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ABSTRACT

We address the problem of online state and parameter es-
timation in hierarchical Bayesian nonlinear dynamic systems.
We focus on the Hierarchical Gaussian Filter (HGF), which is
a popular model in the computational neuroscience literature.
For this filter, explicit equations for online state estimation
(and offline parameter estimation) have been derived before.
We extend this work by casting the HGF as a probabilistic
factor graph and present variational message passing update
rules that facilitate both online state and parameter estima-
tion as well as online tracking of the free energy (or ELBO),
which can be used as a proxy for Bayesian evidence. Due
to the locality and modularity of the factor graph framework,
our approach supports application of HGF’s and variations as
plug-in modules to a wide variety of dynamic modelling ap-
plications.

Index Terms— Dynamical systems, Hierarchical Gaus-
sian Filter, Variational Message Passing, free energy, Online
state and parameter estimation.

1. INTRODUCTION

Online updating of non-linear dynamic models for possibly
non-stationary time series remains a much-studied subject in
various disciplines. In this paper we focus on these issues
for the Hierarchical Gaussian Filter (HGF), which is a par-
ticularly successful model in the computational neuroscience
community, e.g., [1][2]. In this community, the HGF is po-
sitioned as a generative probabilistic non-linear hierarchical
model for sensory observations. In this view, perceptual pro-
cesses are modelled as a Bayesian inference (state estimation)
task and learning corresponds to Bayesian inference of the
model parameters.

In inspiring work by [1], analytic equations for online
state estimation in the HGF are derived. [1] recommends
offline (”batch”) variational Bayesian learning for the HGF
model parameters. Unfortunately, offline parameter estima-
tion is not well-suited to track non-stationarities that are part
of real-world sensoria. Moreover, while an open-source tool-
box for HGF-based modeling is available [3], the toolbox
does not automatically update the inference equations if the

HGF model specification were slightly modified. These are
limiting factors to a wide application of HGF-inspired mod-
eling for non-stationary processes.

In the current paper, we extend the applicability of HGF-
based modeling by casting inference in HGF’s as a message
passing task in a factor graph.

Specifically, our contributions are as follows:

• In Fig.1a, we present a Forney-style Factor Graph
(FFG) representation of the HGF. Crucially, we isolate
the nonlinear components as a composite factor from
the linear Gaussian parts of the model. This isolation
facilitates easy re-application of the non-linear factor to
alternative models as the FFG framework allows re-use
of factors as plug-in modules.

• The FFG formalism takes advantage of the factoriza-
tion of the model by implementing inference as a mes-
sage passing algorithm. In Sec. 2.5, we specify ana-
lytic update equations for both online state and param-
eter tracking in the HGF via a Laplace approximation
to Variational Message Passing (VMP).

• VMP is based on minimization of variational free
energy (FE), which is an upperbound to negative log-
evidence and as such comprises a useful performance
criterion for the HGF model. In Sec. 2.4 we show how
FE is additively distributed in factor graphs and derive
the local FE contributions of the critical factor in the
HGF.

As a result of casting the HGF in an FFG framework,
it is possible to automate the computation of online state
and parameter estimation as well as updating the involved
FE changes that result from message passing. Moreover,
due to the modularity of the factor graph representation, the
constituent factors in an HGF model can be re-combined
or applied in alternative models such that inference and FE
computations remain automated. As a result, the proposed
methods provide a very versatile toolset for HGF-based mod-
eling.
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2. METHODS

2.1. Model Specification

Consider a sequence of observations y , y1:T = (y1, . . . , yT ).
The hierarchical Gaussian filter (HGF) is an N -layered gen-
erative model for this sequence of the form

p(y,x) =

T∏
t=1

p(yt|x(1)t )︸ ︷︷ ︸
observation

N∏
i=1

p(x
(i)
t |x

(i)
t−1, x

(i+1)
t )︸ ︷︷ ︸

state transition

(1a)

p(x
(i)
t |x

(i)
t−1, x
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t ) = δ

(
x
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t − x
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t )

)
(1b)

fi(x
(i+1)
t ) ∼ N

(
0, exp(κ(i)x

(i+1)
t + ω(i))

)
, (1c)

where x(i)t denotes the (latent) state at time t in layer i and
θ(i) = {κ(i), ω(i)} comprises model parameters at layer i [4].
Eq. 1a factorizes the model into layers with Markovian dy-
namics at each layer. Eq. 1b specifies that the state transition
model is a Gaussian random walk with time-varying variance
that is determined by the state of the superior layer. Eq. 1c de-
scribes how the variance in the random walk step depends on
the state of the superior layer. The exponent in Eq. 1c enforces
a non-negative variance that contains a phasic (time-varying)
component exp(κxt) and a tonic (time-invariant) component
exp(ω).

In principle, the HGF state transition model can be com-
bined with any observation model p(yt|x(1)t ). For instance,
for continuously valued observations, a Gaussian variation of
the first-layer state is an option:

p(yt|x(1)t ) = N
(
yt

∣∣∣x(1)t , exp(ω(0))
)
. (2)

In order to properly run this model (i.e., generate y), we
will assume the initialization x(i)0 = 0 for all layers and set
κ(N) = 0, since x(N+1)

t is not specified.
A factor graph-based illustration of the model with three

layers is displayed in Fig. 1 (notational details of factor graphs
will be discussed in Sec. 2.3).

2.2. Signal Processing as Inference

Once the generative model is specified, there are generally
three tasks we are interested in when the model is applied in
a signal processing context. These tasks are (recursive, on-
line) state estimation, parameter estimation and evaluation of
model performance. Let xt = (x

(1)
t , . . . , x

(N)
t ) collect the

states from all layers at time t. Given past and current obser-
vations y1:t, application of Bayes rule leads to the recursive
state estimation equations, which amounts to obtaining the
posterior, p(xt|y1:t) through computing1

1Here, for notational simplicity we removed the model parameters from the equa-
tions.
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Fig. 1. One time segment of the FFG corresponding to a 3-
layer HGF model as defined by Eqs. 1 and 2. We use small
black nodes for observed variables, midsize nodes for deter-
ministic factors and large nodes for stochastic factors. Solid
and dashed edges are associated with states and parameters
respectively. The dotted edges indicate that the graph can be
extended in the same way for the other time steps.

p(xt|y1:t)︸ ︷︷ ︸
posterior

=
1
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state transition

p(x
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dx
(i)
t−1 . (3)

Online parameter updating consists of tracking p(θ(i)t |y1:t),
which, from a Bayesian viewpoint, can be treated as online
estimation of an “extended” state.

In Eq. 3, the unknown parts are the posterior and evidence
terms, since the prior is inherited from the posterior of the pre-
vious time step and the state transition and likelihood terms
are given by the model specification Eqs. 1 and 2. While Eq. 3
comprises an exact recipe for online state estimation, due to
the integration over states and non-conjugate prior-posterior
pairing, executing Eq. 3 is generally intractable (and indeed
this is the case for the HGF). Hence, we need a numerical ap-
proximation for evidence and posterior updating. In this pa-
per, we present variational message passing (VMP) on factor
graph as an approximate online inference method.
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Fig. 2. An FFG corresponding to the model given by Eq. 4,
including messages as per Eq. 6.

2.3. Forney-style Factor Graphs

We give a brief introduction to Forney-style Factor Graphs
(FFG). An FFG is a graphical representation of a factorization
of a global function. Within the context of probabilistic mod-
eling, an FFG represents a factorized probability distribution.
Nodes in an FFG represent factors and edges are associated
with variables. An edge is connected to a node if and only if
the (edge) variable is part of the argument list of the (node)
function [5].

Since an edge can not be connected to no more than two
nodes, there seems to be a problem if a variable name ap-
pears in more than two factors. However, this restriction is
easily resolved via introduction of auxiliary variables whose
marginals are forced to be equal through adding equality fac-
tors to the model.

Consider an example model with factorization given by

p(x1, . . . , x5) = fa(x1, x2)fb(x2, x3, x5)fc(x4, x5). (4)

This factorization is visually displayed as an FFG in Fig. 2.
Assume that we are interested in obtaining the marginal dis-
tribution of x5, which corresponds to evaluating the integral

p(x5) =

∫
. . .

∫
p(x1, . . . , x5) dx1 . . . dx4. (5)

If we plug the factorized form of Eq. 4 into Eq. 5 we can
arrange sums-of-products into products-of-sums by the dis-
tribute law, yielding

p(x5) =

∫∫
fb(x2, x3, x5)dx3

∫
fa(x1, x2)dx1︸ ︷︷ ︸
−→µ (x2)

dx2

︸ ︷︷ ︸
−→µ (x5)

·
∫
fc(x4, x5)dx4︸ ︷︷ ︸
←−µ (x5)

. (6)

Thus, a high-dimensional integral over four variables in
Eq. 5 reduces to a set of smaller integrals. These sub-integrals
can be locally computed by the nodes, effectively doing infer-
ence by passing on messages through the graph, see Fig. 2. In
this example, application of the distributive law leads to the

f
−→µ (x

k
)

−→µ (x
1 )

...
−→µ (y)

Fig. 3. Sum-product message passing for a generic factor
f(x1, . . . xk, y). The outgoing message is given by Eq. 7.

sum-product rule. For a generic node f(x1, . . . , xk, y) (see
Fig. 3) with incoming messages µX1

(x1), . . . , µXk
(xk), the

outgoing sum-product message is given by

−→µ Y (y) =
∫
. . .

∫
f(y, x1, . . . , xN )

N∏
i=1

−→µ Xi
(xi) dxi. (7)

For a detailed explanation of sum-product message pass-
ing in FFGs, we refer to [5, 6].

2.4. Free Energy Minimization and Variational Message
Passing

If the integrals in Eq. 7 are not analytically tractable then sum-
product messages can not be computed. There are however
alternative message passing formulations that lead to approx-
imate Bayesian inference in FFGs. Next, we discuss Vari-
ational Message Passing (VMP), which is very popular for
inference in models that are composed of factors of the ex-
ponential family of probability distributions [7]. VMP recog-
nizes that exact Bayesian inference is not tractable and instead
aims to approximate the posterior for the hidden states xt by
a recognition distribution q(xt). Consider a so-called varia-
tional free energy functional (also known as negative-ELBO),
given by

Ft[q] ,
∫
q(xt) log

q(xt)

p(xt, yt|y1:t−1)
dxt (8a)
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f

q(x
k
)

q(x
1 )

...
−→ν (y)

Fig. 4. Variational message passing for a generic node repre-
senting function f(x1, . . . xk, y).



Table 1. Message update rules for the Gaussian-with-Controlled-Variance (GCV) node f(x, u, κ, ω). Assume incoming mes-
sages qu ∼ N (mu, vu), qx ∼ N (mx, vx), qω ∼ N (mω, vω) and qκ ∼ N (mκ, vκ). Then, outgoing Gaussian variational
messages per Eq. 9 as indicated in the table. The middle row specifies the local free energy contribution per Eq. 10 by the GCV
node. The final row specifies auxiliary variables γ• that are used in the message update rules.

Node Message Update equation

×

+
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→
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Since the KL-divergence term in Eq. 8b is always non-
negative, the free energy is an upper-bound to the negative
log-evidence, i.e Ft[q] ≥ − log p(yt|y1:t−1), with equality
holding if and only if q(xt) = p(xt|y1:t). This means that
minimizing Ft[q] leads to approximations for both the evi-
dence and posterior state distribution, i.o.w., approximation
of the online state estimation problem as stated by Eq. 3. In
the Variational Bayes method, it is common to use the free
energy to score the performance of a model.

In an FFG framework, the free energy functional can be
minimized through Variational Message Passing. Consider
a generic node f(x1, . . . , xK , y) with incoming (marginal)
messages q(xk), see Fig.4. It can be shown by variational
calculus that minimization of FE results from sending an out-
going message

−→ν (y) ∝ exp

(∫
q (x) log f (y, x1, . . . , xk) dx

)
, (9)

followed by updating the marginal for y by q(y) = −→ν (y)←−ν (y)
[7].

Note that the free energy can be computed as a sum of lo-
cal free energies in an FFG. To show this, assume a factorized
probabilistic model p(x) =

∏M
a=1 pa(xa), where a is some

index set, xa is a subset of variables that are arguments for
pa and each pa is a stochastic factor. Using a mean field as-
sumption for the recognition distribution q(x) =

∏N
i=1 q(xi),

it follows that

F [q] =

M∑
a=1

∫
− log pa(xa)

∏
j∈N(a)

q(xj)dxa︸ ︷︷ ︸
U [pa]

+

N∑
i=1

∫
q(xi) log q(xi)dxi︸ ︷︷ ︸

−H[qi]

, (10)

where N(a) denotes the set of variables that are arguments
of pa. Hence, each factor (node) pa contributes an average
energy term U [pa] and each (edge) qi contributes a negative-
entropy term H[qi] to the free energy functional.

In summary, the FFG framework provides a provides a
flexible framework to develop online state and parameter es-
timation as well as performance scoring for a wide range of
dynamic models.

2.5. Variational Message Passing for the Hierarchical
Gaussian Filter

Working out sum-product or variational update rules for the
nodes in the HGF factor graph (Fig. 1) leads only to a problem
for the non-linear nodes fi, whose factors are specified by

f(x, u, κ, ω) = N (x | 0, exp(κu+ ω)) . (11)



In this factor, u controls the variance of a Gaussian,
and hence we call this primitive structure the Gaussian--
with-Controlled-Variance (GCV) factor, see Table 1 for the
internal FFG structure of this factor. In principle, working out
approximate message update rules for all interfaces (i.e., the
edges x, u, κ and ω) would allow the GCV node to exchange
messages in freely definable models, including the HGF. In
Table 1, we provide the full set of these variational mes-
sages (as well as the local free energy contributions) that have
been derived through Laplace approximation of the integrals
in Eq. 9.2With these rules, together with the sum-product
rules for the addition, equality and standard Gaussian nodes
(see [8]), it is possible to conduct online state and parameter
estimation and free energy tracking in HGF models.

3. EXAMPLE: MODELING CURRENCY
EXCHANGE RATES

3.1. Experimental Setup

In order to demonstrate the proposed message passing rules,
we modeled the daily currency exchange rate between USD
and CHF during the period 2010-2011.3 We employed a two-
level HGF with Gaussian observation model and discuss here
the state estimation process. The model parameters were ob-
tained via TAPAS [3] as: κ(2) = 0, κ(1) = 1, κ(0) = 0,
ω(0) = −16.03, ω(1) = −11.84 and ω(2) = −5.90.

Fig. 5 displays one time-step of the message passing
schedule for the two-layer HGF model. Messages 1 and
7 carry state predictions from time-step t − 1 and the like-

lihood node is terminated by observation yt. The message
passing schedule 1 — 16 implements recursive inference

on the states, hence messages 12 and 16 carry approximate

estimates q(x(1)t ) ≈ p(x
(1)
t |y1:t) and q(x(2)t ) ≈ p(x

(2)
t |y1:t)

respectively. Note that the “problematic” GCV node f1 com-
municates with the rest of the model through the update rules
as specified by Table 1.For each time segment we initialize
l = 1 with q(l)(x(i)t ) ∝ N (0.0, 100.0) and iterate messages
1 — 16 over l and update the sufficient statistics (see Fig. 6

for free energy vs. number of iterations).
We implement our method in ForneyLab [9], an FFG tool-

box that is being developed by our research group. 4

3.2. Analysis

The exchange rate data (observations) is plotted in the first
row of Fig. 7. As a baseline comparison, we also simulated
the two-layer HGF with the TAPAS toolbox [3]. The belief

2Full derivations of update rules can be found at http://biaslab.github.
io/pdf/mlsp2018/senoz_mlsp_2018_supplement.pdf

3Data is taken from http://www.macrotrends.net/2558/
us-dollar-swiss-franc-exchange-rate-historical-chart

4ForneyLab.jl is available at https://github.com/biaslab/ForneyLab.
jl
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Fig. 5. Message passing schedule for online state estimation
in the two-layer HGF. Messages are computed in the order as
indicated by the numbers.

over the “volatility” x(2)t for the TAPAS and FFG simulations
are plotted in the second and third rows of Fig. 7 respectively.
Note the strong similarity between the state estimates.

We are also interested in measuring model performance
and used the variational free energy as a performance met-
ric. In Fig. 6 we plot the free energy as a function of VMP
iteration number for both the TAPAS- and FFG-based simu-
lations. Note that a lower free energy in principle points to a
better model performance. The performance of both simula-
tions level out after about 6 iterations with a performance ad-

Fig. 6. Model performance scoring by the Free energy as a
function of iteration number for the two-layer HGF filter for
online state estimation.



Fig. 7. Simulation results. The top row shows the daily USD-CHF currency exchange rate. The second and last row display the
beliefs (mean ± standard deviation) over volatility q(x(2)t ) for simulations by the TAPAS and FFG toolboxes respectively.

vantage for the FFG framework. This plot supports our claim
that VMP update equations indeed minimize FE. Even though
the bound obtained with the FFG framework is tighter than
the bound obtained by the TAPAS simulations, this single ex-
periment is not enough to conclude that our inference scheme
is superior to that of the original scheme. We are planning to
extend our investigations on this topic.

4. CONCLUSIONS

In this paper we have cast the Hierarchical Gaussian Filter in
a factor graph framework and derived local (variational) mes-
sage passing update rules for the nonlinear connection fac-
tor between the layers in this model. Moreover, we derived
formulae for the local free energy contributions of the con-
nection factor. As a result, both online state and parameter
estimation as well as performance tracking of the HGF or any
variants thereof can now be automatically simulated in a soft-
ware toolbox that stores the results (Table 1) in a lookup table.
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