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ABSTRACT
The Gamma mixture model is a flexible probability distri-
bution for representing beliefs about scale variables such as
precisions. Inference in the Gamma mixture model for all
latent variables is non-trivial as it leads to intractable equa-
tions. This paper presents two variants of variational mes-
sage passing-based inference in a Gamma mixture model.
We use moment matching and alternatively expectation-
maximization to approximate the posterior distributions. The
proposed method supports automated inference in factor
graphs for large probabilistic models that contain multiple
Gamma mixture models as plug-in factors. The Gamma mix-
ture model has been implemented in a factor graph package
and we present experimental results for both synthetic and
real-world data sets.

Index Terms— Expectation-Maximization, Factor
Graphs, Gamma Mixture Model, Message Passing, Moment
Matching, Probabilistic Inference

I. INTRODUCTION

Mixture models are commonly used in the literature to
model probability density functions that are outside of the
exponential family. Especially Gaussian mixture models are
used often, for instance in the field of natural language
processing [1]. However, this paper will focus on the less
common Gamma mixture models (ΓMMs). The ΓMMs al-
low us to efficiently model skewed distributions with positive
support [2]. For example, this model can be used as the
conjugate prior for the precision parameter of a Gaussian
distribution. In that case, the conjugate relationship supports
modeling of processes with switching noise levels.

The ΓMM has been used in a variety of applications,
such as in the detection of COVID-19 in medical images
[3]. The literature describes a few approaches for performing
inference in the ΓMM, or the generalized ΓMM, most no-
tably a sampling approach [4] and a variational expectation-
maximization method [2]. Unfortunately, these approaches
are not modular by nature, which often leads to tedious and
error-prone manual derivations when extending or applying
the models in a different context. In this paper we propose
a modular message passing-based probabilistic inference
method for ΓMMs.

We represent the ΓMM as a composite factor (node)

in a Forney-style Factor Graph (FFG) [5], [6]. A benefit
of the FFG representation is that all (message passing)
computations are local, and as a result the ΓMM factor can
be used as a plug-in module in larger probabilistic models.
More details on the FFGs will be provided in Section II,
where we also specify the Gamma mixture (ΓM) model.

In Section III we specify the problem that we solve in this
paper: how to perform message passing-based inference in
the ΓMM. A solution proposal is presented in Section IV.
Specifically, in Section IV-C we provide a local expectation-
maximization extension to variational message passing, and
in Section IV-D we propose a moment matching-based
non-conjugate variational message passing method. These
solutions are verified and validated in Section V. We discuss
our findings and conclude the paper in Section VI.

II. MODEL SPECIFICATION

Let x , [x1, . . . , xK ], where xk ∈ R>0 for every k =
1, . . . ,K, denote a vector of strictly positive independent
and identically distributed (IID) observations. The likelihood
for a ΓMM with M mixture components is given by

p(x|s,a, b) =

K∏
k=1

M∏
m=1

Γ(xk|am, bm)skm , (1)

where Γ(xk|am, bm) specifies the Gamma distribution for
xk with shape and rate parameters am and bm, respectively.
a , [a1, . . . , aM ] and b , [b1, . . . , bM ] are vectors of the
parameters of the Gamma distributions such that am, bm ∈
R>0 for every m = 1, . . . ,M . For each observation xk we
have a corresponding latent selector variable sk comprising
a 1-of-M binary vector with elements skm ∈ {0, 1}, which
are constrained by

∑
m skm = 1. We denote the vector of

selector variables by s , [s1, . . . , sK ].
To complete the specification of the ΓMM we need to

specify priors on a, b and s. We choose the priors as

p(a) =

M∏
m=1

Γ
(
am|α(a)

m , β(a)
m

)
α(a)
m , β(a)

m ∈ R>0 (2)

p(b) =

M∏
m=1

Γ
(
bm|α(b)

m , β(b)
m

)
α(b)
m , β(b)

m ∈ R>0 (3)

p(s|π) =

K∏
k=1

M∏
m=1

πskm
m such that

M∑
m=1

πm = 1 (4)
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Fig. 1: An FFG representation of the ΓMM in (6). Dir and Cat denote Dirichlet and
Categorical distributions respectively. The ‘=‘ nodes represent equality factors. Small
black nodes denote observations. For brevity, we did not add the nodes corresponding
to the distributions of shape am and rate bm parameters. The inside of the ΓM node
is further worked out in Table I.

and we choose a Dirichlet prior for the event probabilities
π , [π1, . . . , πM ] of the categorical distribution p(s|π) as

p(π) =
1

Z(η)

M∏
m=1

πηm−1
m with Z(η) =

∏
Γ(ηm)

Γ
(∑

ηm

) , (5)

where η = [η1, . . . , ηM ] are the concentration parameters
with ηm ∈ R>0 for every m = 1, . . . ,M . The full ΓMM is
then given by the joint distribution
p(x,a, b, s,π) = p(x|s,a, b)p(a)p(b)p(s|π)p(π) . (6)

An FFG is an undirected graph in which nodes represent
factors of a global function and edges represent random
variables [5]. In an FFG, each edge can be connected to a
maximum of 2 factors, whereas a node can be connected to
an arbitrary number of edges. Hence, FFGs usually contain
multiple equality nodes with factors δ(x − x′)δ(x − x′′)
that constrain the beliefs over two “copy variables” x′ and
x′′ to be equal to the belief over x [7]. As a matter of
notational convention, in an FFG, factors are represented by
square (unfilled) nodes and observations or fixed variables in
these graphs are represented by small black squares, whose
factors can be regarded as Dirac delta functions centered on
the observed value. For a detailed explanation of the FFG
formalism, we refer to [5], [6], [8]. FFGs corresponding to
the ΓMM of (6) are presented in Table I and Fig. 1.

III. PROBLEM STATEMENT

Given the ΓMM and a collection of observations x
we are interested in obtaining the posterior distributions
p(a|x), p(b|x), p(s|x) and p(π|x). Computation of the pos-
teriors requires the integration and summation of the model
(6) with respect to all remaining model variables:

p(a|x) =

∑
s

∫
p(x,a, b, s,π) db dπ

∑
s

∫
p(x,a, b, s,π) da db dπ

. (7)

Even though (7) is the exact solution to one of the inference
tasks, it is intractable because the integrals involving a and

Table I: Table containing (top) the Forney-style factor graph representation of
the Gamma mixture node. The node indicated by MUX represents a multiplexer
node, which selects the mixture component. (middle) An overview of the chosen
approximate posterior distributions. Here the ·̂ accent refers to the parameters of these
distributions. The choice of functional form for q(am) depends on the approximation
method (Section IV). (bottom) The derived messages for the Gamma mixture node.
The definitions of ζkm and ρkm are presented in the supplementary material at
http://github.com/mlsp2021-gmm.

Factor graph

MUX

xk

Γ Γ

sk

a1 b1

. . .

aM bM

q(sk)

~ν(sk)
←

~ν(xk) q(xk)↓

q(a1) ~ν(a1)↑ ↓ ↑ ↓ ↑ q(bM ) ~ν(bM )↑

Marginals Functional form
q(am) δ(am − âm) or Γ

(
am | α̂(a)

m , β̂
(a)
m

)
α̂
(a)
m , β̂

(a)
m ∈ R>0

q(bm) Γ
(
bm | α̂(b)

m , β̂
(b)
m

)
α̂
(b)
m , β̂

(b)
m ∈ R>0

q(sk)
M∏
m=1

π̂
skm
m such that

M∑
m=1

π̂m = 1

q(xk) Γ
(
xk | α̂

(x)
k , β̂

(x)
k

)
α̂
(x)
k , β̂

(x)
k ∈ R>0

Messages Functional form
~ν(am) exp

(
π̂k (amζkm − log Γ(am))

)
~ν(bm) Γ

(
bm

∣∣∣∣1 + π̂mE [am] , π̂m
α̂
(x)
k

β̂
(x)
k

)

~ν(sk)
M∏
m=1

ρ
skm
km such that

M∑
m=1

ρkm = 1

~ν(xk) Γ

(
xk

∣∣∣∣ M∑
m=1

π̂mE [am] ,

M∑
m=1

π̂m
α̂
(b)
m

β̂
(b)
m

)

b do not yield known analytical solutions. In this paper,
the problem we address is how to compute approximate
posteriors for the ΓMM.

IV. APPROXIMATE MESSAGE PASSING-BASED INFERENCE

In this section we first introduce message passing in an
FFG as a probabilistic inference methodology. Next, we will
derive messages for the Gamma mixture (ΓM) node using
variational message passing (VMP) [9], [10], which allows
us to perform probabilistic inference in the ΓMM. However,
one of the VMP messages leads to an approximate posterior
distribution, whose closed-form solution is the result of
a non-conjugate multiplication that cannot be normalized
analytically. We propose two approaches to resolve this prob-
lem. First, we propose to use expectation-maximization for
bypassing the need of calculating the normalization constant.
Secondly, we apply moment matching to approximate the
moments of the approximate posterior distribution through
importance sampling [11, Ch.7].

A. Variational message passing

Because of the conditional independencies in the genera-
tive model we can perform execution of (7) through a dis-
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tributed set of smaller local computations called messages.
Unfortunately, the intractability in these computations limits
us in performing exact message passing-based inference,
also known as the sum-product algorithm [12] or belief
propagation [13]. To resolve this, we will resort to VMP [9],
[10]. Consider the generative model p(x, z) for the ΓMM,
where z , [a, b, s,π], with intractable posterior distribution
p(z|x), in which x and z are the observed and latent
variables, respectively. Variational inference approximates
the exact posterior distribution p(z|x) by a tractable approx-
imate posterior distribution q(z) through minimization of the
variational free energy (VFE) functional

F [q] = DKL[q(z)||p(z|x)]− log p(x) . (8)
where DKL is the Kullback-Leibler divergence. In VMP the
variational free energy is optimized by iteratively updating
the approximate posterior distributions. In order to facilitate
optimization of VFE, q(z) is often constrained by a mean-
field factorization

q(z) =
∏
i

q(zi) . (9)

For a generic node f(z1, z2, . . . , zM ) the outgoing varia-
tional message ~ν(zj), under the mean-field assumption, can
be evaluated as [10]

~ν(zj) ∝ exp

∫ ∏
i 6=j

q(zi) log f(z1, z2, . . . , zM )dz\j . (10)

The approximate posterior can then be updated by the nor-
malized multiplication of the messages on the corresponding
edge as

q(zj) =
~ν(zj) ~ν(zj)∫
~ν(zj) ~ν(zj)dzj

. (11)

In the VMP algorithm, (10) and (11) are iteratively repeated
for all variables until convergence [10].

B. Variational message passing in the Gamma mixture node

The ΓM node of (1) has been visualized in Table I.
We will assume a mean-field factorization over the joint
approximate posterior distribution as

q(xk, sk,a, b) = q(xk)q(sk)

M∏
m=1

q(am)q(bm), (12)

where the distributions of the individual factors are presented
in Table I. To support modular usage of the ΓM node, the
variable xk is not assumed to be observed for the derivations
of the messages. The variational messages of Table I have
been derived by the substitution of the approximate posterior
distributions into (10).1

All messages, except for ~ν(am), are of the same functional
form as the corresponding approximate posterior distribu-
tion. Since the Gamma and categorical distributions are
closed under multiplication, the resulting updated approx-
imate posterior distributions remain in the same family of

1The derived messages are available in the supplementary material at
https://github.com/mlsp2021-gmm/gmm-experiments.

distributions. However, the message ~ν(am) has a functional
form that makes a closed-form result for the approximate
posterior distribution infeasible. Therefore, to make calcula-
tions tractable we will approximate q(am) by a parametric
distribution, see Table I. In the remainder of this section
we will propose two solutions: (1) expectation-maximization
and (2) moment matching.

C. Solution 1: Expectation-maximization (VMP-EM)

The first proposed solution uses VMP in conjunction with
expectation-maximization (VMP-EM) to approximate the
resulting posterior distribution of am using message passing,
inspired by [14]. Here the posterior distribution q(am) is
fixed to a Dirac delta function

q(am) = δ(am − âm) (13)
instead of the Gamma distribution from Table I. This dis-
tribution is located at âm, whose value is obtained through
expectation-maximization using message passing according
to [14]. The location âm is determined by
âm = arg max

am

log ~ν(am) + log ~ν(am), s.t. am > 0 , (14)

where the message ~ν(am) represents the variational message
from Table I.
Theorem 1. The solution of the constrained maximization
problem given by (14) exists and is unique.
Proof. From Table I we know the functional form
log ~ν(am) = π̂k (amζkm − log Γ(am)). Since the logarithm
of the Gamma function is strictly convex when restricted
to positive real numbers (Bohr-Mollerup theorem) [15],
log ~ν(am) is strictly concave as it is a summation of an affine
and a strictly concave term [16, Ch. 2.3]. Because the prior
message ~ν(am) is proportional to a Gamma distribution,
log ~ν(am) is either affine or concave depending on the
shape parameter. Hence, log ~ν(am) ~ν(am) is always strictly
concave. Because it is concave the maximum exists by strong
duality [16, Ch. 5.3.2] and is unique because concavity is
strict.

D. Solution 2: Moment matching (VMP-MM)

Expectation-maximization provides us with a single esti-
mate of the parameter am. If instead we would like to retain
uncertainty about this parameter, we could approximate the
resulting marginal distribution by a Gamma distribution
using VMP with moment matching (VMP-MM), realized
by importance sampling (IS) [11, Ch.7]. The IS procedure
approximates the target distribution q(am) by drawing L

samples a(l)
m from an importance distribution q̃(am) as

a
(l)
m ∼ q̃(am) = ~ν(am)∫

R>0
~ν(am)dam

, l = 1, . . . , L. (15)

We choose the normalized forward message q̃(am) as the
importance distribution. We can make this choice, because
the support of the importance distribution is R>0, which co-
incides with the support of the multiplication ~ν(am) ~ν(am).
The mean and variance of am can then be approximated by

https://github.com/mlsp2021-gmm/gmm-experiments


Table II: Shape and rate parameters of the ΓMMs used for data generation.
a b

M = 2 [9, 90] [27, 270]
M = 3 [40, 6, 200] [20, 1, 20]
M = 4 [200, 400, 600, 800] [100, 100, 100, 100]

E[am] ≈
L∑
l=1

a(l)
m ~ν(a(l)

m )/Z (16a)

Var[am] ≈
L∑
l=1

(a(l)
m − E[am])2~ν(a(l)

m )/Z , (16b)

where Z =
∑L
l=1 ~ν(a

(l)
m ) is the normalization constant. In

our implementation, we employ adaptive resampling [11,
Ch.7] to avoid the degeneracy problem for the estimates
obtained by (16a) and (16b).

Theorem 2. For L → ∞ the summations given by (16)
converge to the true mean and variance of q(am).
Proof. The numerator of (16a)

∑L
l=1 a

(l)
m ~ν(a

(l)
m ) is the aver-

age of amq(a
(l)
m )/q̃(a

(l)
m ) under sampling from q̃(a

(l)
m ). These

numerators for different L are independent and identically
distributed random variables with mean E[am] [17]. The
strong law of large numbers gives

P

{
lim
L→∞

L∑
l=1

a(l)
m ~ν(a(l)

m )/Z = E[am]

}
= 1. (17)

The denominator of (16a) Z converges to 1.

With the mean and the variance the parameters of the
Gamma distribution q(am) from Table I can be determined
as

α̂(a)
m =

E[am]2

Var[am]
, β̂(a)

m =
E[am]

Var[am]
. (18)

Note that unlike VMP-EM that yields a point estimate by
determining (14), VMP-MM results in a proper posterior
distribution for am.

V. EXPERIMENTS

All experiments were implemented in the Julia program-
ming language [18].2 We used the following computer
configuration: Operating system: macOS Big Sur, Processor:
2,7 GHz Quad-Core Intel Core i7, RAM: 16GB.

A. Verification

For the verification stage, we followed the setup from [4],
where Markov chain Monte Carlo was used for inference
in a ΓMM. We generated data using three distinct ΓMMs,
each specified by likelihood (1) with a different number of
mixture components M = {2, 3, 4}. We fixed the shape and
rate parameters am and bm to the values from Table II.

Each of these models exhibits a different behavior as
illustrated in Fig. 2. For M = 2, the mixture components
have equal means, but different variances. For M = 3,
two mixture components are well separated and have low

2Experiments are available at https://github.com/mlsp2021-gmm/
gmm-experiments.

variances. The third mixture has a large variance and over-
laps with the other two mixtures. Finally, for M = 4
we have four well separated mixtures. For each of the
models, we generated 10 distinct data sets with different
mixing coefficients. These mixing coefficients were sampled
from a standard uniform distribution and were normalized
by dividing by the sum of the coefficients. Each data set
contains K = 2500 observations (in total 3 × 10 × 2500
data points). To verify the proposed inference method, we
selected three generative models of which we assumed the
number of components to be known. We then performed
probabilistic inference through message passing for two
situations. The first situation (known shape-rate) uses infor-
mative priors for a and b and a vague prior for π. The second
setup (known mixing) employs an informative prior for the
mixing coefficient π, but uninformative priors for a and b.
With informative priors, we imply that the distributions are
centered at an ε-area (ε > 0, ε2 ≈ 0) of the values that
were used for data generation. The priors were chosen such
that they do not violate the properties of the corresponding
distributions. We motivate the usage of informative priors
for either mixing coefficients or parameters of gamma dis-
tribution by two reasons. First, based on a Bayesian analysis
of the Gamma distribution [19], the choice of uninformative
priors for small data sets generally leads to low accuracy.
We should choose the priors of the ΓMM carefully as its
parameter space is significantly larger than that of a single
Gamma distribution. Secondly, due to the non-convexity of
the mean-field assumption, we have multiple solutions for
our inference problem [20, Ch.5]. Thus, the initialization
of vague priors for all parameters of ΓMM may lead to
undesirable local minima. The inference task, as specified in
Section III, computes the quantities q(a|x1:K), q(b|x1:K),
q(s|x1:K) and q(π|x1:K). The notation q(·|x1:K) refers to
the marginals after observing the data. In this experiment,
we first want to ensure that the proposed algorithm recovers
the unknown parameters of the mixture components. Addi-
tionally, we want to verify the convergence of the proposed
methodology by monitoring the VFE F [q(·)].

We now highlight the results of the verification stage in
Fig. 2. For the VMP-MM approach we used L = 5000.
Both algorithms recover the parameters of the ΓMM in the
aforementioned situations. Both algorithms converge, which
is reflected by the evolution of the VFE in Fig. 3. The
VMP-EM approach converges more slowly than the VMP-
MM approach as a function of iteration count, but for this
experimental setup VMP-MM is on average approximately
30 times slower in evaluation time than VMP-EM due to the
relatively expensive sampling procedure.

B. Validation

For the validation of our model, we used the country data
set from Kaggle.3 This data set contains socio-economic

3https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data

https://github.com/mlsp2021-gmm/gmm-experiments
https://github.com/mlsp2021-gmm/gmm-experiments
https://www.kaggle.com/rohan0301/unsupervised-learning-on-country-data
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Fig. 2: Verification results. The shaded light-blue bar plots in the background denote
the normalized histograms of the generated data. (Top) The dashed and solid lines
denote the actual and estimated density functions, respectively. (Top-Left) Inference
results for the VMP-EM approach for two components with informative shape and rate
parameters. The estimated and actual densities match meaning that the mixing coeffi-
cient are inferred properly. (Top-Right) Inference results of the VMP-MM approach for
three components with known mixing coefficients. The estimated mixture components
1 and 2 were swapped. The variance of the estimated component 1 is lower than
the corresponding actual component 2. In contrast, the estimated component 2 has a
larger variance than actual component 1. The estimated component 3 features shape
and rate parameters that are close to the parameters of the corresponding generated
mixture. (Bottom) The dashed and solid lines denote the density functions estimated by
VMP-EM and VMP-MM, respectively. (Bottom-Left) Comparison of both algorithms
for three components with informative mixing coefficients. Both algorithms provide
reasonable estimates of the shape and rate parameters for each mixture. (Bottom-Right)
Comparison of two algorithms for a mixture of four components with informative
shape and rate parameters. Both algorithms lead to correct mixing posteriors.
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Fig. 3: Verification results. Evolution of the variational free energy for the VMP-EM
and VMP-MM algorithms, averaged over their corresponding data sets. (Left) Situation
with informative mixing coefficients. (Right) Situation with informative shape and rate
parameters

and health data for all countries in the world. The task is
to categorize the countries based on a set of data features.
Most of the individual features represent positive real values,
therefore the ΓMM appears as a possible approach to mod-
elling. For the brevity of the experiment, we transformed the
”inflation” feature (4.8% entries are negative) to a positive
real range. Unlike the experiments on the generated data sets,
we now have to deal with multivariate observations. Each
observation xk is now represented by a vector of N = 7

features as xk = [x
(1)
k , ..., x

(N)
k ], where the superscript de-
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Fig. 4: Validation results for separated features. Dashed line denotes estimated ΓM.
Solid lines correspond to individual mixture components. (Top-left) Inference result of
VMP-EM algorithm for ”exports” feature when M = 3. (Top-right) Inference result
of VMP-MM algorithm for health feature when M = 3. (Bottom-left) Inference result
of VMP-EM algorithm for ”life expectation” feature when M = 4. (Bottom-right)
Inference result of VMP-MM algorithm for ”child mortality” feature when M = 5.

notes the feature, indexed by n, and where x(n)
k ∈ R>0 for all

n = 1, . . . , N . For modelling the multivariate observations,
we model each feature independently using a separate ΓMM,
where the features are modelled by the same selector variable
sk. The likelihood model (1) then changes to

p(x|s,a, b) =

K∏
k=1

M∏
m=1

N∏
n=1

Γ
(
x

(n)
k |a

(n)
m , b(n)

m

)skm

(19)

and we change (2) and (3) to contain M × N independent
mixture components, such that each feature is modelled by
its own set of mixture components.

In this setup, we do not have any prior information about
the mixing coefficients. To obtain informative priors for
the shape and rate parameters of the mixture components,
we extracted the empirical means and variances of each
feature and converted those to the shape and rate parameters
of a Gamma distribution using (18). To disentangle the
priors of shape and rate parameters, we added a positive
random jitter term to the each shape and rate parameters
of the prior distributions. To determine the optimal number
of mixture components, we tracked the values of mixing
coefficients π for different numbers of mixture components
M = {2, . . . , 10}. Mixing coefficients that converge to 0
indicate the absence of the corresponding cluster [21, Ch.
10]. We highlight the inference results of the proposed
algorithms in Figure 4. Based on this approach, both VMP-
MM and VMP-EM experiments show that M = 3 is the
optimal number of components.

To visualize the inferred components, we used the t-
distributed stochastic neighbor embedding (tSNE) [22].



tSNE provides an intuition of how the high-dimensional data
is arranged by mapping the data onto a lower dimensional
space. Figure 5 shows the result of the tSNE projection
for the countries data set. We colored the data points
according to arg maxsk

q(sk), i.e., the most likely mixture
component of the corresponding marginal. In this way, the
labels provided by VMP-EM and VMP-MM are identical.
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VI. DISCUSSION AND CONCLUSIONS

The proposed inference methods, VMP-EM and VMP-
MM, converge and correctly identify the parameters of
ΓMM. Although VMP-MM yields a ”full” posterior distri-
bution, it suffers from a slower evaluation time. In contrast,
while VMP-EM enjoys a relatively fast evaluation time, it
provides only point estimates for the shape parameters of the
mixture components. This makes VMP-EM difficult to em-
ploy in an online learning scenario when new observations
become available in sequential order.

For the validation experiments, we transformed the ”in-
flation” feature to a positive real range, although this ap-
proach is undesirable as it breaks the natural support of
the corresponding random variable. Alternatively, we could
have substituted the ΓM node that models ”inflation” by a
Gaussian Mixture (GM) node [23], leading to a hybrid model
that connects ΓM and GM nodes through selector variables.

We presented a variational message-passing approach for
inferring the parameters in Gamma mixture models. The
required variational messages are summarized in Table I.
We proposed two approaches for computing the marginal
distribution of the shape parameters of the Gamma mix-
ture model. Furthermore, we demonstrated the convergence
of the inference procedure through the minimization of
variational free energy. The correctness of the message-
passing scheme was verified on a synthetic data set. The
Gamma mixture node can now be used as a plug-in node
in any graphical model that supports message passing-based
inference. Owing to the locality and modularity of the FFG
framework, we showed how the Gamma mixture model can
be easily extended to tackle multi-dimensional problems
such as clustering of countries. In future work, we plan to
use the Gamma mixture node for probabilistic modeling of
time-series that exhibit switching behavior.
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[11] Simo Särkkä, Bayesian Filtering and Smoothing, 2013.
[12] Frank R. Kschischang, Brendan J. Frey, and H.-A. Loeliger, “Factor

graphs and the sum-product algorithm,” Information Theory, IEEE
Transactions on, 2001.

[13] Judea Pearl, “Reverend Bayes on Inference Engines: A Distributed
Hierarchical Approach,” in Proceedings of the Second AAAI Confer-
ence on Artificial Intelligence, 1982.

[14] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation maximization as
message passing,” in International Symposium on Information Theory,
2005. ISIT 2005. Proceedings, 2005.

[15] Milan Merkle, “Logarithmic convexity and inequalities for the gamma
function,” Journal of Mathematical Analysis and Applications, 1996.

[16] Stephen P. Boyd and Lieven Vandenberghe, Convex optimization,
2004.

[17] Art B. Owen, Monte Carlo theory, methods and examples, 2013.
[18] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah, “Julia: A Fresh

Approach to Numerical Computing,” SIAM Review, 2017.
[19] Fernando Antonio Moala, Pedro Luiz Ramos, and Jorge Alberto

Achcar, “Bayesian Inference for Two-Parameter Gamma Distribution
Assuming Different Noninformative Priors,” Revista Colombiana de
Estadı́stica, 2013.

[20] Martin J. Wainwright and Michael I. Jordan, “Graphical Models,
Exponential Families, and Variational Inference,” Foundations and
Trends® in Machine Learning, 2008.

[21] Christopher M. Bishop, Pattern Recognition and Machine Learning,
2006.

[22] Laurens van der Maaten and Geoffrey Hinton, “Visualizing Data using
t-SNE,” Journal of Machine Learning Research, 2008.

[23] Marco Cox, Thijs van de Laar, and Bert de Vries, “A factor
graph approach to automated design of Bayesian signal processing
algorithms,” International Journal of Approximate Reasoning, 2019.


	Introduction
	Model specification
	Problem statement
	Approximate message passing-based inference
	Variational message passing
	Variational message passing in the Gamma mixture node
	Solution 1: Expectation-maximization (VMP-EM)
	Solution 2: Moment matching (VMP-MM)

	Experiments
	Verification
	Validation

	Discussion and conclusions
	References

