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1Department of Electrical Engineering, Eindhoven University of Technology
2GN Hearing, Eindhoven, the Netherlands

{m.lukashchuk, i.senoz, bert.de.vries}@tue.nl
∗These authors contributed equally to this work

ABSTRACT

Variational message passing is an efficient Bayesian inference
method in factorized probabilistic models composed of con-
jugate factors from the exponential family (EF) distributions.
In many applications, a more accurate model for the process
under consideration can be obtained by inserting nonlinear
deterministic factors in the model. Unfortunately, variational
messages that pass through nonlinear nodes cannot be analyt-
ically computed in closed form. In this paper, we derive an
efficient algorithm for passing variational messages through
arbitrary deterministic factors. Our method is based on pro-
jecting outgoing messages onto an EF distribution. We im-
plemented our algorithm in RxInfer, which is an open-source
message passing-based inference package in Julia. The result-
ing implementation yields efficient message passing-based in-
ference in arbitrary models composed of stochastic and deter-
ministic factors. We compare our method to alternative state-
of-the-art inference methods and find lower (i.e., better) free
energy residuals for the proposed method.

Index Terms— Factor graphs, Non-linear Filtering, Mes-
sage Passing, Variational Bayesian inference

1 Introduction
Bayesian reasoning, committed to using probability the-

ory for handling uncertainty, is optimal under the assumption
of universally agreeable axioms [1]. This perspective sug-
gests viewing parameter inference in models such as state
space and hidden Markov models as an exercise in Bayesian
reasoning. However, the complex integral computations in
Bayes’ rule necessitate algorithms that strike a balance be-
tween accuracy and computational efficiency. In line with
this, our paper presents an improved algorithm that minimizes
computational costs while maintaining competitive accuracy.

We shortly discuss the positioning of the proposed algo-
rithm relative to existing work in the context of Fig. 1. Ana-
lytical closed-form solutions for Bayesian inference tasks are
only available for linear Gaussian systems. For more complex
systems, Bayesian inference is approximated by Monte Carlo
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Fig. 1: Positioning of the proposed CVMP inference method in the landscape
of Bayesian inference methods. This view on inference methods is not ex-
haustive nor unique. See discussion in section 1 for interpretation.

(MC) sampling or by variational optimization of a tractable
bound on Bayesian evidence. Monte Carlo sampling methods
such as the No-U-Turn Sampler (NUTS) [2] are not suited for
real-time inference in signal processing tasks with strong re-
source constraints. A popular variant of variational inference
is Automated Differentiation Variational Inference (ADVI)
[3], which is very user-friendly (i.e., automated), but is also
computationally heavy. Another important algorithm in this
space is Kahn’s Conjugate-computation Variational Inference
(CVI) algorithm that extends natural gradient descent to non-
conjugate models [4]. However, for real-time signal process-
ing in a non-trivial model, we will argue in section 2 that
message passing-based inference is arguably the only feasible
method [5, 6]. In particular, the Variational Message Pass-
ing (VMP) algorithm provides closed-form message update
rules in models composed of appropriately matched (”conju-
gate”) prior and likelihood pairs from the exponential family
of distributions. Unfortunately, message computation in non-
conjugate and non-linear models is not analytically solvable,
and various approximate solutions have been proposed [7, 8].
Recently, [9] proposed Stochastic Variational Message Pass-
ing (SVMP), which casts Kahn’s CVI algorithm into a fac-
tor graph framework. This is an important development for
the signal processing community since fast and accurate in-
ference for a wide range of non-conjugate, non-linear models
has become a reality. In the chase for low-complexity high-
accuracy inference, SVMP still features a weakness as its for-
ward message update rule uses a list of samples to represent a
probability distribution. This is both incompatible with other
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Fig. 2: Forney-style Factor Graph representation of the factorization (1).

(closed-form) messages and potentially computationally ex-
pensive. In this paper, we derive a closed-form forward mes-
sage update rule that combines well with SVMP’s backward
message and interfaces smoothly with conventional message
passing rules. To honor Kahn’s CVI approach, we call our
proposed algorithm Conjugate-computation Variational Mes-
sage Passing (CVMP).

2 Background on Factor Graphs and
Variational Inference

We shortly recapitulate why message passing in factor
graphs is an attractive inference method for signal processing
tasks. Consider a factorized multivariate function

f(x1, x2, . . . , x6) = fa(x1)fb(x2)fc(x3, x2, x1)

fd(x4)fe(x5, x4, x3)fg(x6, x5)fh(x6) . (1)
Assume that we are interested in inferring (the so-called
marginal distribution)

q(x3) ≜
∑

x1,x2,x4,x5,x6

f(x1, x2, . . . , x6) . (2)

If each variable xi in (2) has about 10 possible values, then
the sum contains about 1 million terms. However, making use
of the factorization (1) and the distributive law, we can rewrite
this sum as q(x3) = µ3c(x3)µ3e(x3) where

µ3e(x3) ≜
∑
x1,x2

fa(x1)fb(x2)fc(x3, x2, x1) (3a)

µ3c(x3) ≜
∑
x4,x5

fd(x4)fe(x5, x4, x3)µ5e(x5) (3b)

µ5e(x5) ≜
∑
x6

fg(x6, x5)fh(x6) (3c)

The computation in (3), which requires only a few hundred
summations and multiplications, is clearly preferred from a
computational load viewpoint. To execute (3), we need to
compute intermediate results µai(xi) and µia(xi) that afford
an interpretation of local messages in a Forney-style Factor
Graph (FFG) representation of the model, see Fig. 2.

An FFG G = (V, E), represents a factorized function,

f(x) =
∏
a∈V

fa(xa) , (4)

where xa collects the argument variables of factor fa. We as-
sume that all the factors are non-negative. In an FFG, a node
a ∈ V corresponds to a factor fa, and the neighboring edges
E(a) correspond to the variables xa. An edge is connected to
a node if the variable of that edge is an argument of the factor
of the node. We denote the neighboring edges of a node a ∈ V
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Fig. 3: Visualization of a subgraph with indicated sum-product messages.

by E(a). Vice versa, for an edge i ∈ E , the notation V(i) col-
lects all neighboring nodes. As a notational convention, we
index nodes by a, b, c and edges by i, j, unless stated other-
wise. In this paper, we will frequently refer to a subgraph. We
define an edge-induced subgraph by G(i) = (V(i), i), and a
node-induced subgraph by G(a) = (a, E(a)). Furthermore,
we denote a local subgraph by G(a, i) = (V(i), E(a)), which
collects all local nodes and edges around i and a respectively.
The FFG formalism of Forney constrains max |V(i)| = 2 for
every i ∈ E , but we adhere to the terminated FFG formalism
of [6], |V(i)| = 2 for every i ∈ E , by terminating half-edges
with a factor that is proportional to 1.

Following (3), inference in an FFG is settled by the com-
putation of outgoing messages from nodes. Marginalization
results from the product of colliding messages on the edges.
The efficiency of Bayesian inference by message passing in a
factor graph is therefore entirely determined by the accuracy
and costs of computing messages and the product of colliding
messages. For a subgraph G(b, i) = (V(i), E(b)) induced by a
factor fb and variable xi as displayed in Fig. 3, [6, Theorem 1]
derives the following update equations for the outgoing mes-
sage µic from node b and to the node c along the edge i, and
the marginal qi(xi) for variable xi:

µic(xi) =

∫
fb(xb)

∏
j∈E(b)
j ̸=i

µjb(xj)dxj (5)

qi(xi) =
µib(xi)µic(xi)∫
µib(xi)µic(xi)dxi

. (6)

Marginal update equations (6) are derived as the station-
ary solutions of the Bethe free energy (BFE) augmented with
marginalization constraints [10, 6] where the messages (5)
are obtained as the exponentiated Lagrange multipliers that
enforce marginalization constraints. Rigorously, given a sub-
graph G(b, i), the local stationary points of the minimization
problem argminq L[q, f ], where the Lagrangian L[q, f ] is

L[q, f ] =
∑
a∈V

DKL[qa||fa] +
∑
a∈V

ψa

[∫
qa(xa)dxa − 1

]
+

∑
a∈V

∑
i∈E(a)

∫
λia(xi)

[
qi(xi)−

∫
qa(xa)dxa\i

]
dxi

+
∑
i∈E

H[qi] +
∑
i∈E

ψi

[∫
qi(xi)dxi − 1

]
, (7)

are given by (6) as the product of messages (5) that en-
sures marginalization constraints with the definition µia ≜
exp(λia) [10, 6].



In general, the literature about inference in factor graphs is
about efficient approximations of (5) and (6) for a very wide
range of (both stochastic and deterministic, continuous, and
discrete) factors [6, 11, 12].

3 Problem Statement
Given an FFG G = (V, E) representing a factorized

function (4), we consider subgraphs of the form G(b, i) =
(V(i), E(b)) where fb(xb) = δ(xi − hb(xb\i)) is an implicit
function considered as a deterministic factor with xi being
the output of the function hb(xb\i). In the rest of the paper,
without loss of generality, we will assume V(i) = {b, c}.
Figure 3 illustrates the subgraphs of this form. These sub-
graph structures are ubiquitous in many generative models.
Due to non-linearities introduced by deterministic factors, the
computation of messages and (joint) marginal distributions
for subgraphs G(b, i) is challenging.

Moreover, when an FFG includes hard constraints, due to
[13, Conjecture 1, Conjecture 2], the stationary points of (7)
obtained by [10, Theorem 2][6, Theorem 1] are not necessar-
ily interior points (edge minima), which might cause the La-
grange multipliers to have logarithmically-divergent behavior
that causes the marginals (6) and messages (5) to be zero. If
one accepts to work with zero beliefs, then no problem arises.
However, if zero beliefs are unacceptable, one must accept to
work with approximations to avoid edge minima of (7).

Equations (5) and (6) are often not available in closed
form, and brute force computations are not feasible within
reasonable time limits constrained by limited computing
power. This paper addresses the problem of approximating
the message (5) and marginal computations (6) for determin-
istic factors by closed-form solutions.

4 Solution Proposal
To address the approximation of (5) and (6), we adhere to

the projection recipe derived in [11], which allows us to ob-
tain closed-form approximations to messages and marginals.
Our solution proposal relies on the minimization of KL diver-
gence locally for the subgraphs of the form G(b, i). Our fo-
cus will be obtaining the message and marginal for the edge
i ∈ E(b) that is the output of the nonlinear mapping hb(xb\i).

In the rest of this section, we rigorously derive the new up-
date equations for the forward message through a non-linear
deterministic node. The resulting algorithm (CVMP) is dis-
played in Algorithm 1.
Theorem 1. Given a subgraph G(b, i) where fb(xb) =
δ(xi − hb(xb\i)) is a deterministic factor, assume that the
messages µjb for all j ∈ E(b) are given. Assume that the
message µib(xi) ∝ exp

(
η⊤ibTi(xi)

)
is in an exponential

family or a projection of it to an exponential family exists.
Further, assume that qb\i(xb\i) is available. Then, the station-
ary solutions to the following minimization problem,

argmin
ηi∈Ωi

DKL[qηi
||qi] , (8)

where qb\i, qi = argminqi,qb\i L[q, f ] as obtained by [6, Theo-
rem 1], are in one-to-one correspondence with the fixed points
of the following iterations:

η
(k+1)
i =η

(k)
i +I−1

(
η
(k)
i

)
∇ηi

M
[
q(k)ηi

(hb(xb\i))
]
, (9)

where qi(xi) is defined as per (6), k is an iteration index,
I(ηi) = HAi(ηi) is the Fisher information matrix, i.e., the
Hessian of log partition Ai(ηi)

1, and

M
[
qηi(hb(xb\i))

]
≜

∫
log qηi(hb(xb\i))|Jhb

(xb\i)|dxb\i (10)

dxb\i = qb\i(xb\i)
∏

j∈E(b)
j ̸=i

µjb(xj)dxj (11)

qηi
(xi) = hi(xi) exp(η

⊤
i Ti(xi)−Ai(ηi)) (12)

Proof. First, we show that the solutions of ∇ηi
DKL[qηi

||qi] =
0 satisfy the fixed point iterations (9). Using [9, Appendix A],
we can write the gradient of the KL divergence as follows
∇ηi

DKL = I(ηi) (ηi−ηib)−∇ηi
Eqηi

[logµic(xi)] . (13)
Using factor fb(xb), we obtain the following identity

qb\i(xb\i)=

∫
δ(xi − hb(xb\i))qηi

(xi)dxi=qηi
(hb(xb\i))

This means we can transform the second term in (13) as fol-
lows by change of variables xi = hb(xb\i)

2

∇ηi
Eqηi

[logµic]

= ∇ηi

∫
qb\i(xb\i) log

qηi(hb(xb\i))

µib(hb(xb\i))
|Jhb

(xb\i)|dxb\i

= ∇ηi

∫
qb\i(xb\i) log qηi

(hb(xb\i))|Jhb
(xb\i)|dxb\i ,

where the third line follows because µib is not included as
a multiplying factor involving ηi. Then we can write the
differential using the positive valued messages µjb(xj) for
j ̸= i as the following measure dxb\i =

∏
j ̸=i µjb(xj)dxj .

Together with this differential, we identify the last line as
∇ηi

M
[
qηi

(hb(xb\i))
]

defined in (10). Solving, I(ηi)(ηi −
ηib) = ∇ηiM

[
qηi(hb(xb\i))

]
we obtain the stationary point

ηi = ηib + I−1(ηi)∇ηiM
[
qηi(hb(xb\i))

]
, (14)

which satisfies the fixed point iterations (9).
To show the reverse direction, we assume that there exist

fixed points of (9). This means that there exists K such that
η
(k+1)
i = η

(k)
i for all k > K. Hence, for all k > K, plugging

η
(k+1)
i and η(k)i into (9) we obtain I−1

(
η
(k)
i

)
∇ηi

M
[
q
(k)
ηi

]
=

0. Since the Fisher information matrix I(ηi) is positive def-
inite, its inverse is also positive definite. This implies that
∇ηiM

[
q
(k)
ηi

]
= 0 for all k > K. What remains is to evaluate

the gradient of the KL divergence at η(k+1)
i . Using (13) we

1Because log partition is convex [14, Proposition 3.1], its Hessian is al-
ways positive definite. Technically, Fisher information matrix is positive
semi-definite. But here, we use Fisher information to refer to strictly positive-
definite Hessian of the log partition function.

2Change of variable does not influence KL divergence since it is invariant
to coordinate transformations.



obtain ∇
η
(k+1)
i

DKL = 0 since

I
(
η
(k+1)
i

)(
η
(k+1)
i − η

(k)
i

)
−∇ηi

M
[
q(k+1)ηi

]
= 0 .

This means that the exponential family distribution whose
natural parameter is obtained by the fixed point iterations (9)
is a stationary solution to the minimization problem (8).
Remark. Theorem 1 allows us to obtain an exponential fam-
ily approximation to the marginal (6) that is obtained by mini-
mization of the Bethe free energy [10, Theorem 2][6, Theorem
1]. In Theorem 1, we construct a locally convex upper bound
to the Bethe free energy for the deterministic factors.
Lemma 2. Assume that a fixed point η⋆i of the iterations (9)
exist, the message µib(xi) ∝ exp(η⊤ibTi(xi)) is available and
further assume that µic(xi) ∝ exp

(
η⊤icTic(xi)

)
. Then the

roots of the following expression:

∇ηi
Ai(η

⋆
i − ηib)−∇ηic

∫
µηic

(xi)dxi (15)

are stationary solutions to the following reverse KL minimiza-
tion problem3:

argmin
ηic∈Ωi

(
DKL[µic||µηic ]+

∫
(µηic(xi)−µic(xi))dxi

)
. (16)

Proof. We take the gradient of (16) and solve

∇ηic

(∫
µηic

(xi)dxi − Eµic
[logµηic

]
)
= 0

∇ηic

(∫
µηic

(xi)dxi −
∫

qi(xi)

µib(xi)
logµηicdxi

)
= 0

∇ηic

∫
µηic(xi)dxi −∇ηiAi(η

⋆
i − ηib) = 0 ,

which proves that the roots are the stationary solutions.
In practice, a root-finding algorithm can be used to com-

pute the roots of (15). However, a simple solution exists if we
constrain the form of the message µic to be the same as µib

by assuming the same sufficient statistics, then the roots can
be obtained by the following corollary.
Corollary 3. Given the assumptions of Lemma 2, further as-
sume that Tic(xi) = Ti(xi). Then the stationary solutions of
(16) are given by ηic = η⋆i − ηib .
Proof. Since Tic(xi) = Ti(xi), we have

∇ηi
Ai(η

⋆
i−ηib) = ∇ηic

∫
µηic

(xi)dxi = ∇ηi
Ai(ηic) . (17)

But, then the triviality ηic = η⋆i −ηib is a root of (15) due to
(17), hence a stationary solution of (16) by Lemma 2.

Expectations that are required to compute natural gradi-
ents (9) are often not easy to compute in closed form. We
resort to the popular REINFORCE estimator [15].
Remark. We compute natural gradient estimates by the
REINFORCE estimator using the following approximation
obtained via Monte-Carlo summation by using samples x(s)b\i
from qηb\i(xb\i) and the natural parameter ηib of the incoming

3We put the integral to the right-hand side of (16) to account for the fact
that messages are not necessarily normalized

Algorithm 1 Conjugate-computation Variational Message
Passing (CVMP)
Input A subgraph G(b, i) induced by a factor fb and an edge
i ∈ E(b) such that fb(xb) = δ(xi − hb(xb\i)), messages µjb

for all j ∈ E(b), the marginal qb\i, exponential family message
µib with natural parameter ηib in accordance with Theorem 1,
a Robbins-Monro sequence ρk, and tolerance ϵ > 0
Output µic(xi) and qηi

(xi)

procedure CVMP
Draw samples x(s)b\i ∼ qηb\i(xb\i)
repeat

Compute natural gradient estimate ∇̃(k)
ηi by (19)

Update η(k+1)
i = η

(k)
i − ρk∇̃(k)

ηi

until
∣∣∣∣ρk∇̃(k)

i

∣∣∣∣ < ε
Update qηi(xi) ∝ exp(η⊤i Ti(xi))
Solve (15) (or Corollary 3) to obtain ηic
Update µic(xi) ∝ exp

(
η⊤icTic(xi)

)
end procedure

message µib(xi):

∇ηi
M [qηi

] ≈ I−1(ηi)

(
1

S

∑
s

∇ηi

(
µηi

(
x
(s)
b\i

)))
, (18)

where the natural gradient is defined as
∇̃ηi

M [qηi
]≜ ηi−

(
ηib + I−1(ηi)∇ηi

M [qηi
]
)
, (19)

and, for convenience, we have defined

µηi

(
x
(s)
b\i

)
≜ log qηi

(
hb

(
x
(s)
b\i

)) ∣∣∣Jhb

(
x
(s)
b\i

) ∣∣∣ ∏
j∈E(b)
j ̸=i

µjb

(
x
(s)
j

)
.

5 Experiments
We apply CVMP to analyze annual solar activities from

1945 to 2020, similar to experiments in [16]. The sunspots
dataset is sourced from the WDC-SILSO, Royal Observatory
of Belgium [17]. The data samples were rounded to their clos-
est integer values. We implemented our algorithm in the Rx-
Infer [18]. Our implementation is readily available.4

Our primary objective is to illustrate the improvement of-
fered by CVMP in passing forward messages through nonlin-
ear deterministic nodes when compared to SVMP.

The generative model is specified as
p(γ) = Γ(γ|1000, 1), p(z0|γ) = Γ(z0|1, γ) (20a)

p(zt|zt−1) = δ(zt − h(zt−1)) (20b)
p(xt|zt, γ) = Γ(xt|zt, γ) (20c)
p(yt|xt) = Pois(yt|xt) (20d)

where h(z) ≜ log(exp(z) + 1), Γ(·|a, b) denotes the Gamma
distribution with shape a and rate b, and Pois(·|γ) is the Pois-
son distribution with rate parameter γ.

The inference goal was to compute the posterior q(z1:T ).
We assumed a mean-field factorization

q(z1:T ) =

T∏
t=1

q(zt). (21)

4https://github.com/biaslab/CVMP

https://github.com/biaslab/CVMP


Table 1: Inference results for the sunspot data experiment [17]. We compare
results of CVMP, SVMP, AISMP, and NUTS in terms of Bethe Free Energy
(BFE), Root Mean Square Error (RMSE), and inference exectution time. Two
distinct versions of CVMP are presented: a ”fast” version (CVMP1, with 20
samples drawn from qηb\i (xb\i)) and an ”accurate” version (CVMP2, with
1000 samples).

Method BFE RMSE Inference
Time

CVMP1 5861.64 27.33 0.272s
CVMP2 5733.71 21.23 6.371s
SVMP 6262.77 34.4 0.247s
AISMP 6696.54 20.84 132.76s
NUTS * 20.1 14.602s

In terms of performance assessment, we report the min-
imized Bethe Free Energy (BFE), which is a special case of
variational Free Energy [13]. The variational free energy can
be decomposed as ”complexity of computation” minus ”infer-
ence accuracy”. Hence, BFE minimization by message pass-
ing aims for maximal accuracy at minimal (computational)
costs. Since NUTS does not provide BFE, we also report the
RMSE between the mean of the posterior q(z1:T ) and the data
(the hidden signal) from the sunspot dataset [17] as a measure
of accuracy. Additionally, we report the execution time on an
Apple M1 Pro Chip with 8 cores, and 32GB RAM.

The hyperparameters in CVMP, i.e., a Robbins-Monro se-
quence (ρk) and a tolerance parameter (ϵ), were selected using
the Descent optimizer from the Flux package [19].

After running CVMP for 10 iterations, the Bethe free
energy converged. The distributions mean and 95% confi-
dence intervals of the posterior are visualized in Figure 4.
We compare the estimates produced by CVMP with those
obtained from SVMP, AISMP, and NUTS. Table 1 shows that
while NUTS and AISMP provide better estimates in terms of
RMSE, CVMP achieves a significant reduction in inference
time compared to AISMP, and reaches a lower (i.e., better)
BFE and RMSE than SVMP.

The experimental results illustrate CVMP’s superior BFE
over SVMP and AISMP, while maintaining significantly
lower execution time compared to AISMP and NUTS. How-
ever, note that AISMP and NUTS achieve better RMSE val-
ues than CVMP and therefore may be preferred in scenarios
where execution time is not a priority.

CVMP balances AISMP and SVMP, providing an optimal
trade-off between BFE, RMSE, and computational efficiency.
In summary, CVMP offers an appealing approach to efficient
Bayesian inference for signal processing tasks, where both
accuracy and execution time are important.

6 Discussion and Related Work
CVMP is a factor graph-based approximate inference

method that competes with alternative factor-based methods
such as Stochastic Variational Message Passing (SVMP) [9],
Adaptive Importance Sampling Message Passing (AISMP)
[16], Approximate Nonlinear Gaussian Message Passing
(ANGMP) [7], as well as non-factor-graph-based infer-
ence methods including Black Box Variational Inference
(BBVI) [20], Automatic Differentiation Variational Inference

(ADVI) [3], No-U-Turn Sampler (NUTS) [2], and Conjugate-
Computation Variational Inference (CVI) [4].

Following the approach used in [4, 21, 16, 9], CVMP em-
ploys Natural Gradient Descent (NGD), introduced by Amari
[22, 23], and popularized by Khan as the Bayesian Learning
Rule [21] to optimize the free energy functional. In contrast to
Kahn’s work, following Akbayrak’s SVMP approach [16, 9],
CVMP applies NGD locally through message updating.

BBVI, ADVI, NUTS, and CVI are slow and best for sit-
uations where accuracy is paramount, regardless of time. In
contrast, since CVMP’s messages are compatible with analyt-
ically computed messages in a factor graph, adding CVMP to
(a few) non-linear nodes will usually have only a minor im-
pact on execution time. As a result, adding CVMP to a hybrid
message passing portfolio in a factor graph toolbox increases
options for real-time inference in large models.

CVMP differs from SVMP and AISMP by utilizing a
moment-matching scheme for the forward message rather
than a weighted list of samples, which is also known as an
”empirical distribution”. The empirical distribution as a mes-
sage leads to issues in interacting with closed-form messages,
such as in sum-product or expectation propagation updating
procedures in other parts of the factor graph. This is because
the empirical distribution does not offer a convenient func-
tional form for integration, and only moments can be derived
from it. Therefore, BP and EP messages in the graph ex-
pect to interact with analytical form (e.g., Normal, Gamma)
messages or require the ability to evaluate these messages at
some point in the distribution domain. Empirical distributions
violate both assumptions, which makes it difficult to integrate
them in a hybrid message passing setting. In contrast, CVMP
messages are proper analytical distributions that interface
smoothly with BP and EP messages. This is an important
advantage of CVMP-based inference.

Furthermore, empirical distributions restrict the model
specification to scenarios where factors connected to a delta
factor rely solely on the moments of the forward message
from the delta factor. Consider a generative model
f(x1, . . . , x4) = fa(x3, x4, x2)fb(x3, x2)fc(x1, x2)fd(x1).

In this model, fa and fd are arbitrary stochastic factors,
while fb(x3, x2) = δ(x3 − h2(x2)) and fc(x1, x2) = δ(x2 −
h1(x1)) are non-linear deterministic factors. It is theoreti-
cally impossible to compute the message from fb to fc if the
message from fc to fb is an empirical distribution due to the
ill-defined nature of division on empirical distributions since
the empirical distribution is zero at most points in the distri-
bution domain. In contrast, in CVMP, the forward message
from δ(x2−h1(x1)) is a proper distribution obtained through
moment-matching. Consequently, the message can be com-
puted from fb to fc.

CVMP can also be viewed as an extension of ANGMP to
non-Gaussian cases. CVMP applies moment matching to ar-
bitrary non-linear factors with arbitrary incoming exponential
family messages, while ANGMP expects to receive mes-
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Fig. 4: Experimental validation results. Left: the black dashed line indicates hidden signal (averaged observations from [17]) The colored lines and shaded
regions correspond to the mean and to the 95% confidence interval for the estimated signal of the posterior estimates q(z1:T ). Posterior estimates are color-
coded based on the legend corresponding to CVMP (our proposed method), SVMP, AISMP and NUTS. Right: free energy vs inference iterations for CVMP,
SVMP and AISMP algorithms. NUTS does not support Free Energy calculations.

sages in a Gaussian form. In the Gaussian case, the primary
difference between CVMP and ANGMP is their moment-
matching approach. ANGMP performs moment-matching
using a closed-form solution, while CVMP employs a nat-
ural gradient-based method. Consequently, for quadratic
non-linearities, ANGMP will perform faster.

7 Conclusions
With the objective to make progress toward real-time

(variational) Bayesian inference for signal processing prob-
lems, we introduced CVMP, a novel message update rule for
forward messages through non-linear nodes in a factor graph.
CVMP advances state-of-the-art methods in terms of free
energy minimization capabilities.
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[21] Mohammad Emtiyaz Khan and Håvard Rue, “The Bayesian Learning Rule,” 2022,
arXiv:2107.04562 [cs, stat].

[22] Shun-ichi Amari, Information Geometry and Its Applications, Applied Mathe-
matical Sciences. Springer Japan, 2016.

[23] Shun-ichi Amari, “Natural Gradient Works Efficiently in Learning,” Neural Com-
putation, pp. 251–276, 1998.


	Introduction
	Background on Factor Graphs and Variational Inference
	Problem Statement
	Solution Proposal
	Experiments
	Discussion and Related Work
	Conclusions
	References

