Figure 5(b)). It
is possible to adjust the node context and customize the
input arguments of the combineLatest operator so that the
outbound message on some particular edge will depend on

any subset of local inbound messages, local marginals, and
local joint marginals over a subset of connected variables.
From a theoretical point of view, each distinct combination
potentially leads to a new type of message passing algorithm
[24] and may have diferent performance characteristics that
are beyond the scope of this paper. Te main idea is to
support as many message passing-based algorithms as
possible by employing simple reactive dependencies between
local observables. Te context also specifes when to react to
new updates from local dependencies, namely, either when
all dependencies have been updated or when any of the local
dependencies have been updated.

After the local context object has been set, a node reacts
to new updates in inbound messages or marginals and
computes the corresponding outbound messages for each
connected edge independently, see Listing 3.

In addition, outbound message observables naturally
support custom operators before or after the map operator.
Te strength of custom operators lies in their ability to
apply additional computational steps locally when needed,
and these computational steps may be diferent for diferent
factor nodes.Tis allows users to select local approximation
techniques that match specifc scenarios, such as the need
to prioritize speed over accuracy or vice versa. Adding
a custom operator to the default message computational
pipeline may change the corresponding inference algo-
rithm and may help achieve even better performance for
some custom models [27, 29]. As an example, one of such
custom operators could be the application of the Laplace
approximation in cases where an exact analytical message
update rule is not available, see Figure 6(a) and Listing 4. It
is worth noting that any extra approximation steps, such as
the Laplace approximation, will inevitably afect the in-
ference results, and their performance will be model de-
pendent [30]. Other examples of these custom operators
may include logging or debugging messages, see
Figure 6(b).

4.2.2. Marginal Updates. In the context of TTFG, each edge
refers to a single variable si. Te main purpose of an edge in
the reactive message passing framework is to react to out-
bound messages from connected nodes and emit the cor-
responding marginal q(si). Terefore, we defne the
marginal observable�q(si) as a combination of two adjacent
outbound message observables from connected nodes with
the combineLatest operator and their corresponding nor-
malized product with the map operator, see Listing 5 and
Figure 7. Regarding node updates, we refer to the combi-
nation of combineLatest and map operators as the default
computational pipeline. Each edge has its own edge context
object that is used to customize the default pipeline. Extra
pipeline stages are mostly needed to assign additional form
constraints to variables in a probabilistic model, as discussed
in Section 3. For example, in the case where no analytical
closed-form solution is available for a normalized product of
two colliding messages, it is possible to modify the default
computational pipeline and to fall back to an available
approximation method, such as the point-mass form
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μ̊y→f  (y)

μ̊x→f  (x)

μ̊z→h (z)

q̊ (y)

q̊ (x)

y

x
zcombine

map

(a)

μ̊y→f  (y)

μ̊x→f  (x)

μ̊z→h (z)

q̊ (y)

q̊ (x)

y

x
zcombine

map

(b)

Figure 5: Graphical representation of the default computational pipeline for diferent local factorization constraints. Diferent combination
of local input observable sources potentially specifes diferent message passing algorithms. (a) No extra factorisation assumption for local
variational distribution q corresponds to the belief propagation update rule (9). (b) Te mean-feld factorisation assumption for the local
variational distribution q corresponds to the variational message passing update rule (10).

context� getcontext (factornode)
# iterate over edges connected to a specifc “factornode”
for edge in local_edges (factornode)

# Combine all updates from a node’s local dependencies.
# Tis usually includes messages and marginals updates from other edges
# and depends on the local factorization constraints (see CBFE optimization)
updates� combineLatest (local_dependencies (factornode, edge, context))
# Create an outbound message observable by applying
# a map operator with a suitable “compute_message” procedure
outbound�map (updates, update −> compute_message (update, context))
. . .

end

LISTING 3: Pseudo-code for generating an outbound message for each edge connected to a factor node.

f
μ̊f→x (x)

≈N (x|μ, τ)

(a)

f
μ̊f→x (x)

logging

(b)

Figure 6: A graphical representation of diferent custom default pipeline modifcations for some outbound message observables. Te
strength of custom operators lies in their ability to apply additional computational steps locally when needed, and these computational steps
may be diferent for diferent factor nodes. Tis allows users to select local approximation techniques that match specifc scenarios, such as
the need to prioritize speed over accuracy or vice versa. (a) An example of applying a Laplace approximation operator to an observable of
outbound messages. (b) An example of applying a logging operator to an observable of outbound messages.

context� getcontext (factornode)
for edge in local_edges (factornode)

. . .

outbound�map (updates, update −> compute_message (update, context))
# Here we apply a custom approximation operator
outbound�map (outbound, message −> approximate_as_gaussian (message))
# and (if needed) logging statements
outbound�map (outbound, message −> log_into_fle (message))
. . .

end

LISTING 4: Pseudo-code for customizing default outbound messages computational pipeline with custom pipeline stages.
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constraint that leads to the expectation maximization al-
gorithm, or Laplace approximation. Te context also
specifes when to react to new updates from messages,
namely, when all messages have been updated or when any
of the messages have been updated.

4.2.3. Joint Marginal Updates. Te procedure to compute
a local marginal distribution for a subset of connected
variables around a node in TFFG is similar to previous cases
and has the combineLatest and map operators in its default
computational pipeline. To compute a local marginal dis-
tribution q(sa∖b), we need local inbound messages updates
to the node f from edges in sa∖b and local joint marginal
q(sb). In Figure 8, we show an example of a local joint
marginal observable where sa � x, y, z, θ􏼈 􏼉, sa∖b � x, y􏼈 􏼉,
and sb � z, θ{ }.

4.2.4. Bethe Free Energy Updates. Te CBFE is usually
a good approximation to the VFE [24], which is an upper
bound to Bayesian model evidence, which in turn scores the
performance of a model. Terefore, it is often useful to
compute CBFE. To do so, we frst decompose (6) into a sum
of node-local energy terms U[fa, qa] and a sum of local
variable entropy terms H[qi]:

U fa, qa􏼂 􏼃 � 􏽚 qa sa( 􏼁log
qa sa( 􏼁

fa sa( 􏼁
dsa, (11a)

H qi􏼂 􏼃 � 􏽚 qi si( 􏼁log
1

qi si( 􏼁
dsi, (11b)

F[q] � 􏽘
a∈V

U fa, qa􏼂 􏼃 + 􏽘
i∈E

H qi􏼂 􏼃. (11c)

We then use the combineLatest operator to combine the
local joint marginal observables and marginal observables
for each individual variable in a probabilistic model, fol-
lowed by using the map operator to compute the average
energy and entropy terms, see Figure 9 and Listing 6. Each
combination emits an array of numbers as an update, and we
use the map operator again to compute the sum of such
updates.

Tis procedure assumes that we are able to compute
average energy terms for any local joint marginal around any
node and to compute entropies of all resulting variable
marginals in a probabilistic model. Te resulting BFE ob-
servable from Listing 6 autonomously reacts on new updates
in the probabilistic model and emits a new value as soon as
we have new updates for local variational distributions
qa(sa) and local marginals qi(si).

4.2.5. Infnite Reaction Chain Processing. Procedures from
the previous sections create observables that may depend on
themselves, especially in the case of a loopy TFFG. Tis
potentially creates an infnite reaction chain. However, the
RMP framework naturally handles such cases and infnite
data stream processing in its core design, as it uses reactive
programming as its foundation. In general, the RP does not
make any assumptions about the underlying nature of the
update-generating process of observables. Furthermore, it is
possible to create a recursive chain of observables where new

μ̊f→x (x) μ̊g→x (x)

q̊ (x)

combine

map

x

gf

Figure 7: A visual representation of marginal observable com-
putation for some variable x and its corresponding edge with the
default computational pipeline. Te marginal distribution for
a variable is equal to the product of two colliding messages on the
corresponding edge divided by a normalisation constant.

# iterate over all edges in the entire factor graph
for edge in all_edges (model)

context� getcontext (edge)
left_message� get_left_message_updates (edge, context)
right_message� get_right_message_updates (edge, context)
# Combine all updates from left and right observables
updates� combineLatest (left_message, right_message)
# a map operator with a “prod_and_normalise” procedure
posterior�map (updates, update −> prod_and_normalise (update, context))

end

LISTING 5: Pseudo-code for generating an posterior marginal update for each edge in a probabilistic model.

μ̊x→f  (x)

μ̊y→f  (y)

q̊ (z, θ)

q̊ (x, y)

combine

map

x z

y θf

Figure 8: Visual representation of the local variational distribution
observable computation on a subset of edges around a node f with
four edges x, y, z, and θ. Te local variational distribution for
a subset of connected edges depends on inbound messages on these
edges and the local variational distribution over remaining edges
and corresponding variables.
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updates in one observable depend on updates in another or
even on updates in the same observable.

Furthermore, in view of graphical probabilistic models
for signal processing applications, we may create a single
time section of a Markov model and redirect a posterior
update observable to a prior observable. Tis method
efectively creates an infnite reaction chain that may be
interpreted as a factor graph with messages fowing only
in a forward-time direction. We refer to such an archi-
tecture as an infnite factor graph, because it supports data
streams with potentially an infnite number of sequential
observations and performs Bayesian inference as soon as
the data arrive, see Figure 10. By carefully choosing
strategies for the combineLatest operator (see Section
4.1.5), we can avoid an infnite messaging loop, and we
will show an example of such an inference application in
Section 6.3.

Tis setting creates an infnite stream of posteriors
redirected to a stream of priors. Te resulting system reacts
to new observations yt and computes messages automati-
cally as soon as a new data point is available. However, in
between new observations, the system stays idle and simply
waits. In the case of variational Bayesian inference, we may
choose to performmore VMP iterations during the idle time
so as to improve the approximation of (2).

5. Implementation

Based on Sections 2 and 3, a generic toolbox for message
passing-based constrained Bethe free energy minimization
on TFFG representations of probabilistic models should at
least comprise the following features:

(1) A comprehensive specifcation language for proba-
bilistic models p(y, s) of interest.

(2) A convenient way to specify additional local con-
straints on QB so as to restrict the search space for
posterior q(s). Technically, items 1 and 2 together
support the specifcation of a CBFE optimization
procedure.

(3) Provide an automated, efcient, and scalable engine
to minimize the CBFE by message passing-based
inference.

q̊ (x) q̊ (y)q̊a q̊b q̊c
F̊B[q]

combine

combine

combine

map map

mapmap map

fa fb fc sum

sum

sum

H [q (x)]

U [ fa, qa]

∑ H [qi (xi)]i

∑ U [ fa, qa (xa)]a

Figure 9: A visual representation of the Bethe free energy observable computation for an arbitrary TFFGwith nodes fa, fb, and fc, together
with random variables x and y. For each node, the algorithm reacts on observables of variational distributions�qa,�qb and�qc and computes
corresponding average energy terms with the map operator. For each edge, the algorithm reacts on observables of marginal distributions
�q(x) and�q(y) and computes corresponding entropy terms with the map operator. Te resulting updates are combined and transformed
with the combineLatest and the sum operators, respectively.

# U_local is an array of node−local average energies observables
U_local� [ map (local_q (node), (q_a) −> energy (node, q_a)) for node in nodes ]
# H_local is an array of edge−local entropies observables
H_local� [ map (local_q (edge), (q_i) −> entropy (q_i)) for edge in edges ]
U�map (combineLatest (U_local), u −> sum (u)) # Total average energy observable
H�map (combineLatest (H_local), h −> sum (h)) # Total entropies observable
# Te resulting BFE observable emits a sum of
# node−local average energies and edge−local entropies
bfe�map (combineLatest (U, H), update −> sum (update))

LISTING 6: Pseudo-code for creating the BFE observable (11) for an arbitrary TFFG.

μ̊xt–1→f  (xt–1)

μ̊zt–1→g (zt–1)

μ̊xt→f  (xt)

μ̊zt→g (zt)

xt–1 xt
f

g

yt

=

=

Figure 10: An example of an infnite factor graph in the RMP
framework with arbitrary state transition nodes f and g. Te small
black square indicates the observed variable. Te dotted red line
indicates a redirection of an observable of posterior updates for xt

to an observable of priors for xt−1. Te dotted blue line indicates
a redirection of an observable of posterior updates for zt to an
observable of priors for zt−1. Te model reacts to new incoming
data points yt and computes messages in a time-forward
direction only.
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Implementation of all three features in a user-friendly and
efcient manner is a very challenging problem. We have
developed a new reactive message passing-based Bayesian
inference package, which is fully written in the open-source,
high-performant scientifc programming language Julia [31].
Our implementation makes use of the Rocket.jl package,
which we developed to support the reactive programming in
Julia. Te Rocket.jl implements observables, subscriptions,
actors, and basic reactive operators such as the combineLatest
and the map and makes it easier to work with asynchronous
data streams. We use the GraphPPL.jl package to simplify the
probabilistic model specifcation and variational family
constraints specifcation parts. We refer to this ecosystem as
a whole as ReactiveMP.jl (ReactiveMP.jl GitHub repository
https://github.com/biaslab/ReactiveMP.jl).

It is worth noting that our implementation is a work in
progress and is continually improving to support a wider
range of probability distributions and nonconjugate re-
lationships among variables. Te implementation (at the
time of submission of this paper) aims to support a large
selection of often-used members from the exponential
family of distributions. Te public API of the package makes
it easy for users to add custom factor nodes and custom
message update rules for missing distributions or de-
terministic functions. We plan to maintain the ecosystem in
the future, support more distributions, and improve the
general performance of the code.

5.1. Model Specifcation. ReactiveMP.jl uses a @model
macro for both the model and constraints specifcation. Te
@model macro returns a function that generates the model
with specifed constraints. It has been designed to resemble
existing probabilistic model specifcation libraries in Julia
but also to be fexible enough to support reactive message
passing-based inference as well as factorization and form
constraints for variational families QB from (8a). As an
example of the model specifcation syntax, consider the
simple model in Listing 7.

Te tilde operator ( ∼ ) creates a new random variable
with a given functional relationship with other variables in
a model and can be read as “is sampled from. . .” or “is
modeled by. . ..” Sometimes, it is useful to create a random
variable in advance or to create a sequence of random
variables in a probabilistic model for improved efciency.
Te ReactiveMP.jl package exports a randomvar() function
to manually create random variables in the model, see
Listing 8.

To create observations in a model, the ReactiveMP.jl
package exports the datavar(T) function, where T refers to
a type of data such as Float64 or Vector{Float64}. Te model
reacts to these observations and performs inference auto-
matically as soon as new data arrive, see Listing 9.

Te tilde operator supports an optional where statement
to defne local node- or variable-context objects. As dis-
cussed in Section 4.2, local context objects specify local
factorization constraints for the variational family of dis-
tributions QB or may include additional pipeline stages to

the default computational pipeline of messages and mar-
ginals updates, see Listing 10.

5.2. Marginal Updates. Te ReactiveMP.jl framework API
exports the getmarginal () function, which returns a refer-
ence for an observable of marginal updates. Reactivity in the
core design makes it especially easy for other parts of an
application to react on updated marginals and perform some
complex actions or make decisions based on updated
marginals in real time. In the Listing 11, we show an example
usage of the subscribe! () function to subscribe to future
marginal updates and perform a simple action as soon as
new update is available.

5.3. Bethe Free Energy Updates. Te ReactiveMP.jl frame-
work API exports the score () function to get a stream of
Bethe free energy values, see Listing 12. By default, the Bethe
free energy observable emits a new update only after all
variational posterior distributions qa(sa) and qi(si) have
been updated.

5.4. Multiple Dispatch. An important problem is how to
select the most efcient update rule for an outbound mes-
sage, given the types of inbound messages and/or marginals.
In general, we want to use known analytical solutions if they
are available and otherwise select an appropriate approxi-
mation method. In the context of software development, the
choice of which method to execute when a function is
applied is called dispatch.

Locality is a central design choice of the reactive message
passing approach, but it makes it impossible to infer the
correct inbound message types locally before the data have
been seen. Fortunately, the Julia language supports dynamic
multiple dispatch, which allows for an elegant solution to this
problem. Julia allows the dispatch process to choose which of
a function’s methods to call based on the number of ar-
guments given and on the types of all of the function’s
arguments at run time. Tis feature enables automatic
dispatch of the most suitable outbound message computa-
tion rule, given the functional form of a factor node and the
functional forms of inbound messages and/or posterior
marginals.

Julia’s built-in features also support the ReactiveMP.jl
implementation to dynamically dispatch to themost efcient
message update rule for both exact and approximate vari-
ational algorithms. If no closed-form analytical message
update rule exists, Julia’s multiple dispatch facility provides
several options to select an alternative (more computa-
tionally demanding) update as discussed in Section 4.2.1.

Te ReactiveMP.jl uses the following arguments to
dispatch to the most efcient message update rule (see
Listing 13):

(i) Functional form of a factor node, for example,
Gaussian or Gamma;

(ii) Name of the connected edge, for example, :out;
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# We use the “@model” macro to accept a Julia function as input.
# In this example, the model accepts a keyword argument ‘n” that denotes
# the number of observations in the data set
@model function coin_model (; n)

# Reactive data inputs for Beta prior over θ random variable
# so we don’t need actual data at model creation time
a� datavar (Float64)
b� datavar (Float64)
# We use the tilde operator to defne a probabilistic relationship between
# random variables and data inputs. It automatically creates a new random
# variable in the current model and the corresponding factor nodes
θ ∼ Beta (a, b) # creates both “θ” random variable and Beta factor node
# A sequence of observations with length “n”
y� datavar (Float64, n)
# Each observation is modeled by a “Bernoulli” distribution
# that is governed by a ‘θ’ parameter
for i in 1 : n
y [i] ∼ Bernoulli(θ) # Reuses “y [i]” and “θ” and creates “Bernoulli” node
end
# “@model” function must have a “return” statement.
# Later on, the returned references might be useful to obtain the marginal
# updates on variables in the model and to pass new observations to data
# inputs so the model can react to changes in data
# “@model” also modifes the output and always returns the “model”s graph
return y, a, b, θ

end

LISTING 7: An example of a probabilistic model specifcation with the @model macro.

x� randomvar () # A single random variable in the model
x� randomvar (n) # A collection of n random variables

LISTING 8: An example code of random variable creation.

y� datavar (Float64) # A single data input of type Float64
y� datavar (Vector{Float64}) # A single data input of type Vector{Float64}
y� datavar (Float64, n) # A sequence of n data inputs of type Float64

LISTING 9: An example code of data inputs creation.

# We can use “where” clause to specify extra factorization
# constraints for the local variational distribution
θ ∼ Beta (a, b) where { q� q (θ) q (a) q (b) }
# Structured factorization assumption
x_next ∼ NormalMeanVariance (x_previous, tau) where {
q� q (x_next, x_previous) q (tau)
}
# We can also use “where” clause to modify the default
# computational pipeline for all outbound messages from a node
# In this example “LoggerPipelineStage”modifes the default pipeline
# so that it starts to print all outbound messages into standard output
y ∼ Gamma (a, b) where { pipeline� LoggerPipelineStage () }

LISTING 10: An example code for specifying extra factorization constraints for the local variational distribution and the pipeline
modifcations.
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(iii) Local variable constraints, for example, Margin-
alisation or MomentMatching;

(iv) Input messages names and types with m_ prefx, for
example, m_mean::Gaussian;

(v) Input marginals names and types with q_prefx, for
example, q_var::Any;

(vi) Optional context object, for example, a strategy to
correct nonpositive defnite matrices, an order of
autoregressive model or an optional approximation
methods used to compute messages.

All of this together allows the ReactiveMP.jl framework
to automatically select the most efcient message update
rule. It should be possible to emulate this behavior in other
programming languages, but Julia’s core support for efcient
dynamic multiple dispatch is an important reason why we
selected it as the implementation language. It should be
noted that the Julia programming language generates ef-
cient and scalable code with run-time performance similar
to that of C and C++ [32].

6. Experimental Evaluation

In this section, we provide the experimental results of our
RMP implementation on various Bayesian inference prob-
lems that are common in signal processing applications. Te
main purpose of this section is to show that reactive message

passing and its ReactiveMP.jl implementation, in particular,
are capable of running inference for diferent common
signal processing applications and to explore its perfor-
mance characteristics.

Each example in this section is self-contained and is
aimed at modeling particular properties of the underlying
data sets. Te linear Gaussian state-space model example in
Section 6.1 models a signal with continuously valued latent
states and uses a large static data set with hundreds of
thousands of observations. In Section 6.2, we present
a hidden Markov model for a discretely valued signal with
unknown state transition and observation matrices. Te
hierarchical Gaussian flter example in Section 6.3 shows
online learning (fltering) in a hierarchical model with
nonconjugate relationships between variables and makes use
of a custom factor node with custom approximate message
computation rules. It is worth noting that all models pre-
sented can be used in both fltering and smoothing settings.
Each example in this section has a comprehensive, in-
teractive, and reproducible demo on GitHub (All experi-
ments are available at https://github.com/biaslab/
ReactiveMPPaperExperiments) experiments repository.
Te datasets generated during and/or analysed during the
current study are available in the same repository. All ex-
periments have been performed on ReactiveMP of version
1.1.0. More models, tutorials, and advanced usage examples
are available in the ReactiveMP.jl package repository on

# Te “coin_model” function returns a reference to the corresponding graph and
# the actual output from the model specifcation
graph, (y, a, b, θ)� coin_model (; n� 100)
# “subscribe!” accepts an observable as its frst argument and
# a callback function as its second argument
θ_subscription� subscribe! (getmarginal (θ), (update) −> println (update))

LISTING 11: An example code for subscribing on new marginal updates.

bfe_updates� score (BetheFreeEnergy (), model)
bfe_subscription� subscribe! (bfe_updates, (update) −> println (update))

LISTING 12: An example code for BFE updates subscription.

# Defne a stochastic node of Gaussian type with 3 edges: “out,” “mean” and “var”
@node Gaussian Stochastic [ out, mean, var ]
# Defne a structured VMP message update rule with ‘Marginalisation” constraint
# from “out” edge, which uses:
#− a message on edge “mean”
#− a marginal on edge “var”
@rule Gaussian (:out, Marginalisation) (m_meanGaussian, q_varAny)� begin

return Gaussian (mean (m_mean), 1/(var (m_mean) +mean (q_var)))
end

LISTING 13: An example of node and VMP message update rule specifcation for a univariate Gaussian distribution with mean-precision
parametrisation.

Scientifc Programming 13

https://github.com/biaslab/ReactiveMPPaperExperiments
https://github.com/biaslab/ReactiveMPPaperExperiments


GitHub (More models, tutorials, and advanced usage ex-
amples are available at https://github.com/biaslab/
ReactiveMP.jl/tree/v1.1.0/demo). For verifcation, we used
synthetically generated data, but, as we mentioned in Section
2, ReactiveMP.jl has been battle-tested on more sophisti-
cated models with real-world data sets [13–16].

For each experiment, we compared the performance of
the new reactive message passing-based inference engine
with another message passing package ForneyLab.jl (ver-
sion 0.11.3, [33]) and the sampling-based inference engine
Turing.jl (version 0.19.0, [34]). We selected Turing.jl as
a fexible, mature, and convenient platform to run
sampling-based inference algorithms in the Julia pro-
gramming language. In particular, it provides a particle
Gibbs sampler for discrete parameters, as well as a Ham-
iltonian Monte Carlo sampler for continuous parameters.
We show that the new reactive message passing-based
solution not only scales better but also yields more accu-
rate posterior estimates for the hidden states of the outlined
models in comparison with sampling-based methods. Note,
however, that Turing.jl is a general-purpose probabilistic
programming toolbox and provides more algorithms and
instruments to run Bayesian inference in even a broader
class of probabilistic models than the current imple-
mentation of ReactiveMP.jl.

We do not compare our implementation with other
probabilistic programming libraries from other pro-
gramming languages (e.g., Stan, BUGS, or Pyro) and rather
deliberately restrict our comparison only between packages
written in the Julia programming languages. Te main
reason is that the idea of benchmark comparisons in this
section is to compare message passing with the state-of-
the-art sampling-based methods and measure their per-
formance characteristics on specifc models, rather than to
compare diferent packages. In fact, Turing.jl, according to
its development team, is almost a direct reimplementation of
Stan PPL, has similar performance characteristics, and, for
some models, is even more expressive [34].

Variational inference algorithms in general and Reac-
tiveMP.jl in particular use the minimized CBFE value for
scoring themodel’s performance. In contrast, some packages
for Bayesian inference methods only compute posterior
distributions and ignore the CBFE. To compare the posterior
results for the diferent Bayesian inference methods that do
not compute the CBFE functional, we performed a posterior
estimation accuracy test by the metric

AE[q] �
1

|D|
􏽘

d∈D

1
T

􏽘

T

t�1
Eq xt( ) f xt − rt( 􏼁􏼂 􏼃⎡⎣ ⎤⎦, (12)

where D is a set of all synthetic datasets d for a particular
model, T is a number of time steps used in an experiment,
q(xt) is a resulting posterior p(xt | y � 􏽢y) at time step t, rt is
an actual value of the real underlying signal at time step t, f

is any positive defnite transform. In our experiments, we
used f(x) � x′x for continuous multivariate variables,
f(x) � x2 for continuous univariate variables and f(z) �

|z| for discrete variables. We call this metric the average error
(AE) metric.

All benchmarks have been performed with the help of
the BenchmarkTools.jl package [35], which is a framework
to write, run, and compare groups of benchmarks in Julia.
For benchmarks, we used the Julia version 1.6, which, at the
time the article was written, is the LTS (long-time support)
version. All experiments were executed on a MacBookPro-
2018 with 2.6GHz Intel Core-i7 and 16GB 2400MHz DDR4
RAM.We show that the new implementation runs smoothly
on a regular laptop and does not require either sophisticated
supercomputers or GPU support in order to execute
Bayesian inference for hundreds of thousands of observa-
tions. Terefore, in principle, these experiments can be
executed on low-power devices without GPU, such as
a Raspberry-Pi.

6.1.LinearGaussianState-SpaceModel. As our frst example,
we consider the linear Gaussian state-space model (LG-
SSM) that is widely used in the signal processing and control
communities [36]. Te simple LG-SMM is specifed by

p xt

􏼌􏼌􏼌􏼌 xt−1􏼐 􏼑 � N xt

􏼌􏼌􏼌􏼌 Axt−1, P􏼐 􏼑,

p yt

􏼌􏼌􏼌􏼌 xt􏼐 􏼑 � N yt

􏼌􏼌􏼌􏼌 Bxt, Q􏼐 􏼑,
(13)

where yt is the observation at time step t, xt represents the
latent state at time step t, A and B are the state transition and
observation model matrices, respectively, and P and Q are
Gaussian noise covariance matrices.

6.1.1. Model Specifcation. Bayesian inference in this type of
model can be performed by fltering and smoothing. Al-
though many diferent variants exist, in our example, we
focus on the Rauch–Tung–Striebel (RTS) smoother [37],
which can be interpreted as performing the belief propa-
gation algorithm on the full model graph. Te belief
propagation algorithm implies that we do not impose ad-
ditional factorization constraints on the variational family of
distributions QB and that we need to perform only a single
message passing iteration. We show the model specifcation
of this example in Listing 14. Figure 11 shows the com-
parison of the hidden states recovered between the RMP and
HMC methods. Code examples for the Kalman flter in-
ference procedure for this type of model can be found in the
RMP experiments repository on GitHub.

6.1.2. Benchmark. Te main benchmark results are pre-
sented in Figure 12 and Table 1.Te accuracy results in terms
of the average error metric of (12) are presented in Table 2.
Te new implementation based on the passing of reactive
messages for Bayesian inference shows better results in
performance and scalability and outperforms the compared
packages in terms of time and memory consumption (Not
present in the table, available at https://github.com/biaslab/
ReactiveMPPaperExperiments) signifcantly. Furthermore,
the ReactiveMP.jl package is capable of running inferences
on very large models with hundreds of thousands of vari-
ables. Accuracy results in Table 2 show that the methods
based on message passing give more accurate results in

14 Scientifc Programming

https://github.com/biaslab/ReactiveMP.jl/tree/v1.1.0/demo
https://github.com/biaslab/ReactiveMP.jl/tree/v1.1.0/demo
https://github.com/biaslab/ReactiveMPPaperExperiments
https://github.com/biaslab/ReactiveMPPaperExperiments


comparison to the sampling methods, which is expected
since the method of message passing performs exact
Bayesian inference in this type of model.

Figure 12 shows that the ForneyLab.jl package actually
executes the inference task for this model faster than the
ReactiveMP.jl package. Te ForneyLab.jl package thor-
oughly analyzes the TFFG during precompilation and is
able to create an efcient predefned message update
schedule ahead of time that is able to execute the inference
procedure very fast. Unfortunately, as we discussed in
Section 2, ForneyLab.jl’s schedule-based solution sufers
from long latencies in the graph creation and pre-
compilation stages. Tis behavior limits investigations of
“what-if” scenarios in the model specifcation space. On
the other hand, ReactiveMP.jl creates and executes the

reactive message passing scheme dynamically without
full graph analysis. Tis strategy helps with scalability for
very large models but comes with some run-time
performance costs.

Te execution timings of the Turing.jl package and the
corresponding HMC algorithm mostly depend on the
number of samples in the sampling procedure and other
hyperparameters, which usually need to be fne-tuned. In
general, in sampling-based packages, a larger number of
samples lead to better approximations, but longer run times.
On the other hand, as we mentioned at the beginning of
Section 6, the Turing.jl platform and its built-in algorithms
support running inference in a broader class of probabilistic
models, as it does not depend on analytical solutions and is
not restricted to work with closed-form update rules.
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Figure 11: An example of the Bayesian inference results for the linear Gaussian state-space model (12) with multivariate (2-dimensional)
observations. Te x-axis represents the time steps and the y-axis corresponds to the actual value of hidden states and observations for each
dimension. (a) Simulated trajectory, observations, and the inference results using reactive message passing method. (b) Simulated trajectory,
observations and the inference results using Hamiltonian Monte Carlo method with 250 samples.

@model function linear_gaussian_state_space_model (n, d, A, B, P, Q)
# We create a sequence of random variables of length “n”
x� randomvar (n)
# We create a sequence of observed variables of length “n”
y� datavar (Vector{Float64}, n)
# Prior distribution for x [1], “d” is the dimension of observations
# Here we use mean−covariance parametrisation
# for Gaussian distribution, but it is also possible to use diferent
# parametrisations such as mean−precision or weighted−mean−precision
x [1] ∼ MvGaussianMeanCovariance(zeros (d), 100.0 ∗ diageye (d))
y [1] ∼ MvGaussianMeanCovariance(B ∗ x [1], Q)
for t in 2 : n

x [t] ∼ MvGaussianMeanCovariance(A ∗ x [t− 1], P)
y [t] ∼ MvGaussianMeanCovariance(B ∗ x [t], Q)

end
# We return “x” and “y” for later reference
return x, y

end

LISTING 14: An example of model specifcation for the linear Gaussian state-space model (14a).
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Figure 12: A comparison of run-time duration in milliseconds for automated Bayesian inference a linear Gaussian state-space model (12)
across diferent methods: reactive message passing (ReactiveMP.jl), scheduled message passing (ForneyLab.jl) and Hamiltonian Monte
Carlo (Turing.jl), see Table 1. Te values in the fgure show the minimum possible duration across multiple runs. Te ReactiveMP.jl timings
include graph creation time. Te ForneyLab.jl pipeline consists of model compilation, followed by actual inference execution. Turing.jl uses
HMC sampling with 1000 and 2000 samples respectively. We present benchmark results for more than 1 000 observations only for the
ReactiveMP.jl package since for the other compared packages this involved running the inference procedure for more than an hour.

Table 1: A comparison of run-time duration in milliseconds for automated Bayesian inference for a linear Gaussian state-space model (12)
across diferent methods: reactive message passing (ReactiveMP.jl), scheduled message passing (ForneyLab.jl), and Hamiltonian Monte
Carlo (Turing.jl). Te values in the table show the minimum possible duration across multiple runs.Te T column represents the number of
observations in a data set, 2-dim and 4-dim columns separate timings for 2-dimensional and 4-dimensional observations respectively. Te
ReactiveMP.jl timings include graph creation time. Te ForneyLab.jl pipeline consists of model compilation, followed by actual inference
execution. Turing.jl uses HMC sampling with 1000 and 2000 samples respectively. We present benchmark results for more than 10 000
observations only for the ReactiveMP.jl package since for other compared packages it involved running the inference for more than an hour.

T
Reactive MP

Scheduled MP HMC

Compilation
Inference 1000 samples 2000 samples

2-dim 4-dim 2-dim 4-dim 2-dim 4-dim 2-dim 4-dim
100 10 11 112753 4 4 3389 11246 7302 21337
200 22 26 374830 6 8 7781 28969 15882 57774
300 33 40 1057691 12 13 15822 61575 35545 116967
10000 1971 2152 — — — — — — —
100000 68765 85243 — — — — — — —

Table 2: Comparison of posterior results accuracy in terms of metric (12) in the linear Gaussian state-space model (14a) across diferent
methods: message passing (ReactiveMP.jl and ForneyLab.jl) and Hamiltonian Monte Carlo (Turing.jl). Lower values indicate better
performance. ReactiveMP.jl and ForneyLab.jl use message passing-based RTS smoothing algorithms on the full graph. Turing.jl uses HMC
sampling with 1000 and 2000 samples, respectively.

Number of observations
2-Dimensional 4-Dimensional

100 200 300 100 200 300
Message passing 3.45 3.38 3.30 6.75 6.62 6.58
HMC (1000) 6.21 11.33 26.49 15.17 24.07 42.53
HMC (2000) 4.62 6.24 10.54 10.02 12.76 18.27
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We present benchmark results for 10 000 and 100 000
observations only for the ReactiveMP.jl package, since for
other compared packages, it involved running the in-
ference for more than an hour. For example, we can es-
timate that for a static data set with 100 000 observations,
the corresponding TFFG for this model has roughly
400 000 nodes. Te ReactiveMP.jl executes inference for
such a large model in under two minutes. Terefore, we
conclude that the new reactive message passing imple-
mentation scales better with the number of random
variables and is able to run efcient Bayesian inference for
large conjugate state-space models.

6.2. Hidden Markov Model. In this example, the goal is to
perform Bayesian inference in a hidden Markov model
(HMM). An HMM can be viewed as a specifc instance of
a state-space model in which the latent variables are dis-
cretely valued. HMMs are widely used in speech recognition
[38, 39], natural language modeling [40], and in many other
related felds.

We consider an HMM specifed by

p(A) � MatrixDirichlet A | PA( 􏼁, (14a)

p(B) � MatrixDirichlet B | PB( 􏼁, (14b)

p zt

􏼌􏼌􏼌􏼌 zt−1􏼐 􏼑 � Cat zt

􏼌􏼌􏼌􏼌 Azt−1􏼐 􏼑, (14c)

p yt

􏼌􏼌􏼌􏼌 zt􏼐 􏼑 � Cat yt

􏼌􏼌􏼌􏼌 Bzt􏼐 􏼑, (14d)

where A and B are state transition and observation model
matrices, respectively, zt is a discrete M-dimensional one-
hot coded latent state, yt is the observation at time step t,
MatrixDirichlet(· | P) denotes a matrix variate generaliza-
tion of Dirichlet distribution with concentration parameters
matrix P [41], and Cat(· | p) denotes a categorical distri-
bution with concentration parameters vector p. One-hot
coding of zt implies that zt,i ∈ 0, 1{ } and 􏽐

M
i�1zt,i � 1. With

this encoding scheme, (14d) is short-hand for

p zt,i � 1
􏼌􏼌􏼌􏼌 zt−1,j � 1􏼐 􏼑 � Aij. (15)

6.2.1. CBFE Specifcation. Exact Bayesian inference for this
model is intractable, and we resort to approximate inference
by message passing-based minimization of CBFE. For the
variational family of distributions QB, we assume a struc-
tured factorization around state transition probabilities and
the mean-feld factorization assumption for every other
factor in the model

q(z, A, B) � q(z)q(A)q(B), (16a)

q(z) �
􏽑

T
t�2q zt−1, zt( 􏼁

􏽑
T
t�2q zt( 􏼁

. (16b)

We show the model specifcation code for this model
with the extra factorization constraints (16b) specifcation in
Listing 15 and the inference results in Figure 13. Figure 13(b)
shows the convergence of the BFE values after several VMP
iterations. Te qualitative results in Figure 13(a) show
a reasonably correct posterior estimation of discretely valued
hidden states.

6.2.2. Benchmark. Te main benchmark results are pre-
sented in Figure 14 and Table 3. Figure 15 presents a com-
parison of the performance of ReactiveMP.jl as a function of
the number of VMP iterations and shows that the resulting
inference procedure scales linearly both on the number of
observations and the number of VMP iterations performed.
In the context of VMP, each iteration decreases the Bethe
free and efectively leads to a better approximation for the
marginals over the latent variables. As in our previous ex-
ample, we show the accuracy results for the message passing-
based methods in comparison to the sampling-based
methods in terms of metric (12) in Table 4. Te For-
neyLab.jl shows the same level of posterior accuracy, as it
uses the same VMP algorithm, but is slower in model
compilation and execution times. Te Turing.jl is set to use
the HMC method for estimating the posterior of transition
matrices A and B with a combination of particle Gibbs (PG)
for discrete states z.

6.3. Hierarchical Gaussian Filter. For our last example, we
consider Bayesian inference in the hierarchical Gaussian
flter (HGF) model. Te HGF is popular in the computa-
tional neuroscience literature and is often used for Bayesian
modeling of volatile environments, such as uncertainty in
perception or fnancial data [42]. Te HGF is essentially
a Gaussian randomwalk, where the time-varying variance of
the random walk is determined by the state of a higher level
process, for example, a Gaussian random walk with fxed
volatility or another more complex signal. Specifcally,
a simple HGF is defned as

p s
(j)
t

􏼌􏼌􏼌􏼌􏼌 s
(j)
t−1􏼒 􏼓 � N s

(j)

k

􏼌􏼌􏼌􏼌􏼌 s
(j)
t−1, f s

(j+1)
t􏼐 􏼑􏼒 􏼓,

· for  j � 1, 2, . . . , J,

(17a)

p yt

􏼌􏼌􏼌􏼌 s
(1)
t􏼐 􏼑 � N yt

􏼌􏼌􏼌􏼌 s
(1)
t , τ􏼐 􏼑, (17b)

where yt is the observation at time step t, s
(j)
t is the latent

state for the j-th layer at time step t, and f is a link function,
which maps states from the (next higher) (j + 1) − th layer
to the nonnegative variance of the random walk in the j-th
layer. Te HGF model typically defnes the link function as
f(s

(j+1)
t ) � exp(κs

(j+1)
t + ω), where κ and ω are either

hyperparameters or random variables included in the model.
As in the previous example, the exact Bayesian inference

for this type of model is not tractable. Moreover, the vari-
ational message update rules (9) are not tractable either, as
the HGF model contains nonconjugate relationships among
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variables in the form of the link function f. However, in-
ference in this model is still possible with the custom
message update rules approximation [43].Te ReactiveMP.jl
package supports a straightforward API to add custom
nodes with custom message passing update rules. In fact,
a large part of the ReactiveMP.jl library is a collection of
well-known factor nodes and message update rules imple-
mented using the same API as for custom novel nodes and
message update equations. Te API also supports message
update rules that involve extra nontrivial approximation
steps. In this example, we added a custom Gaussian con-
trolled variance (GCV) node to model the nonlinear time-
varying variance mapping from diferent hierarchy levels
(17a), with a set of approximate update rules based on the

Gauss–Hermite cubature rule from [44]. Te main purpose
of this example is to show that ReactiveMP.jl is capable of
running inference in complex nonconjugate models but
requires creating custom factor nodes and choosing ap-
propriate integral calculation approximation methods.

6.3.1. CBFE Specifcation. In this example, we want to show
an example of reactive online Bayesian learning (fltering) in
a 2-layer HGF model (see Section 4.2.5), but there are no
principled limitations to run this model on a full graph. For
simplicity and to avoid extra clutter, we assume τk, κ, and ω
to be fxed, but there are no principled limitations to make
them random variables, endow them with priors, and
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Figure 13: Inference results for the hidden Markov model in Listing 15. (a) Hidden states inference results. Te orange dots represent real
values of states at each time step. Te blue line represents the mean of the posterior over latent states with one standard deviation. (b) Bethe
free energy evaluation results. Te x-axis represents an index of VMP iteration. Te y-axis represents a Bethe free energy value at a specifc
VMP iteration.

# “@model” macro accepts an optional list of default parameters
# Here we use the “MeanField” factorization assumption
@model [ default_factorization�MeanField () ]
function hidden_markov_model (n, priorA, priorB)

A ∼ MatrixDirichlet (priorA)
B ∼ MatrixDirichlet (priorB)
z� randomvar (n)
y� datavar (Vector{Float64}, n)
# “Transition” node is an alias for “Categorical (B ∗ z [ ])”
z [1] ∼ Categorical (fll (1.0/3.0, 3))
y [1] ∼ Transition (z [1], B)

for t in 2 : n
# We override the default “MeanField” assumption with
# structured posterior factorization assumption using “where” block
z [t] ∼ Transition(z [t− 1], A) where {q� q (z [t− 1], z [t]) q (A)}
y [t] ∼ Transition(z [t], B)
end
return A, B, z, y

end

LISTING 15: An example of model specifcation for the hidden Markov model (14).
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estimate their corresponding posterior distributions. For online
learning in the HGF model (16a) and (16b), we defne only
a single time step and specify the structured factorization as-
sumption for state transition nodes as well as for higher layer
random walk transition nodes and the mean-feld assumption
for other functional dependencies in the model

q s
(1)

, s
(2)

􏼐 􏼑 � q s
(1)

􏼐 􏼑q s
(2)

􏼐 􏼑, (18a)

q s
(1)

􏼐 􏼑 �
􏽑

T
t�2q s

(1)
t−1, s

(1)
t􏼐 􏼑

􏽑
T
t�2q s

(1)
t􏼐 􏼑

, (18b)

q s
(2)

􏼐 􏼑 �
􏽑

T
t�2q s

(2)
t−1, s

(2)
t􏼐 􏼑

􏽑
T
t�2q s

(2)
t􏼐 􏼑

. (18c)

We show an example of an HGF model specifcation in
Listing 16. For the approximation of the integral in the
message update rule, the GCV node requires a suitable
approximation method to be specifed during model crea-
tion. For this reason, we create a metadata object called
GCVMetadata() that accepts a GaussHermiteCubature()
approximation method with a prespecifed number of sigma
points gh n.
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Figure 14: A comparison of run-time duration in milliseconds for automated Bayesian inference for a hidden Markov model (13) across
diferent methods: reactive variational message passing (ReactiveMP.jl), scheduled variational message passing (ForneyLab.jl) and
a combination of Hamiltonian Monte Carlo and particle Gibbs (Turing.jl). Te values in the fgure show the minimum possible duration
across multiple runs. In this benchmark the number of categories M of observations is set to 3. ReactiveMP.jl and ForneyLab.jl perform
VMP on a full graph. Te number of VMP iterations is set to 20. Te ReactiveMP.jl timings include graph creation time. Te ForneyLab.jl
pipeline consists of model compilation, followed by actual inference execution. Turing.jl runs two benchmarks with 250 and 500 number of
samples respectively. We present benchmark results for more than 1 000 observations only for the ReactiveMP.jl package, since for other
compared packages it involved running the inference for more than an hour.

Table 3: A comparison of run-time duration in milliseconds for automated Bayesian inference for a hidden Markov model (13) across
diferent methods: reactive variational message passing (ReactiveMP.jl), scheduled variational message passing (ForneyLab.jl) and
a combination of Hamiltonian Monte Carlo and particle Gibbs (Turing.jl). Te values in the table show the minimum possible duration
across multiple runs. Te T column represents the number of observation in a data set. In this benchmark the number of categories M of
observations is set to 3. ReactiveMP.jl and ForneyLab.jl perform VMP on a full graph. Te number of VMP iterations is set to 20. Te
ReactiveMP.jl timings include graph creation time. Te ForneyLab.jl pipeline consists of model compilation, followed by actual inference
execution. Turing.jl runs two benchmarks with 250 and 500 number of samples respectively. We present benchmark results for more than
10 000 observations only for the ReactiveMP.jl package since for other compared packages it involved running the inference for more than
an hour.

T Reactive VMP
Scheduled VMP HMC+PG

Compilation Inference 250 samples 500 samples
100 26 82280 93 93956 186293
250 80 405949 228 396946 783850
10000 7014 — — — —
20000 19142 — — — —
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6.3.2. Inference. For the inference procedure, we adopt the
technique from the Infnite Recursive Chain Processing
section (Section 4.2.5). We subscribe to future observations,
perform a prespecifed number of VMP iterations for each
new data point, and redirect the last posterior update as prior
for the next future observation. Te resulting inference
procedure reacts to new observations autonomously and is
compatible with infnite data streams. We show a part of the
inference procedure for the model (17a) and (17b) in Listing
17. Te HMC algorithm has been executed similarly, by
running inference for each data point and using the pos-
terior results as corresponding priors for the next time step.
Full code is available at GitHub experiment’s repository.

We show the inference results in Figure 16. Figure 16(c)
shows the convergence of Bethe free energy after several
number of VMP iterations. Te qualitative results in
Figure 16(a) and in Figure 16(b) show a correct posterior
estimation of continuously valued hidden states even though
the model contains nonconjugate relationships among
variables.

6.3.3. Benchmark. Te main benchmark results are pre-
sented in Figure 17 and Table 5, and the comparison of
accuracy in Table 6. We show the performance of the

ReactiveMP.jl package based on the number of
observations and the number of VMP iterations for
this particular model in Figure 18. As shown in the
previous example, we note that the ReactiveMP.jl
framework scales linearly both with the number of ob-
servations and with the number of VMP iterations
performed.

We can see that, in contrast with previous examples
where we performed inference on a full graph, the For-
neyLab.jl compilation time is no longer dependent on the
number of observations, and the model compilation is more
acceptable due to the fact that we always build a single time
step of a graph and reuse it during online learning. Both the
ReactiveMP.jl and ForneyLab.jl show the same scalability
and posterior accuracy results, as they both use the same
method for posterior approximation; however, Reac-
tiveMP.jl is faster in VMP inference execution in absolute
timing.

In this model, the HMC algorithm shows less accurate
results in terms of the metric (12). However, due to the
online learning setting, the model has a small number of
unknowns, making it more feasible for the HMC algorithm
to perform inferences for a large number of observations
compared to the previous examples.
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Figure 15: Benchmark results for the hiddenMarkov model in Listing 15. (a) Run-time duration vs. number of VMP iterations for diferent
number of observations in the data set n. (b) Run-time duration vs. number of observations in the data set for a diferent number of VMP
iterations n itr.

Table 4: Comparison of posterior results accuracy in terms of metric (13) in the hidden Markov model (14) across diferent methods:
variational message passing (ReactiveMP.jl and ForneyLab.jl) and a combination of Hamiltonian Monte Carlo and particle Gibbs
(Turing.jl). Lower values indicate better performance. In this experiment, the number of categories M of observations is set to 3.
ReactiveMP.jl and ForneyLab.jl perform VMP on a full graph. Te number of VMP iterations is set to 20. Turing.jl runs two benchmarks
with 250 and 500 numbers of samples, respectively.

Number of observations
50 100 250

VMP (20 iterations) 0.10 0.09 0.07
HMC+PG (250) 0.50 0.51 0.52
HMC+PG (500) 0.51 0.49 0.51

20 Scientifc Programming



7. Discussion

We are investigating several possible future directions for
the reactive message passing framework that could improve
its usability and performance. We believe that the current
implementation is efcient and fexible enough to perform
real-time reactive Bayesian inference and has been tested on
both synthetic and real data sets. Te new framework allows
large models to be applied in practice and simplifes the

model exploration process in signal processing applications.
Te proposed architecture does not create any explicit
schedule and simply allows nodes and edges to react on local
changes in their Markov blanket. Te lack of explicit
scheduling comes with a number of useful properties. Te
inference engine does not need to traverse the entire factor
graph, which may take a signifcant amount of computer
resources. Tere is no need to rebuild the schedule in case of
a model structure change or a data sensor failure. As a result,

# Tis function will be called every time we observe a new data point
function on_next! (actorHGFInferenceActor, dataFloat64)

s_2_prior, s_1_prior, gcv, s_2, s_1, y� actor.model_output
# To perform multiple VMP iterations we pass the data multiple times
# It forces the inference backend to react to the data and to
# update posterior marginals multiple times
for i in 1:actor.n_vmp_iterations

update! (s_2_prior, actor.current_s_2)
update! (s_1_prior, actor.current_s_1)
update! (y, data)

end
. . .

# Update current posterior marginals at time step “t”
actor.current_s_2�mean_precision (last (actor.history_s_2))
actor.current_s_1�mean_precision (last (actor.history_s_1))

end

LISTING 17: A part of an example of inference specifcation for the hierarchical Gaussian flter model (16a) and (16b).

# We use “MeanField” factorization assumption
# In principle, the model specifcation function may accept the
# number of layers as an argument and construct the graph for any given layer
@model [ default_factorization�MeanField () ]
function hierarchical_gaussian_flter_model (gh n, s 2 w, y w, kappa, omega)

# “s_2” refers to the second layer in the hierarchy
# “s_1” refers to the frst layer in the hierarchy
s_2_prior� datavar (Float64, 2)
s_1_prior� datavar (Float64, 2)
y� datavar (Float64)
s_2_previous ∼ GaussianMeanPrecision (z_2_prior [1], z_2_prior [2])
s_1_previous ∼ GaussianMeanPrecision (s_1_prior [1], s_1_prior [2])
# Z−layer modeled as a random walk with structured factorization assumption
s_2 ∼ GaussianMeanPrecision (s_2_previous, s_2_w) where {

q� q (s_2_previous, s_2) q (s 2 w)
}
# GCV node uses Gauss−Hermite cubature to approximate the nonlinearity
# between layers in the hierarchy. We may change the number of points
# used in the approximation with the “gh n” model argument
meta�GCVMetadata (GaussHermiteCubature (gh n))
# Comma syntax for the tilde operator allows us to extract a reference to
# the GCV node, which we will use later on to initialise joint marginals
gcv, s_1􏽥GCV (s_1_previous, s_2, kappa, omega) where {

q� q (s_1, s_1_previous) q (s_2) q (kappa) q (omega), meta�meta
}
y ∼ GaussianMeanPrecision (s 1, y w)
return s_2_prior, s_1_prior, gcv, s_2, s_1, y

end

LISTING 16: An example of model specifcation for the hierarchical Gaussian flter model (17).
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inference execution is adaptive and more robust. Without
a fxed message passing scheduling, it is possible to update
messages at diferent rates in diferent parts of the model
graph. All of these properties arise naturally in the proposed
architecture and come for “free.” Te actual order, in which
messages will be executed, is data-dependent and results
from which nodes or edges had an opportunity to react frst.
Crucially, there is no need to specify the order explicitly. As
mentioned in Section 6, the resulting architecture has been
successfully battle-tested in sophisticated probabilistic
models for real-world scenarios.

A natural future direction is to apply the new framework
to anActive Inference [45] setting. A reactive active inference
agent learns purposeful behavior solely through situated
interactions with its environment and processing these in-
teractions by real-time inference. As we discussed in Mo-
tivation (Section 2), an important issue for autonomous
agents is robustness of the running Bayesian inference
processes, even when nodes or edges collapse under situated
conditions. ReactiveMP.jl supports in-place model adjust-
ments during the inference procedure as well as handles
missing data observations, but it does not export any user-
friendly API yet. For the next release of our framework, we
aim to export a public API for robust Bayesian inference to
simplify the development of active inference agents. In
addition, our plan is to proceed with further optimization of
the current implementation and improve the scalability of
the existing package in real time on embedded devices.
Moreover, the Julia programming language is developing
and improving, and thus, we expect it to be even more
efcient in the coming years.

Reactive programming allows us to easily integrate
additional features into our new framework. First, we
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Figure 17: A comparison of run-time duration in milliseconds for
automated Bayesian inference in a Hierarchical Gaussian flter
model (16a) and (16b) across diferent methods: reactive variational
message passing (ReactiveMP.jl), scheduled variational message
passing (ForneyLab.jl) and Hamiltonian Monte Carlo (Turing.jl).
Te values in the fgure show the minimum possible duration
across multiple runs. ReactiveMP.jl and ForneyLab.jl perform
online learning with VMP on a single time step of the corre-
sponding graph. Te number of VMP iterations performed is set to
20. Te ReactiveMP.jl timings include graph creation time. Te
ForneyLab.jl pipeline consists of model compilation, followed by
actual inference execution. Turing.jl uses HMC sampling with 500
and 1000 number of samples respectively.
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Figure 16: Online learning inference results for the Hierarchical Gaussian flter model (16a) and (16b) for 250 synthetically generated 1-
dimensional observations. (a)Te inference results of layer s

(2)
t hidden states.Te x-axis represents the time steps and the y-axis corresponds

to the actual value of hidden states. (b) Te inference results of layer s
(1)
t hidden states. Te x-axis represents the time steps and the y-axis

corresponds to the actual value of hidden states. (c) Bethe free energy evaluation results. Te x-axis represents an index of VMP iteration.
Te y-axis represents a Bethe Free Energy value averaged over all data points at a specifc VMP iteration.
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investigate the possibility of running reactive message
passing-based inference in parallel on multiple CPU cores
[46]. RP does not make any assumptions in the underlying
data generation process and does not distinguish between
synchronous and asynchronous data streams. Second, re-
active systems allow us to integrate local stopping criteria
for passing messages. In some scenarios, we may want to

stop passing messages based on some prespecifed criterion
and simply stop reacting to new observations and save
battery life on a portable device or to save computational
power for other tasks. Tird, our current implementation
does not yet provide extensive debugging tools, but it might
be crucial to analyze the performance of message passing-
based methods step-by-step. We are looking at options to
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Figure 18: Benchmark results for the Hierarchical Gaussian flter model (16a) and (16b) in Listing 16. (a) Benchmark: run-time duration vs.
number of VMP iterations for diferent number of observations in data set n. (b) Benchmark: run-time duration vs number of observations
in the data set for diferent number of VMP iterations n itr.

Table 5: A comparison of run-time duration in milliseconds for automated Bayesian inference in a Hierarchical Gaussian Filter model (16a)
and (16b) across diferent methods: reactive variational message passing (ReactiveMP.jl), scheduled variational message passing (For-
neyLab.jl) and HamiltonianMonte Carlo (Turing.jl).Te values in the fgure show theminimum possible duration across multiple runs.Te
T column represents number of observation in a data set. ReactiveMP.jl and ForneyLab.jl perform online learning with VMP on a single
time step of the corresponding graph. Te number of VMP iterations performed is set to 20. Te ReactiveMP.jl timings include graph
creation time. Te ForneyLab.jl pipeline consists of model compilation, followed by actual inference execution. Turing.jl uses HMC
sampling with 500 and 1000 number of samples respectively.

T Reactive VMP
Scheduled VMP HMC

Compilation Inference 500 samples 1000 samples
50 19 597 457 1357 3036
100 38 602 876 2607 5287
250 95 592 2368 6531 12847
10000 4412 — — — —
100000 45889 — — — —

Table 6: Comparison of posterior results accuracy in terms of metric (12) in the hierarchical Gaussian flter model (17b) across diferent
methods: variational message passing (ReactiveMP.jl and ForneyLab.jl) and Hamiltonian Monte Carlo (Turing.jl). Lower values indicate
better performance. ReactiveMP.jl and ForneyLab.jl perform online learning with VMP on a single time step of the corresponding graph.
Te number of VMP iterations is set to 20. Turing.jl runs two benchmarks with 500 and 1000 number of samples, respectively.

Number of observations
x

(2)
k layer x

(1)
k layer

50 100 250 50 100 250

VMP (20 iterations) 0.89 0.79 0.75 0.36 0.35 0.35
HMC (500) 1.41 1.29 1.51 0.45 0.62 4.74
HMC (1000) 1.30 1.14 1.22 0.41 0.49 2.56
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extend the graphical notation and integrate useful debug
methods with the new framework to analyze and debug
message passing-based inference algorithms visually in
real time and explore their performance characteristics.
Since the ReactiveMP.jl package uses reactive observables
under the hood, it should be straightforward to “spy” on
all updates in the model for later or even real-time
performance analysis. Tat should even further sim-
plify the process of model specifcation, as one may
change the model in real time and immediately see the
results.

Moreover, we are in a preliminary stage of extending the
set of available message passing rules to a broader class of
nonconjugate priors and likelihood pairs [30]. Generic
probabilistic toolboxes in the Julia language, like Turing.jl,
support inference in a broader range of probabilistic models,
which is currently not the case for the ReactiveMP.jl. We are
working on the future extension of message update rules and
potential integration with other probabilistic frameworks in
the Julia community.

Finally, another interesting future research direction is to
decouple the model specifcation language from factoriza-
tion and the form constraint specifcation in the variational
family of distributions QB. Tis would allow us to have
a single model p(s, y) and a set of constrained variational
families of distributions QBi

so we could run and compare
diferent optimization procedures and their performance
simultaneously or trade of computational complexity with
accuracy in real time.

8. Conclusions

In this paper, we presented methods and implementation
aspects of a reactive message passing (RMP) framework both
for exact and approximate Bayesian inference, based on
minimization of a constrained Bethe free energy functional.
Te framework is capable of running hybrid algorithms with
BP, EP, EM, and VMP analytical message update rules and
supports local factorization as well as form constraints on the
variational family. We implemented an efcient proof-of-
concept of RMP in the form of the ReactiveMP.jl package for
the Julia programming language, which exports an API for
running reactive Bayesian inference and scales easily to large
state-space models with hundreds of thousands of unknowns.
Te inference engine is highly customizable through ad hoc
construction of custom nodes, message update rules, ap-
proximation methods, and optional modifcations to the
default computational pipeline. Te experimental results
for a set of standard signal processing models indicated
better performance for RxInfer relative to other Julia
packages for automated Bayesian inference. Te bench-
mark results showed that the overhead, associated with
managing the reactive nature of the proposed architecture,
is minimal and that RMP generally outperforms the ref-
erence message passing-based implementation. We believe
that the reactive programming approach to message
passing-based methods opens a lot of directions for further
research and will bring real-time Bayesian inference closer
to real-world applications.
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