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Abstract

Optimizing a (preference) function through a small number of pairwise comparisons
is challenging since pairwise comparisons provide limited information about the
underlying function. In practice, preference functions often have a single peak, and
this property could be exploited to speed up the optimization process. In this paper
we describe a Bayesian optimization method aimed at achieving this.

1 Introduction

The idea behind Bayesian optimization (BO) is to use assumptions about the (expensive to evaluate)
objective function in order to reduce the number of function evaluations (Brochu et al., 2010). These
assumptions are defined as a prior distribution over the space of possible objective functions. The
usefulness of this approach depends on both the validity and strength of the assumptions. Weak
assumptions might be valid but unhelpful in reducing the number of function evaluations. Strong
assumptions on the other hand might easily be violated, leading to fast convergence to the wrong
solution. The Gaussian process (GP) prior is a popular choice in BO, in part because it can encode
reasonable assumptions such as smoothness, and the strength of these assumptions can be tuned
through (maximum likelihood) estimation of the hyperparameters.

Bayesian optimization can still be applied if the objective function cannot be evaluated directly, but
only (noisy) binary pairwise comparisons are available. This is a common scenario in for example
human preference learning, where users can often only judge inputs relative to each other (“I prefer B
over A”) but not on an absolute scale. However, such pairwise comparisons provide less information
about the objective function than direct function evaluations, increasing the number of required
iterations in a BO loop. On top of this, practical considerations might limit the number of available
iterations. As a result, just assuming the objective function to be smooth – for example by putting a
GP prior on it – might not be enough to converge to a reasonable solution within the available time
budget. The problem here is that the smoothness assumption is relatively weak: it requires visiting
every neighborhood of the (potentially high-dimensional) input space to obtain a good estimate of
the objective function. To avoid this, optimization methods based on pairwise comparisons have
been developed that avoid probabilistic inference of the objective function altogether, for example by
resorting to direct stochastic gradient ascent on the objective function (Yue and Joachims, 2009).

In this work we propose a different approach: making stronger assumptions about the shape of the
objective function. In a variety of practical setups it seems reasonable to assume that the objective
function has a single peak and is monotonically decreasing away from this peak. Think for example
about a human’s comfort level as a function of the temperature setting of a climate control system.
We present a BO method for setups with pairwise comparison observations that exploits this property
to significantly speed up the optimization. Since a GP prior is unable to encode the “single peak
assumption”, we propose a different, parametric model for the objective function. This allows us to
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retain a full Bayesian treatment of the optimization problem while reducing the number of iterations
required to converge to the neighborhood of the optimum.

2 Problem definition

Consider some system or algorithm that is governed by a configuration vector x ∈ X , where X ⊆ Rd.
We want to optimize the system’s performance by tuning x, but we can only do so by playing the
following sequential game: At every step i, we propose a new configuration vector x′

i and observe a
(noisy) binary label yi ∈ {+1,−1} indicating whether proposal x′

i results in better performance than
the current configuration xi. If so, the proposal is adopted and xi+1 is set to x′

i, otherwise xi+1 = xi.

The pairwise comparison between two inputs (x,x′) is governed by an underlying latent objective
function f : X → R through a response model p(y = +1|x,x′, f) = Pr{f(x′) + ε ≥ f(x)}, where
ε is a zero-mean noise term. We assume that obtaining a comparison is expensive, for example
because it involves asking a human for feedback. Moreover, we assume that f has a single peak and
is monotonically decreasing away from this peak.

Our goal is to incrementally build an input sequence [x′
1, . . . ,x

′
N ] that maximizes the cumulative

value of the objective function for sufficiently large N : V =
∑N

i=1 f(x′
i). The problem of how to

generate the input sequence in an optimal way is known as the (continuous) dueling bandits problem
(Busa-Fekete and Hüllermeier, 2014), and it involves an exploration–exploitation trade off. On the
one hand we want to select x′

i such that f(x′
i) is probably large. On the other hand we want to

propose inputs that allow us to learn about f , so we can propose better inputs in the future.

3 Bayesian optimization in the continuous dueling bandit setting

We briefly introduce BO in the dueling bandit setting. BO is ususally aimed at solving the global
optimization problem x? = arg maxx f(x), where f is a black box function that is expensive to
evaluate (Brochu et al., 2010; Shahriari et al., 2016). The main idea is to posit a probabilistic model
for f , and to use this model to sequentially select ‘good’ query points, such that the number of
function evaluations is kept to a minimum. The most common choice for p(f) is the GP prior, which
can capture assumptions about f such as smoothness and periodicity (Rasmussen and Williams,
2006).

Although f cannot be evaluated directly in the pairwise comparison setup, the BO paradigm can still be
applied. This requires specifying a probabilistic generative model which factors in a response model
and a prior on the latent objective function: p(y, f |x,x′) = p(f)p(y|x,x′, f). Chu and Ghahramani
(2005) worked out this model for a GP prior p(f) and a probit response model p(y|x,x′, f) =
Φ(y · (f(x′) − f(x))). This response model assumes that the pairwise comparison is performed
under additive Gaussian noise on f . Given a set of pairwise comparisons Di = {x1:i,x

′
1:i, y1:i}, the

posterior GP p(f |Di) can be obtained through approximate Bayesian inference, and can then be used
to select a next input as in regular BO through some acquisition function.

Multiple methods such as BALD (Houlsby et al., 2011) and BOPPER (Gonzalez et al., 2016) have
been developed for finding the next input pair (xi+1,x

′
i+1) based on the posterior p(f |Di) such that

yi+1 will provide maximum information about f . However, these methods are generally not well
suited for the bandit setting since they only aim at exploration (exploring f to locate its optimum
in as few steps as possible) and ignore the exploitation aspect. Thompson sampling (Russo et al.,
2017) is a simple but effective method for selecting inputs that has been shown to yield good results
in the bandit setting (Agrawal and Goyal, 2012; Leike et al., 2016). Under Thompson sampling, the
next proposed input is chosen as x′

i+1 = arg maxx f̃(x), where f̃ ∼ p(f |Di) is a random objective
function drawn from the posterior.

4 A parametric model for pairwise comparisons

Our goal in this work is to develop a BO method that can exploit the assumption that the objective
function has a single peak and is decreasing away from this peak. This can be achieved by constructing
a prior p(f) that enforces this property, i.e. that puts little or zero probability mass on functions that
do not have this property. Unfortunately, this is not possible with a GP prior.
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Bell shape, fx̂,Λ(x) =

exp[−(x− x̂)T Λ(x− x̂)].
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Figure 1: Analytical forms for objective function f . Parameter x̂ specifies the position of the
maximum and parameter Λ is a matrix that governs the shape. The heat maps illustrate the likeli-
hood functions for the maximizing argument, ly,x,x′,Λ(x̂) = p(y|x,x′,Λ, x̂), that follow from the
respective analytical forms for d = 2.

To construct a prior that encodes the single peak assumption, we propose to fix f to a specific
analytical form. We consider three such forms, corresponding to the assumptions that f is either (a)
bell-shaped, (b) cone-shaped or (c) parabolic. All of these forms have two parameters: parameter
x̂ ∈ X determines the position of the peak and parameter Λ is positive-definite d × d matrix that
determines the shape of the function around the peak. The forms are listed in Fig. 1, together with the
likelihood functions they induce for the argmax parameter x̂. Note that it is sufficient to fix the form
of the objective function upto an additive constant, since the pairwise comparison response model is
invariant to additive constants in the underlying objective function.

Given the analytical form of f , p(f) is now specified through priors on the parameters: p(x̂) and
p(Λ). Without loss of generality, we constrain the input domain to the hypercube X = [0, 1]d. To
ensure p(x̂) = 0 for x̂ /∈ X , we specify p(x̂) implicitly through a prior on a transformed variable ẑ:

x̂ = Φ(ẑ), ẑ ∼ N (µ,Σ),

Λ = diagm([λ1, . . . , λD]), λd ∼ Gamma(kd, θd).
(1)

Fixing the analytical form of f makes the pairwise comparison model parametric, and posterior
inference of f boils down to posterior inference of parameters x̂ and Λ. Unsurprisingly, this is not
analytically tractable. However, one can apply black box variational inference methods to achieve
approximate Bayesian inference. In our experiments we use the probabilistic programming language
Stan and its automatic differentiation variational inference engine to automate posterior inference
(Kucukelbir et al., 2015). The fact that this model leads to an explicit posterior distribution for x̂ is
convenient since it makes it trivial to implement Thompson sampling: one can sample new proposals
directly from p(x̂|D).

Assuming that the objective function admits to a simple parametric form is clearly a strong assumption,
and there will be a model mismatch if the true objective function does not have the chosen form.
However, the hope is that if the model can provide a reasonable fit at the evaluation points, it can
significantly speed up the localization of the peak in the objective function compared to more flexible
models like the GP. This is useful in the bandit setting.

The illustrations of the likelihood functions ly,x,x′,Λ(x̂) of the cone and parabola forms in Fig. 1
provide an interesting insight into why these assumptions may lead to faster convergence. Under these
models, each pairwise comparison yields a likelihood term that suppresses a much larger part of the
input space than just the direct neighborhood of one of the inputs. In contrast, the bell-shaped form
leads to likelihood terms that will only affect the posterior distribution of x̂ in the direct neighborhood
of the input pair. This is similar to the behavior resulting from a GP prior with a kernel that enforces
smoothness. If Λ is the identity matrix, the cone form reduces to the negative Euclidean distance:
fx̂(x) = −||x− x̂||.
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(b) Results of optimization of f1.
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(d) Results of optimization of f2.

Figure 2: Results of dueling bandits optimization of two artifical objective functions. The cumulative
value curves are the averages of 50 runs and the shaded areas represent two standard deviations.

5 Experiments

We test the usefulness of the parametric model in the dueling bandit optimization setting from Section
2 by comparing its performance to that of a GP model on two artificial objective functions. The first
objective function is a 1 dimensional cone, depicted in Fig. 2a. The second one is a bell-shaped
function, shown in Fig. 2c. In both experiments we compare the cone variant of the parametric
model (Cone-Thompson) to a GP model with a squared exponential kernel (GP-Thompson). Since
the parametric model assumes the objective function to have the analytical form of a cone, there is a
model mismatch in the second experiment, allowing us to test the robustness under mismatch. Priors
p(x̂) and p(Λ) are chosen to be uninformative. Inputs [x′

1, . . . ,x
′
40] are selected through Thompson

sampling under both models. The hyperparameters of the GP model are fitted in every iteration by
marginal log-likelihood optimization.

The results in Figures 2b and 2d show that Cone-Thompson consistently and significantly outperforms
GP-Thompson on both acquisition functions. This is encouraging because it suggests that the
parametric model might be able to outperform GP-based models on real objective functions that are
peak-shaped.

6 Conclusions

If the objective function in a Bayesian optimization setup with pairwise comparisons is peak-shaped,
it is possible to exploit this property to speed up the optimization. We proposed a simple parametric
prior for objective functions that can be used to achieve this. In practical systems, it could be
beneficial to add this model to an ensemble model that also includes more flexible priors.
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