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Abstract

In order to personalize the behavior of hearing aid devices in different acoustic
scenes, we need personalized acoustic scene classifiers. Since we cannot afford
to burden an individual hearing aid user with the task to collect a large acoustic
database, we will want to train an acoustic scene classifier on one in-situ recorded
waveform (of a few seconds duration) per class. In this paper we develop a method
that achieves high levels of classification accuracy from a single recording of an
acoustic scene.

1 Introduction

We introduce our problem by an example. A hearing aid user may change several locations during
the day, e.g., she may move through her home, car, office, grocery store, subway train etc. Since
the acoustic conditions are quite different in each of these locations, the desired signal processing
settings for her hearing aid may also differ across these locations. The set of frequently occurring
acoustic environments is personal to a large extent. As a result, there is a need for personalized signal
processing settings in a set of acoustic environments that differ across people.

In order to deal with this issue, we want a personalizable acoustic environment classifier as part of an
intelligent hearing device. Since we want to impose as little burden on the end user as possible, we
aim to build an acoustic environment classifier that can be trained under in-situ conditions by an end
user who records a single example (of a few seconds in duration) of a new environment. We note that,
aside from the hearing aids application, k-shot acoustic context∗ recognition can be also useful in
other areas, such as urban monitoring and elderly care.

K-shot learning is relatively unexplored problem for acoustic scene classification. In this paper we
develop a two-step procedure for training a probabilistic acoustic scene classifier by a single observed
example of a novel acoustic environment. In the first step, the classifier is “pre-trained” on a broad
acoustic database. This step sets the prior of the classifier to focus on acoustic scenes. In the second
step, the classifier is further trained on the basis of a sample of a few seconds of a novel environment,
which has been in-situ recorded by the end user.

We evaluate the performance of the proposed system on a benchmark dataset [1]. Our model
features a competitive performance level with few training examples and beats a baseline method
(Nearest-Neighbor classifier). Adding more training examples gradually improves the recognition
accuracy.

2 Related Work

k-shot learning K-shot learning is a fairly well-studied problem in the context of computer vision
([2], [3], [4]) and more recently in the fields of generative modeling ([5], [6]) and reinforcement
learning ([7]). Few works seem to relate to k-shot learning for acoustic modeling. [8] describes a
∗We use the terms “environment”, “context” and “scene” as synonyms in this paper.
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particularly relevant application to one-shot learning of speech concepts, where the trained model
almost reaches human performance levels in recognizing new examples of words in both the Japanese
and English languages. In [9], an approach to one-shot learning of arm gestures is described that is
similar to the approach in the current paper.

Acoustic scene modeling and classification With the recent surge of interest in deep learning
systems, many neural network-based models have been developed for acoustic scene classification,
e.g., [10], [11], [12]. Other classification methods for this problem have also been investigated in the
literature, however, they usually require hand-crafted feature extraction pipelines, which is something
we want to avoid here. It is not clear yet whether modification of any of these approaches would
result in a system that is able to outperform the proposed method in a one-shot learning mode.

3 Problem statement

Let xi = (xi,1, xi,2, . . . , xi,T ) be an acoustic waveform that is drawn from an acoustic class c ∈ C.
We assume to have access to a large set X of unlabeled waveforms that were drawn from a wide
range of scenes that effectively cover all classes in C. Later, we receive a new set of (in-situ obtained)
labeled waveforms D = {(xj , cj)}, which were drawn from new scenes, i.e., cj ∈ C+, with
C+ ∩ C = ∅. The data set D contains M ∈ N+ waveforms for each scene C+.

The task is to build a classifier that is able to correctly classify unseen waveforms from the new
classes C+, using information that is contained in X and D. We will have a preference for very low
values of M , e.g., M = 1 leads to the one-shot learning.

4 Model Specification

We use a generative probabilistic modeling approach, which requires, in our case, specification of
a joint probability distribution p(x, z, c, θ|m) over the observed variables x, latent states z, latent
classes c and model parameters θ (and m is a label for the model choice). All needed tasks, e.g.,
parameter estimation and classifier execution, can be formulated as inference tasks on this model.
Omitting the conditioning on model m, we choose a model that factorizes as

p(x, z, c, θ) = p(x, z|θ, c) p(θ|c) p(c) .

Natural signals consist of components that evolve over different time scales. This characteristic
drives us toward hierarchical dynamic Bayesian models. We also want a mechanism to explicitly
model the durations of staying in some meta-state (bird chirping, footsteps, etc.). Here, we use the
Hidden Semi-Markov Model (HSMM) as the dynamics model since it appears to satisfy the basic
requirements for dynamic modeling of natural acoustic sounds [13].

4.1 Hidden Semi-Markov Model

In an HSMM, a sequence x is parsed into segments where a hidden segmental state remains constant
over a variable number of time steps. Let k ∈ N+ be a segment counter. Each hidden segmental state
zk ∈ {1, 2, . . . , S} emits a variable number (dk) of observations xtk , xtk+1, . . . , xtk+dk−1, where
dk is drawn from a Poisson distribution. Since the jth segment contains dj samples, the first sample of
the kth segment has time index tk = 1 +

∑k−1
j=1 dj . The dynamic part p(x, d, z|θ, c) of the generative

model is formally described by†

p(x, d, z|θ, c) = pc(x|z, d, θ) pc(d|z, θ) pc(z|θ)

= pc(z0)

K∏
k=1

tk+dk−1∏
t=tk

N
(
xt

∣∣∣µ(c,zk),Σ(c,zk)
)

︸ ︷︷ ︸
observation

 Pois
(
dk

∣∣∣λ(c,zk))︸ ︷︷ ︸
segment duration

Cat
(
zk

∣∣∣π(c,zk−1)
)

︸ ︷︷ ︸
segment transition

†Contextual information such as scene index c and segmental index z are collected in superscripts. Temporal
indices such as time step t and segment counter k are denoted in subscripts.
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Figure 1: A Bayesian network graph of the model.

We specify the parameter priors by λ(c,zk) ∼ Gam
(
a(c,zk), b(c,zk)

)
, µ(c,zk) ∼ N

(
m(c,zk), V (c,zk)

)
,

Σ(c,zk) ∼ W−1
(
Ψ(c,zk)ξ(c,zk)

)
and π(c,zk−1) ∼ Dir

(
φ(c)

)
with φ(c) ∼ Gam(α(c), β(c)).

Finally, we choose a uniform Categorical distribution for the prior over scene classes, making all
acoustic scenes a priori equally likely, i.e., p(c) = Cat

(
c
∣∣∣ 1
|C| , . . . ,

1
|C|

)
. A graphical representation

of this model is depicted in Figure 1.

5 Methods

Learning During learning, our goal is to infer the posterior distribution p(θ|c,X,D) for the model
parameters for each class. Since the dataset D contains very few (M ) training examples per scene,
we use a two-step procedure.

In the first step we learn a posterior distribution p
(
λ(c,zk)

∣∣ c,X) for the segmental duration parame-
ters using waveforms from X by (Bayes rule):

p
(
λ(c,zk)

∣∣∣ c,X) ∝∑
z,d

∏
xi∈X

p (x = xi, d, z|c, θ) p (θ|c) . (1)

In the second step we learn class-specific parameter distributions from labeled examples in D by

p (θ|c,X,D) ∝
∑
z,d

∏
(xj ,cj)∈D

p (x = xj , d, z, c = cj |θ) p (θ|c,X) (2)

Classification We assign the class label c∗ to an unlabeled example x∗ based on the maximum
posterior probability, i.e.,

c∗ = arg max
c∈C+

p (c|x = x∗, X,D) . (3)

If we assume that all classes have same a priori probability p(c), then the evaluation of
p (c|x = x∗, X,D) is equivalent to the evaluation of likelihood p (x = x∗|c,X,D).

All inference and learning tasks were executed by Gibbs sampling as derived in [14].

6 Experimental evaluation

For the experimental evaluation we used the “TUT database for acoustic scene classification and
sound event detection” (version 2016) that was collected by researchers at Tampere University of
Technology [1]. The dataset contains 15 classes of acoustic scenes with 78 audio files of 30 seconds
duration each. For each audio file, we calculated 20 Mel-Frequency Cepstral Coefficients (MFCC),
plus delta and delta-delta derivatives (totaling 60 coefficients) for each window of 40 ms duration.
For all HSMM models, the cardinality of the set of segmental states was set to S = 20.
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Figure 2: Classification accuracy as a function of number of training examples (1 standard deviation
error bars over 20 repetitions).

The datasets were prepared by the following protocol:

1. We first randomly split the TUT dataset ([1]) into a subset TUT-11 of 11 classes and the 4
remaining classes comprise TUT-4.

2. Next, we randomly drew one example from each of the 11 scenes in TUT-11 to build an
unlabeled data set X that purposely covers a wide range of scenes.

3. We randomly drew M examples (including labels) from each class in TUT-4 to build the
labeled training data set D(M)

train . The remaining examples are grouped into D(M)
test .

Training in step 1 on dataset X and in step 2 on dataset D(M)
train proceeded by Eqs. 1 and 2 respectively.

Classification performance on data set D(M)
test was evaluated by Eq. 3.

We repeated this process 20 times for each M ∈ {1, 2, 3, 4, 5} to test how well our system performs
on different combinations of selected classes. We also tested the performance of a baseline Nearest-
Neighbor classifier with Dynamic Time-Warping (DTW) distance [15] and of an HSMM model
without transfer of duration distributions (but still following the same protocol).

Our proposed method achieves almost 62% of classification accuracy in one-shot mode of learning,
see Fig. 2. The Nearest-Neighbor classifier with DTW distance (which gets state-of-the-art results on
time series classification tasks [16]) achieves slightly over 58%. We also note that it is beneficial to
incorporate prior information in the learning process since the performance difference between the
HSMM-with-prior and HSMM-without-prior is roughly 10% recognition accuracy.

7 Conclusions

K-shot learning of acoustic context is a challenging task that is important for scene-dependent
personalization of hearing aid algorithms. In this paper, we report on a two-step procedure for
data-efficient in-situ training of a Hidden Semi-Markov Model-based acoustic classifier. The model
was evaluated on a real-world dataset of recorded acoustic scenes. The performance evaluation
showed that incorporation of prior duration distributions is useful for the one-shot learning problem.
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