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ABSTRACT

Gaussian Process Amplitude Modulation (GPAM) is a prob-

abilistic model that assigns Gaussian Process priors to the

modulator and the carrier and allows us to solve the ampli-

tude demodulation (AD) problem by using inference methods

in probability theory. Inference in GPAM results in Gaussian

Process Probabilistic Amplitude Demodulation (GP-PAD).

However, the mostly used inference technique for GP-PAD is

maximum a posteriori (MAP), a point estimate method that

is not entirely representative of Bayesian methods in general.

In this paper, we provide a full Bayesian inference approach

to GP-PAD model. More specifically, we represent the GP-

PAD model as a factor graph and use message-passing rules,

namely Belief Propagation (BP) and Expectation Propagation

(EP), to infer the marginal posteriors of the modulator and

the carrier. Furthermore, we employ the Kalman smooth-

ing solution to temporal GP regression models to achieve

fast inference for GP models. We compare our approach

to the baseline, popular demodulation methods in synthetic

and real data experiments. The result shows that our method

outperforms the baseline methods and converges.

Index Terms— Probabilistic amplitude demodulation,

Gaussian Processes, Belief Propagation, Expectation Propa-

gation, Gaussian linear-state space model

1 Introduction
Amplitude demodulation (AD) is a signal processing

problem in which we would like to decompose a signal into

a product of a positive, slowly varying envelope (modulator)

and a quickly varying signal (carrier). This is an ill-posed

problem that cannot be solved without prior assumptions

about the modulator or the carrier. In [1] Turner introduced

a probabilistic generative process, called Gaussian Process

Probabilistic Amplitude Demodulation (GP-PAD), that as-

signs Gaussian Process priors to the modulator and the carrier

and thus opens the way for Bayesian inference methods to

address the AD problem. The GP-PAD model is shown to

outperform traditional AD methods such as Hilbert Envelope

(HE) [2] and Square and Low-pass filter (SLP) [3] in [1]

and has been widely applied to many audio signal process-

ing tasks such as speech synthesis, speech rhythm analysis,

etc. [4–6]. However, maximum a posteriori (MAP) is mostly

used to perform the inference procedure in GP-PAD. This

approach is a point estimate method and not entirely repre-

sentative of Bayesian inference in general.

In this paper, we provide a full Bayesian inference ap-

proach to the GP-PAD model. More specifically, we rep-

resent the GP-PAD as a factor graph and employ message-

passing techniques, namely Belief Propagation (BP) [7] and

Expectation Propagation (EP) [8] to perform inference. Fur-

thermore, to achieve a fast inference for the GP models, we

utilize the Kalman smoothing solution to temporal GP regres-

sion models [9–11], a technique that transforms a GP into

a linear Gaussian state-space model and solves GP regression

by Kalman filtering and Rauch–Tung–Striebel (RTS) smooth-

ing. The computational complexity of this method grows as

O(N), where N is the number of observations, which is very

suitable to handle sound signals with thousands of samples in

a few seconds. The contributions of the paper are as follows:

• We solve the AD problem by message-passing on factor

graph in Section 2.3 via Kalman filtering solution to

temporal Gaussian processes.

• We validate our approach in Section 3 by two experi-

ments and compare the results to the baseline methods

HE and SLP.

2 GP-PAD model
The amplitude demodulation task concerns the problem

of decomposing a signal y(τ) into the product of a modulator

(or envelope) a(τ) and a carrier c(τ). The GP-PAD [1] model

assumes that a(τ) is produced by taking a real-valued pro-

cess x(τ) through a positive non-linear mapping. The model

further assumes that the process x(τ) and the carrier c(τ) are

Gaussian Processes (GPs). From these assumptions, we can

write the GP-PAD model as follows
x(τ) ∼ GP(0, kx(τ, τ ′)),
c(τ) ∼ GP(0, kc(τ, τ ′)),
a(τ) = exp(x(τ)),

y(τ) = a(τ) c(τ),

(1)
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where kx(·, ·) and kc(·, ·) refer to the kernel functions of x(τ)
and c(τ) respectively, each with their own hyper-parameters.

Often, we acquire noisy observations at discrete time inter-

vals via a sampling mechanism. We denote the discretized

index by t and define yt , y(τt) with discretization step

∆τt , τt − τt−1. We can augment the continuous time GP-

PAD specification (1) with a likelihood to reflect uncertainties

in the measurements. In the original work [1], instead of ex-

ponential non-linearity

Solving the demodulation problem is equivalent to im-

plementing Bayesian inference, which uses Bayes theorem

to compute the posterior distributions of x(τ) and c(τ) [12].

In [1] Turner has used MAP to approximate the values of x(τ)
and c(τ), and has also resorted to a Laplace’s method to es-

timate the uncertainties in the results. Although this way of

addressing the inference problem works well in practice, it

consists of ad-hoc methods to Bayesian inference and does

not provide probability distribution functions for the posteri-

ors of x(τ) and c(τ).
In the following subsections, we will show how a message-

passing framework on a factor graph can efficiently imple-

ment the inference procedure amounting to a probabilistic

demodulation process.

2.1 Gaussian processes
Let us first briefly recap the concept of Gaussian pro-

cesses. A stochastic process is called a Gaussian process (GP)

if a finite set of its function values follows a joint Gaussian

distribution [13]. Specifically, let f ∼ GP(m(τ), k(τ, τ ′))
be a GP with a mean function m(·) and a kernel func-

tion k(·, ·), then the collection of N function values f =
(f(τ1), . . . , f(τN ))⊤ evaluated at the inputs τ = (τ1, . . . , τN )⊤

satisfies that

f ∼ N (m,K) (2)

where m = (m(τ1), . . . ,m(τN ))
⊤

and Kij = k(τi, τj). In

regression problems, we can predict the function value f∗ at

a new input τ∗ by computing the predictive distribution

f∗ ∼ N (m∗, k∗), (3)

where

m∗ = m(τ∗) + k(τ , τ∗)K
−1(f −m), (4)

k∗ = k(τ∗, τ∗)− k(τ∗, τ )K
−1k(τ , τ∗). (5)

The inverse of the covariance matrix K in (4) and (5) has a

cubic computational complexity with respect to the number

of observations, i.e., O(N3). This becomes a severe problem

when we work with sound signals, which usually have thou-

sands of samples in a few seconds. Turner [1] has got around

this obstacle smartly by using a circulant matrix trick. In this

paper we employ the Kalman smoothing solution to temporal

GP regression models [9–11] to tackle the problem.

2.2 Kalman smoothing solution to temporal

GP regression
For certain classes of kernel functions, Gaussian Pro-

cess can be regarded as the solution of an mth-order linear

stochastic differential equation (SDE) [9–11]

a0f(τ)+a1
df(τ)

dτ
+· · ·+am−1

dm−1f(τ)

dτm−1
+
dmf(τ)

dτm
= w(τ)

(6)

where w(τ) is a zero-mean white noise process with spectral

density Qw. If we define a vector-valued function

f(τ) =

(

f(τ),
df(τ)

dτ
, . . . ,

dm−1f(τ)

dτm−1

)⊤

(7)

then we can rewrite (6) as a first-order linear SDE
df(τ)

dτ
= Ff(τ) + Lw(τ) (8)

where

F =
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. (9)

Extracting f(τ) from f(τ) can be easily done by a linear op-

eration

f(τ) = Hf(τ), (10)

where H = (1 0 . . . 0). In this paper, we use the Matern-

52 kernel [13] for GPs. The kernel is defined as follows

k(r) = σ2
M

(

1 +

√
5r

l
+

5r2

3l2

)

exp

(

−
√
5r

l

)

, (11)

where l and σM are the length-scale and the standard devia-

tion of the kernel, respectively, and r = |τ − τ ′|. The corre-

sponding values of F and Qw are

F =





0 1 0
0 0 1
−λ3 −3λ2 −3λ



 , Qw =
16

3
σ2
M λ5, (12)

where λ =
√
5/l.

From (8) and (10) we can define a discrete state-space

model as follows [9–11]

ft = At ft−1 + qt, qt ∼ N (0,Qt)

yt = Hft + ǫt, ǫt ∼ N (0, σ2) (13)

where the transition matrix At is computed as

At = exp(F∆τt), ∆τt = τt − τt−1, (14)

With the use of Matern kernel, the noise covariance matrix

Qt is found by the following formula

Qt = P∞ −AtP∞A⊤

t . (15)

where P∞ is called the stationary covariance of f(τ). This is

because the Matern-52 kernel is stationary and defines a sta-

tionary state f∞ ∼ N (0,P∞). The matrix P∞ can be found

by solving the following Lyapunov differential equation
dP∞

dτ
= FP∞ +P∞ F⊤ + LQw L⊤ = 0, (16)

which gives the solution

vec (P∞) = (I⊗ F+ F⊗ I)
−1

vec
(

−LQw L⊤
)

, (17)

where vec denotes the vectorization operator and ⊗ denotes

the Kronecker product.

By expressing GPs as the state-space model (13), we can

solve the GP regression problem by Kalman filtering and RTS

smoothing, which has computational complexity only propor-



tional to O(N). For a more rigorous and comprehensive ex-

planation of the Kalman smoothing solution to temporal GP

regression, we refer to [9–11].

2.3 GP-PAD inference by message-passing

In this section, we show how the GP-PAD model can be

solved by inference with messages passing on a factor graph.

This paper uses Forney-style Factor Graph (FFG) [14–16] to

represent models. An FFG is a graphical model that visual-

izes the factorization of a function as a graph with nodes and

edges, where each node represents a factor (i.e. function),

each edge represents a variable, and an edge connects to a

node if and only if the variable on that edge is an argument of

the function inside that node. For more details about FFG, we

refer to [15, 16].

Recall that the modulator xt and the carrier ct are assigned

to GP priors. Since GPs can be expressed as state-space mod-

els, we can rewrite the GPs in (1) as follows

ct = Hzt + ǫc, ǫc ∼ N (0, σ2
c ), (18)

xt = Hft + ǫx, ǫx ∼ N (0, σ2
x), (19)

zt = Az zt−1 + qz, qz ∼ N (0,Qz), (20)

ft = Af ft−1 + qf , qf ∼ N (0,Qf ), (21)

where Az,Qz are matrices corresponding to the process z(τ)
and are defined in (14) and (15), respectively. Similarly, Af

and Qf correspond to the process f(τ) and have the same

computation as that of z(τ). Now we can rewrite the genera-

tive model of GP-PAD in state space form

p(y,a, c,x,f , z) = p(f0)p(z0)

T
∏

t=1

p(yt|at, ct)p(at|xt)

p(xt|ft)p(ft|ft−1)p(ct|zt)p(zt|zt−1)
(22)

where the factors of (22) are defined as below1

p(yt|at, ct) = δ(yt − at ct), (23)

p(at|xt) = δ(at − exp(xt)), (24)

p(xt|ft) = N (xt|Hft, σ
2
x), (25)

p(ft|ft−1) = N (ft|Af ft−1,Qf ), (26)

p(ct|zt) = N (ct|Hzt, σ
2
c ), (27)

p(zt|zt−1) = N (zt|Az zt−1,Qz), (28)

p(f0) = N (f0|0,P∞f ), (29)

p(z0) = N (z0|0,P∞z). (30)

The factor graph of (22) at the time t is shown in Fig. 1 with

messages on edges. The inference procedure amounts to find-

ing the posterior distributions p(ft|y) and p(zt|y), and in fac-

tor graph framework these distributions can be computed by

multiplying all messages on the edges, i.e.

p(ft|y) = ~µ1(ft) ~µ2(ft) ~µ3(ft) (31)

p(zt|y) = ~µ1(zt) ~µ2(zt) ~µ3(zt). (32)

1All A and Q matrices change with time, but we omit the time depen-

dence for brevity.

p(ft|ft−1). . . = p(ft+1|ft) . . .

p(xt|ft)

exp

×p(ct|zt)=

p(zt+1|zt)

...

p(zt|zt−1)

...

. . . . . .

M1

M2 M3

→
~µ(ft−1)

ft−1

→
~µ1(ft)

ft

←
~µ3(ft)

↑~µ2(ft)

←
~µ(ft+1)

ft+1

↑~µ(xt)
xt

↑~µ(at)
at

yt

←
~µ(ct)

ct
←
~µ2(zt)

↑~µ3(zt)

↓~µ1(zt) zt

↓~µ(zt−1) zt−1

↑~µ(zt+1) zt+1

Fig. 1: The FFG of the GP-PAD model (22).

For the convenience of message computation, we split the

graph into three sub-graphs M1, M2 and M3 as shown in

Fig. 1. We notice that both M1 and M2 encapsulate lin-

ear Gaussian state-space models since all the factors inside

them are Gaussian distributions. Consequently, the messages

in (31) and (32) are Gaussian and can be computed by the

sum-product rule or Belief Propagation [7]. The difficult part

lies in the sub-graphM3, which contains non-Gaussian fac-

tors, namely the exponential function and the multiplication

function, yielding non-Gaussian messages that will lead to

solutions that are not in closed form. Therefore, we apply Ex-

pectation Propagation (EP) [8] method to approximate mes-

sages inM3 as Gaussian.

Now we elaborate on the computation of the messages.

The sum-product update rules for ~µ1(ft), ~µ1(zt), ~µ3(ft) and

~µ3(zt) are computed in [16]. The update rules for ~µ2(ft) and

~µ2(zt) are

~µ2(ft) =

∫

~µ(xt)p(xt|ft)dxt (33)

~µ2(zt) =

∫

~µ(ct)p(ct|zt)dct. (34)

Since p(xt|ft) and p(ct|zt) are Gaussian distributions,

the above equations yield Gaussian messages only if ~µ(xt)
and ~µ(ct) are Gaussian. However, the messages come from

an exponential factor node and a multiplication factor node.

Therefore, their functional forms are non-Gaussian. The spe-

cific message update rules2 for the exponential and multipli-

cation nodes are provided in Table.1. Note that we have used

the result of product of two Gaussian random variables in [17]

2All derivations of the rules are available at this link.



Table 1: Sum-product update rules for Exponential and Multiplication nodes. Kv(·) denotes the modified Bessel function of

the second kind of order v.

Node Incoming messages Outgoing messages

expx y→
←

~µX(x)

~µX(x)

→
←

~µY (y)

~µY (y)

f(x, y) = δ(y − exp(x))

~µX(x) = N (x|mx, vx) ~µY (y) = Lognormal(y|mx, vx)

~µY (y) ~µX(x) = ~µY (exp(x))

×
ẑx

→ ←
~µX(x) ~µX(x)

y

↓~µY (y)

↑~µY (y)

z
→ ←
~µZ(z) ~µZ(z)

f(x, y, z) = δ(z − x y)

~µX(x) = N (x|mx, σ
2
x)

~µY (y) = N (y|my, σ
2
y)

~µZ(z) = exp

(

−1

2

(

m2
x

σ2
x

+
m2

y

σ2
y

))

×

∞
∑

n=0

2n
∑

m=0

z2n−m|z|m−nσm−n−1
x

π (2n)! (σy)m−n+1

(

mx

σ2
x

)m

×
(

n
r

)(

my

σ2
y

)2n−m

Km−n

( |z|
σx σy

)

~µY (y)

~µZ(z) = δ(z − ẑ)
~µX(x) =

1

|x| ~µY

(

ẑ

x

)

for the computational rule of the outgoing message at the mul-

tiplication node. To address the non-Gausianity problem, we

resort to EP to approximate these messages as Gaussian. For-

tunately, in factor graph framework the EP method can be

implemented by specifying local constraints around nodes as

described in [18]. Following [18], we can achieve EP mes-

sages for the exponential node and the multiplication node,

and this also guarantees the convergence of our approach.

3 Experiments
In this section, we perform two experiments with the GP-

PAD model on synthetic and real data and compare its results

with the two baseline methods, namely Square and Low-Pass

filter (SLP) and Hilbert Envelope (HE). We use Signal-to-

Noise ratio (SNR) in decibels to compare the performance of

the three methods on the synthetic data. To illustrate the con-

vergence of our method we employ Bethe Free Energy (BFE)

[19] quantity, an approximation of negative log-evidence. All

experiments are performed by scientific programming lan-

guage Julia [20] with the programming probabilistic pack-

age RxInfer.jl [21] for inference. All experiments are

available at github.com/MLSP-2023/GPAD.

3.1 Synthetic data

Table 2: SNR of the three methods.

HE SLP PAD

Envelope SNR (dB) 7.062 13.398 15.677

Carrier SNR (dB) 5.970 10.443 12.689

We use the GP-PAD model (1) to generate synthetic data.

Both GP priors assigned to the modulator and the carrier have

zero-mean function and Matern-52 kernel. The kernel of the

Fig. 2: The evolution of Bethe Free Energy during inference

in the experiment with synthetic data.

GP modulator has length-scale lm = 1, variance σ2
Mm = 1,

while the kernel of the GP carrier has lc = 0.01 and σ2
Mc =

0.5. The generated data is shown in Fig. 3a, which includes

500 samples in 5 second. For the model (22), we set σ2
x =

σ2
c = 0.1. The inference of GP-PAD is run with 20 iterations.

The result is shown in Fig.4. Intuitively, the HE method

has the poorest performance as expected since HE only works

well with sinusoidal signal. Meanwhile the SLP and the GP-

PAD can recover pretty well the true modulator and carrier.

Indeed, the SNR results in Table. 2 shows that the HE method

gives the smallest SNR value (7.062dB for envelope), while

those numbers of SLP and GP-PAD are 13.398 dB and 15.677
dB, respectively. The numbers also tell us GP-PAD has the

best performance. The SNR values for the carrier also have

the same behaviour. Furthermore, Fig. 2 shows the evolution

of BFE value during inference and we can observe a conver-

gence. Although there are fluctuations, this behaviour is ex-

pected since EP relies on sampling methods for approxima-



Fig. 3: On the left plot the green curve is the envelope, the blue curve is the carrier, and the black curve is the modulated data.

Results of estimation on this data are given in Fig. 4. On the right plot, we have 1 second of an audio recording of a bubbling

water sound.
(a) Synthetic data generation process. (b) Bubbling water sound data.

Fig. 4: Results of estimates by HE, SLP, and PAD methods on the synthetic data Fig. 3a. We color code the estimates returned

by HE with red, SLP with blue, and PAD with green. Shaded regions for the PAD estimates correspond to standard deviation.
(a) Envelope estimate by Hilbert method (b) Envelope estimate by SLP method (c) Envelope estimate by PAD method

(d) Carrier estimate by Hilbert method (e) Carrier estimate by SLP method (f) Carrier estimate by PAD method

Fig. 5: Results of estimates by HE, SLP, and PAD methods on a bubbling sound data Fig. 3b. We color code the estimates

returned by HE with red, SLP with blue, and PAD with green. Shaded regions for the PAD estimates correspond to standard

deviation.
(a) Envelope estimate by Hilbert method (b) Envelope estimate by SLP method (c) Envelope estimate by PAD method

(d) Carrier estimate by Hilbert method (e) Carrier estimate by SLP method (f) Carrier estimate by PAD method



tion.

3.2 Real data

In this experiment, we test the GP-PAD model on real

data, namely bubbling water sound, which is shown in

Fig. 3b. The configuration of GP-PAD is as follows: the

kernel of the GP modulator has lm = 0.015, σ2
Mm = 1.,

while the kernel of the GP carrier has lc = 0.001, σ2
Mc = 0.5;

σ2
x = σ2

c = 0.6.

The result is shown in Fig.5. The HE method has the

poorest performance as in the experiment with synthetic data.

Its recovered envelope is simply the peaks of the signal. On

the other hand, both SLP and GP-PAD provide smoother en-

velopes. Furthermore, compared to HE and SLP, GP-PAD can

also yield a carrier with a structure, indicating its advantages

over the traditional methods [1].

4 Conclusions
This paper applies the complete Bayesian inference ap-

proach to the Gaussian Process Amplitude Demodulation

(GP-PAD) model in [1] for the amplitude demodulation

problem. We have shown that the GP-PAD model can be

expressed in terms of factor graphs, and the inference proce-

dure is thus performed by message-passing methods, namely

Belief Propagation and Expectation Propagation. We perform

two experiments with synthetic and natural data and compare

our approach with traditional methods, Hilbert Envelope and

Square-Low Pass filter. The experiment result not only shows

that our approach outperforms the conventional methods, but

also illustrates the convergence of our method.

Nevertheless, our model uses fixed parameters, which is

not ideal in real applications. Further improvements should

include parameter learning by message-passing framework

for our approach.
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