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Abstract. In nature, active inference agents must learn how observa-
tions of the world represent the state of the agent. In engineering, the
physics behind sensors is often known reasonably accurately and mea-
surement functions can be incorporated into generative models. When
a measurement function is non-linear, the transformed variable is typi-
cally approximated with a Gaussian distribution to ensure tractable in-
ference. We show that Gaussian approximations that are sensitive to the
curvature of the measurement function, such as a second-order Taylor
approximation, produce a state-dependent ambiguity term. This induces
a preference over states, based on how accurately the state can be in-
ferred from the observation. We demonstrate this preference with a robot
navigation experiment where agents plan trajectories.

Keywords: Active inference · Free energy minimization · Bayesian �l-
tering · Non-linear sensing · Control systems · Planning · Navigation

1 Introduction

In nature, intelligent agents build a model to infer the causes of their sensations
[2]. In engineering, we are able to utilize knowledge of the relevant physics to
structure such a model. In particular, we often know how sensors measure states
of the world. For example, we know how radar measures relative velocity and
distance [19]. Measurement functions that are non-linear transformations of state
variables pose challenges to state estimation, which are often dealt with using
Gaussian approximations of the transformed variables [8,14]. We show that for
certain Gaussian approximations, an active inference agent will prefer to avoid
states because it already knows that state estimation will be di�cult.

Active inference agents are based on free energy functionals that rank poli-
cies on explorative and goal-directed behaviour [5,7,6,16]. The expected free
energy functional can be understood through its decomposition into a cross-
entropy term between states and observations given action ("ambiguity"), and
a Kullback-Leibler divergence between the posterior predictive and a goal prior
distribution ("risk") [7,18,4]. We show that Gaussian approximations of a non-
linear observation function that are itself linear in the covariance matrix, e.g.,
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�rst-order Taylor and the unscented transform [9], lead to ambiguity terms that
are constant over states. This echoes an earlier �nding that agents with a linear
Gaussian state-space model exhibit a constant ambiguity term [10]. However,
utilizing a second-order Taylor approximation induces a non-constant ambigu-
ity term. Under this model, the agent will avoid states where the non-linear
measurement function curves strongly. Our contributions are:

� Analysis of ambiguity in expected free energy functions under three di�erent
Gaussian approximations.

� An experiment where a robot must plan a trajectory and navigate to a goal
prior distribution, testing the e�ect of the ambiguity term.

2 Problem statement

We want to plan a trajectory for a robot across a plane. The robot's state
at time k is its planar position and time derivatives, xk ∈ RDx . The robot
does not sense position directly, but has to infer it from noisy measurements
yk ∈ RDy , produced by a sensor through a non-linear mapping g : RDx → RDy

and measurement noise vk ∈ RDy . It accepts control inputs uk ∈ RDu and moves
according to linear dynamics with a transition matrix A ∈ RDx×Dx , control
matrix B ∈ RDx×Du and process noise ek ∈ RDx . Overall, we consider robot
systems described with discrete-time state-space models of the form:

xk = Axk−1 +Buk + ek , ek ∼ N (0, Q) , (1)

yk = g(xk) + vk , vk ∼ N (0, R) , (2)

where Q,R are noise covariance matrices.
The goal is to �nd a sequence of T controls ūk = uk+1, . . . uk+T that produces

future states close to a desired state x∗. Agents must plan every time-step. The
challenge is that errors in state estimation may cause drastic changes in the
planned trajectory, which can lead an agent astray.

Example Consider a robot with position and velocity states that must move
from position x0 = (0,−1) to x∗ = (0, 1). Its state transition, control and process
noise covariance matrices are given by:

A=


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , B=


0 0
0 0
∆t 0
0 ∆t

 , Q=


σ2

1
∆t3

3 0 σ2
1
∆t2

2 0

0 σ2
2
∆t3

3 0 σ2
2
∆t2

2

σ2
1
∆t2

2 0 σ2
1∆t 0

0 σ2
2
∆t2

2 0 σ2
2∆t

 , (3)

for ∆t = 0.5, σ1 = σ2 = 0.1. Measurements are produced by a sensor station at
(0, 0) that reports relative angle φk ∈ [−π π] and relative distance dk ∈ [0,∞).
The mapping and measurement noise covariance matrix are:

g(xk) =

[
φk
dk

]
=

[ √
x2

1k + x2
2k

arctan(x1k, x2k)

]
, R =

[
ρ2

1 0
0 ρ2

2

]
, (4)
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where ρ1 = ρ2 = 0.001. Suppose it uses an extended Kalman �lter (�rst-order
Taylor approximation) for state estimation and a �nite-horizon model-predictive
control objective of the form:

Jk(ūk) =

k+T∑
t=k+1

(
(Ax̂t−1+But)− x∗

)ᵀ
C
(
(Ax̂t−1+But)− x∗

)
+ ηu2

t , (5)

where x̂ is the mean state, x̂t = Ax̂t−1 +But, C is a cost matrix (ones for
position, zeros for velocity) and η a regularization parameter. Minimizing this
objective every time-step produces the control sequence ūMPC

k = arg min Jk(ūk).
Such an agent will �rst plan a trajectory moving directly forward, as described in
Figure 1 (left). However, as it approaches the sensor station, its state estimate
become progressively more inaccurate and it makes increasingly more drastic
adjustments to the control plan (see k = 5 in Figure 1 middle). Figure 1 (right)
shows the executed trajectory over a trial of 10 steps, demonstrating that the
agent lost track of the robot's state and did not successfully reach the target.

Fig. 1. (Left) Planned trajectory at k = 1, from start to goal directly over the sensor
station. (Middle) Planned trajectory at k = 5 showing a mismatch between true and
estimated state resulting in a strong adjustment to the planned trajectory. (Right)
Executed trajectory over a trial of 10 steps demonstrates the agent losing track of the
robot when it approaches the sensor station.

3 Agent speci�cation

3.1 Probabilistic Model

The agent's model will have Gaussian prior distributions over states and controls,

p(x0) = N (x0 |m0, S0) , N (uk | 0, η−1I) , (6)

with mean m0, covariance matrix S0, precision η and identity matrix I. The
agent's state transition will also be expressed as a Gaussian distribution:

p(xk | xk−1, uk) = N (xk |Axk−1 +Buk, Q) . (7)
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Let the marginal state xk be Gaussian distributed, i.e., p(xk) = N (xk |mk, Sk).
We restrict our attention to approximations of the nonlinear sensor g(xk) that
produce Gaussian joint distributions over states and observations [14], i.e.,

p(yk, xk) ≈ N
([
xk
yk

]
|
[
mk

µk

]
,

[
Sk Γk
Γ ᵀ
k Σk

])
. (8)

From the joint, we obtain a conditional distribution of observations given states:

p(yk | xk) ≈ N
(
yk | µk + Γ ᵀ

k S
−1
k (xk −mk), Σk − ΓkS−1

k Γ ᵀ
k

)
. (9)

This distribution is linear in xk, and will allow for exact Bayesian �ltering.
But note that the parameters µk, Γk and Σk may be nonlinear functions of xk,
depending on the type of Gaussian approximation (speci�cs treated in Section 4),
and may thus capture more of the e�ect of g(xk).

3.2 Inferring states

We assume that, when inferring states, the agent has observed the system output
yk = ŷk and input uk = ûk. Let Dk , {ŷi, ûi}ki=1 refer to data observed thus far.
Given the known executed control, state estimation follows the general Bayesian
�ltering equations [14]. Firstly, the prior predictive distribution is given by:

p(xk| ûk,Dk-1) =

∫
p(xk|xk-1, ûk) p(xk-1|Dk-1) dxk-1 = N (xk| m̄k, S̄k) . (10)

with m̄k , Amk−1 +Bûk and S̄k , ASk−1A
ᵀ +Q. This prediction is corrected

by the observation through Bayes' rule [14],

p(xk | Dk) =
p(ŷk | xk)

p(ŷk | Dk-1)
p(xk | ûk,Dk-1) = N (xk |mk, Sk) , (11)

with mk = m̄k + ΓkΣ
−1
k (ŷk − µk) and Sk = S̄k − ΓkΣ−1

k Γk.

3.3 Inferring controls

We will discuss the inference procedure �rst for a single step into the future, and
then generalize to a �nite horizon of length T . Predictions for the future state
and observation are made by unrolling the generative model to t = k + 1:

p(yt, xt, ut | Dk) = p(yt | xt)p(xt | ut;Dk)p(ut) . (12)

We will use an expected free energy functional to infer a posterior distribution
over the control ut [13]:

Fk[q] =

∫
q(yt | xt)

∫
q(xt, ut) ln

q(xt, ut)

p(yt, xt, ut | Dk)
d(ut, xt)dyt . (13)
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The variational model is speci�ed to be:

q(yt | xt) , p(yt | xt) , q(xt, ut) , p(xt | ut;Dk)q(ut) . (14)

Constraining q(yt |xt) to the Gaussian approximation de�ned in Eq. 9 allows us
to study deterministic approximations in an expected free energy minimization
context. Given this variational model, Eq. 13 may be re-arranged to:

Fk[q] =

∫
p(yt | xt)

∫
p(xt | ut;Dk)q(ut) ln

p(xt | ut;Dk)q(ut)

p(yt, xt, ut;Dk)
d(xt, ut)dyt (15)

=

∫
q(ut)

( ∫
p(yt, xt | ut;Dk) ln

p(xt | ut;Dk)q(ut)

p(yt, xt | ut;Dk)p(ut)
d(yt, xt)

)
dut (16)

=

∫
q(ut)

(
ln
q(ut)

p(ut)
+

∫
p(yt, xt|ut;Dk) ln

p(xt | ut;Dk)

p(yt, xt|ut;Dk)
d(yt, xt)︸ ︷︷ ︸

Jk(ut)

)
dut. (17)

We refer to Jk(ut) as the expected free energy function as it depends on the
value of ut not on its distribution. Under Jk(ut) = ln(1/ exp(−Jk(ut))), the
expected free energy functional can be concisely expressed as:

Fk[q] =

∫
q(ut) ln

q(ut)

p(ut) exp (−Jk(ut))
dut . (18)

The above is a Kullback-Leibler divergence, which is minimal when

q∗(ut) ∝ p(ut) exp (−Jk(ut)) . (19)

The proportionality is due to the implicit constraint1 that q∗(ut) should integrate
to 1. To work out the expectation in Eq. 17, we �rst decompose the joint over
states and observations into

p(yt, xt | ut;Dk) = p(xt | yt, ut;Dk)p(yt) , (20)

and then intervene on the marginal distribution over yt with a distribution re-
�ecting desired future observations (a.k.a. goal prior) [11]:

p(yt)→ p(yt | y∗) = N (yt | µ∗, Σ∗) . (21)

The next step involves applying Bayes' rule in the inverse direction:

1

p(xt | yt, ut;Dk)
=

p(yt | ut;Dk)

p(yt | xt)p(xt | ut;Dk)
, (22)

1 A more rigorous treatment would de�ne a Lagrangian with normalization and
marginalization constraints [17]. However, such a treatment is inconsequential when
resorting to MAP estimation, as will be pursued later in the paper.
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where the marginal prediction for the future observation is:

p(yt | ut;Dk) =

∫
p(yt | xt) p(xt | ut;Dk)dxt (23)

=

∫
N (

[
xt
yt

]
|
[
m̄t

µt

]
,

[
S̄t Γt
Γ ᵀ
t Σt

]
)dxt = N (yt | µt, Σt) . (24)

Note that µt and Σt depend on ut through m̄t. Plugging Eqs. 21 and 22 into
Eq. 20 yields:

Jk(ut)=

∫
p(yt, xt|ut;Dk) ln

p(xt|ut;Dk)

p(yt | y∗)
p(yt | ut;Dk)

p(yt | xt)p(xt | ut;Dk)
d(yt, xt) (25)

=

∫
p(yt, xt | ut;Dk)

[
− ln

p(yt, xt | ut;Dk)

p(xt | ut;Dk)

]
d(yt, xt)︸ ︷︷ ︸

ambiguity

+

∫ [ ∫
p(yt, xt | ut;Dk)dxt

]
ln
p(yt | ut;Dk)

p(yt | y∗)
dyt︸ ︷︷ ︸

risk

. (26)

"Risk" refers to the Kullback-Leibler (KL) divergence between predicted and de-
sired future observations. The inner integral in the risk term leads to a Gaussian
distribution (Eq. 24) and the KL divergence between Gaussians is [3]:

Ep(yt | ut;Dk)

[
ln
p(yt | ut;Dk)

p(yt | y∗)

]
=

1

2

(
ln
|Σ∗|
|Σt|

−Dy + tr
(
Σ−1
∗ (Σt + Ψ∗)

))
. (27)

where Ψ∗ , (µ∗ − µt
)(
µ∗ − µt)ᵀ. "Ambiguity" refers to the conditional entropy

of the future observations given the future states.

Lemma 1. Ambiguity, as de�ned in Eq. 26, for a generative model described in
Eq. 12 and a variational distribution described in Eq. 14, is:

Ep(yt,xt|ut;Dk)

[
−ln

p(yt, xt|ut;Dk)

p(xt|ut;Dk)

]
=
Dy

2
ln(2πe) +

1

2
ln |Σt − Γ ᵀ

t S̄
-1
t Γt|. (28)

The proof is in Appendix A. Note that the �rst term does not depend on the
state xt. Plugging Eqs. 27 and 28 into the expected free energy function (Eq. 26)
produces:

Jk(ut)=
1

2

(
ln
|Σ∗|
|Σt|

+Dy ln(2π)+tr
(
Σ−1
∗ (Σt+Ψ∗)

)
+ln

∣∣Σt−Γ ᵀ
t S̄

-1
t Γt

∣∣) . (29)

Note that Γt, Σt and Ψ∗ depend on ut. The above steps can be generalized to a
longer time horizon t = k + 1, . . . k + T . Because the prior is independent over
time, p(ū) =

∏T
t=1 p(ut) (see Eq. 6), the function Jk(ū) factorizes to a sum of

recursive expected free energy functions
∑T
t=1 Jk(ut).



Planning to avoid ambiguous states through Gaussian approximations 7

We are interested in the most probable value under the approximate control
posterior, i.e., the MAP estimate:

û = arg max
ū∈U

q∗(ū) = arg min
ū∈U

k+T∑
t=k+1

Jt(ut)− ln p(ut) , (30)

where U ⊂ RT is the space of a�ordable controls over T steps. Constraints such
as motor force limits can be imposed during optimization.

4 Gaussian approximations

We discuss the three most popular Gaussian approximations to non-linear trans-
formations of Gaussian random variables: the �rst and second-order Taylor series
approximations (used in extended Kalman �lters) and the unscented transform
(used in the unscented Kalman �lter) [9,8][14, Ch. 5].

The �rst-order Taylor series approximation e�ectively linearizes the non-
linear observation function g(xt). Since ambiguity is known to be constant over
states under a linear observation function [10], it is no surprise that the �rst-
order Taylor also leads to an ambiguity term that is constant over states.

Theorem 1. Let Gx(m̄t) be the Jacobian of g with respect to xt, evaluated at
m̄t. Under a �rst-order Taylor approximation, the parameters Σt, Γt are:

Σt = Gx(m̄t)S̄tGx(m̄t)
ᵀ +R , Γt = S̄tGx(m̄t)

ᵀ . (31)

With these parameters, the ambiguity term does not depend on the state xt:

Ep(yt,xt | ut;Dk)

[
− ln

p(yt, xt | ut;Dk)

p(xt | ut;Dk)

]
=
Dy

2
ln(2πe) +

1

2
ln |R| . (32)

The proof is in Appendix B. Perhaps surprisingly, under the second-order Taylor
approximation, the ambiguity term varies as a function of the state xt.

Theorem 2. Let G
(i)
xx(m̄t) be the Hessian of the i-th element of the non-linear

observation function evaluated at m̄t and ei be a canonical basis vector. The
parameters Σt, Γt computed through a second-order Taylor approximation are:

Σt = Gx(m̄t)S̄tGx(m̄t)
ᵀ +

1

2

Dy∑
i=1

Dy∑
j=1

eie
ᵀ
j tr
(
G(i)
xx(m̄t)S̄tG

(j)
xx (m̄t)S̄t

)
+R

Γt = S̄tGx(m̄t)
ᵀ . (33)

With these parameters, the ambiguity term depends on xt through:

Ep(yt,xt | ut;Dk)

[
− ln

p(yt, xt | ut;Dk)

p(xt | ut;Dk)

]
= (34)

Dy

2
ln(2πe) +

1

2
ln
∣∣∣1
2

Dy∑
i=1

Dy∑
j=1

eie
ᵀ
j tr
(
G(i)
xx(m̄t)S̄tG

(j)
xx (m̄t)S̄t

)
+R

∣∣∣ .
The proof is in Appendix C.
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Interestingly, the ambiguity is also constant for the unscented transform.

Theorem 3. De�ne 2Dx + 1 sigma points as:

χ0 , m̄t, χi , m̄t+
√
Dx + λ

[√
S̄t
]
i
, χDx+i , m̄t−

√
Dx + λ

[√
S̄t
]
i
, (35)

where i = 1, . . . Dx, [·]i denotes the i-th column of a matrix, and
√
S denotes the

matrix square root such that
√
S
√
S = S. The parameter λ , α2(Dx + κ)−Dx

depends on free parameters α and κ. De�ne 2Dx + 1 weights as:

w0 ,
λ

Dx + λ
+ (1− α2 + β) , wi ,

1

Dx + λ
, (36)

for i = 1, . . . 2Dx and β as an additional free parameter. Under these sigma
points and weights, the parameters µt, Σt, Γt are [14, Eq. 5.89]:

µt =
λ

Dx+λ
g(χ0) +

2Dx∑
i=1

1

2(Dx+λ)
g(χi) , Γt =

2Dx∑
i=0

wi(χi−m̄t)(g(χi)−µt)ᵀ ,

Σt =

2Dx∑
i=0

wi(g(χi)− µt)(g(χi)− µt)ᵀ +R . (37)

Then, the ambiguity is independent of the state:

Ep(yt,xt | ut;Dk)

[
− ln

p(yt, xt | ut;Dk)

p(xt | ut;Dk)

]
=
Dy

2
ln(2πe) +

1

2
ln |R| . (38)

The proof can be found in the Appendix D. This result is conjectured to hold for
other Gaussian approximations that are linear in their estimate of the covariance
matrix, for example the Gauss-Hermite approximation [14, Ch. 6].

5 Experiments

Our experiment is as described in Section 2, with the nonlinear observation
function g(·) measuring relative angle and distance to a base station. Examples
of sensors include Hall e�ect and ultrasound sensors. The robot starts at x0 =
[0 -1 0 0] and must reach x∗ = [0 1 0 0]. The agent's state prior distribution's
parameters were m0 = [0 -1 0 0] and S0 = 0.5I. Its control prior precision was
set to a tiny value, η = 1.0 · 10−8, so as to best study the e�ects of ambiguity
and risk. It was given a goal prior of m∗ = g(x∗) and S∗ = 0.5I.

We will compare three agents2: �rstly, an agent that uses the �rst-order Tay-
lor approximation, referred to as EFE1. Secondly, an agent with a second-order
Taylor approximation, referred to as EFE2. Thirdly, an agent with a second-
order Taylor approximation but with only the risk term included, referred to as
EFER. The di�erence between EFER and EFE2 re�ects the e�ect of the ambi-
guity term, while the di�erence between EFE1 and EFE2 re�ects the e�ect of

2 Details and code at: https://github.com/biaslab/IWAI2024-ambiguity

https://github.com/biaslab/IWAI2024-ambiguity
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the second-order Gaussian approximation. Figure 2 plots the value of the con-
trol objective function at every position in state-space, under a state covariance
matrix of St = I. States close to the sensor station are red and will lead to high
values under the control objective. Note that the area around the sensor sta-
tion increases from EFE1 to EFER due to the curvature of the relative distance
sensor. The white markers are the approximate minimizers for this choice of St
matrix. Comparing EFER and EFE2, we can see that ambiguity increases the
cost of being close to the sensor station.

Fig. 2. Value under three EFE functions over a plane: EFE1 is risk and ambiguity un-
der a �rst-order Taylor approximation, EFER is risk only under a second-order Taylor
approximation and EFE2 is both risk and ambiguity under a second-order Taylor ap-
proximation. White markers indicate minimizers. Note that each EFE function induces
a di�erent preference over states.

We ran 100 Monte Carlo experiments. Figure 3 plots the average trajectory
of T = 30 steps taken by the EFE1, EFER and EFE2 agents. Ribbons indicate
the standard error of the mean at every time-point. Note that all agents avoid
the sensor station, with EFE2 taking the widest curve (EFE1 and EFER turn
at x1 = 1.0 while EFE2 turns at x1 = 1.5). EFE1 and EFER lose track of the
robot in a number of experiments (like the model predictive controller in Sec. 2),
leading to a more volatile average trajectory. EFE2 has the smoothest average
trajectory, indicating that the ambiguity term helps planning.

Fig. 3. Trajectories of agents under three EFE functions, averaged over 100 Monte
Carlo samples (ribbon is standard deviation of the mean). The robot starts at the
green marker and must reach the red goal marker. All agents avoid the sensor station,
with EFE2 taking the widest curve and having the smoothest average trajectory.
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6 Discussion

One could argue that our analysis is more about model selection than inference,
as each Gaussian approximation essentially constitutes a di�erent generative
model. In that sense, the experiments only indicate that richer approximations
of nonlinear functions lead to better performance, which is not surprising. How-
ever, the result is more subtle than that since the unscented transform is richer
than the �rst-order Taylor (produces a more accurate mean estimate [8]) but
apparently still leads to constant ambiguity. No, the approximation must be
sensitive to how the covariance matrix of the joint distribution over states and
observations changes as a function of g's curvature. It would be interesting to
extend this work with parameter estimation, such as inferring the process noise
covariance matrix using a Wishart distribution [15], or the state transition ma-
trix with a Matrix-Normal distribution [1,12].

7 Conclusion

We examined active inference agents with linear Gaussian distributed dynamics
and a non-linear measurement function. We found that the �rst-order Taylor
series and unscented transform approximations to the non-linearly transformed
states lead to expected free energy functions with ambiguity terms that are
constant over states. A second-order Taylor approximation leads to a state-
dependent ambiguity term, inducing a preference over states.
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A Appendix: proof of Lemma 1

Proof. The cross-entropy is split into two entropies that simplify according to:

Ep(yt,xt | ut;Dk)

[
− ln

p(yt, xt | ut;Dk)

p(xt | ut;Dk)

]
= −

∫
N
( [xt
yt

]
|
[
m̄t

µt

]
,

[
S̄t Γt
Γ ᵀ
t Σt

] )
lnN

( [xt
yt

]
|
[
m̄t

µt

]
,

[
S̄t Γt
Γ ᵀ
t Σt

] )
d(yt, xt)

+

∫
N (xt | m̄t, S̄t) lnN (xt | m̄t, S̄t)dxt (39)

=
Dx +Dy

2
ln(2πe) +

1

2
ln
∣∣ [ S̄t Γt
Γ ᵀ
t Σt

] ∣∣− (Dx

2
ln(2πe) +

1

2
ln |S̄t|

)
(40)

=
Dy

2
ln(2πe) +

1

2
ln
(
|S̄t| · |Σt − Γ ᵀ

t S̄
−1
t Γt|

)
− 1

2
ln |S̄t| (41)

=
Dy

2
ln(2πe) +

1

2
ln |Σt − Γ ᵀ

t S̄
-1
t Γt| . (42)
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B Appendix: proof of Theorem 1

Proof. Plugging Σt, Γt from (31) into the result from Lemma 1, yields:

Dy

2
ln(2πe) +

1

2
ln |Σt − Γ ᵀ

t S̄
−1
t Γ | (43)

=
Dy

2
ln(2πe) +

1

2
ln |Gx(m̄t)S̄tGx(m̄t)

ᵀ +R−Gx(m̄t)S̄
ᵀ
t S̄
−1
t S̄tGx(m̄t)

ᵀ|

=
Dy

2
ln(2πe) +

1

2
ln |R| . (44)

The cancellation is due to S̄t being symmetric, i.e., S̄ᵀ
t S̄
−1
t = S̄tS̄

−1
t = I.

C Appendix: proof of Theorem 2

Proof. Plugging Σt, Γt from (33) into the result from Lemma 1, yields:

Dy

2
ln(2πe)+

1

2
ln
∣∣∣Σt−Γ ᵀ

t S̄
−1
t Γ

∣∣∣ =
Dy

2
ln(2πe)+

1

2
ln
∣∣∣Gx(m̄t)S̄tGx(m̄t)

ᵀ (45)

+
1

2

Dy∑
i=1

Dy∑
j=1

eie
ᵀ
j tr
(
G(i)
xx(m̄t)S̄tG

(j)
xx (m̄t)S̄t

)
+R−Gx(m̄t)S̄

ᵀ
t S̄
−1
t S̄tGx(m̄t)

ᵀ
∣∣∣

=
Dy

2
ln(2πe) +

1

2
ln
∣∣∣ 1

2

Dy∑
i=1

Dy∑
j=1

eie
ᵀ
j tr
(
G(i)
xx(m̄t)S̄tG

(j)
xx (m̄t)S̄t

)
+R

∣∣∣ . (46)

The covariance matrix S̄t is symmetric, i.e., S̄ᵀ
t S̄
−1
t = S̄tS̄

−1
t = I. Note that

the Hessian G
(i)
xx(m̄t) depends on the inferred mean of the predicted state m̄t,

meaning that ambiguity is not constant over state-space.

D Appendix: proof of Theorem 3

Proof. Plugging µt, Σt, Γt from (37) into the log-determinant term from the
result in Lemma 1, gives:

1

2
ln
∣∣Σt − Γ ᵀ

t S̄
−1
t Γ

∣∣ =
1

2
ln
∣∣∣ 2Dx∑
i′=0

wi′(g(χi′)−µt)(g(χi′)−µt)ᵀ +R

−
( 2Dx∑
i=0

wi(χi−m̄t)(g(χi)−µt)ᵀ
)ᵀ
S̄−1
t

( 2Dx∑
j=0

wj(χj−m̄t)(g(χj)−µt)ᵀ
)∣∣∣ . (47)

The second term can be re-arranged to:( 2Dx∑
i=0

wi(χi−m̄t)(g(χi)−µt)ᵀ
)ᵀ
S̄−1
t

( 2Dx∑
j=0

wj(χj−m̄t)(g(χj)−µt)ᵀ
)

=

2Dx∑
i=0

2Dx∑
j=0

wi(g(χi)−µt)(χi−m̄t)
ᵀS̄−1

t wj(χj−m̄t)(g(χj)−µt)ᵀ . (48)
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Note that for j = 0, (χj−m̄t)=(m̄t−m̄t)=0. Let Dλ = Dx + λ. For j ≥ 1:

(χi−m̄t)
ᵀS̄−1

t wj(χj−m̄t) (49)

= (m̄t+(−1)i
√
Dλ

[√
S̄t
]
i
−m̄t)

ᵀS̄−1
t

1

Dλ
(m̄t+(−1)j

√
Dλ

[√
S̄t
]
j
−m̄t)

=
1

Dλ
(
√
Dλ)2(−1)i+j

[√
S̄t
]ᵀ
i
S̄−1
t

[√
S̄t
]
j

(50)

= (−1)i+j
[√

S̄t
]ᵀ
i
S̄−1
t

[√
S̄t
]
j
. (51)

Furthermore, note that column selection
[
·
]
i
is equivalent to right-multiplication

with a canonical basis vector ei;[√
S̄t
]ᵀ
i
S̄−1
t

[√
S̄t
]
j

=
(√

S̄tei
)ᵀ
S̄−1
t

(√
S̄tej

)
= eᵀi

√
S̄t

ᵀ
S̄−1
t

√
S̄tej . (52)

Since S̄t is a normal matrix, the eigendecomposition S̄t = V ΩV −1 generates an
orthonormal eigenvector matrix V , implying V −1 = V >, and a diagonal matrix

of eigenvalues Ω. This means that
√
S̄t = V Ω1/2V −1, and that:√

S̄t
ᵀ
S̄−1
t

√
S̄t =

(
V Ω1/2V −1

)ᵀ
V Ω−1V −1

(
V Ω1/2V −1

)
(53)

= V Ω1/2V −1V Ω−1V −1V Ω1/2V −1 (54)

= V V −1 = I. (55)

Therefore, eᵀi Iej will be 1 for all i = j and 0 for i 6= j. We can thus identify two
cases in the double sum in (48), one of which is always 0:

2Dx∑
i=0

2Dx∑
j=0

wi(g(χi)−µt)(χi−m̄t)
ᵀS̄−1

t wj(χj−m̄t)(g(χj)−µt)ᵀ (56)

=

2Dx∑
i=0

∑
j=i

wi(g(χi)−µt)(−1)(i+j) 1 (g(χj)−µt)ᵀ

+

2Dx∑
i=0

∑
j 6=i

wi(g(χi)−µt)(−1)(i+j) 0 (g(χj)−µt)ᵀ (57)

=

2Dx∑
i=0

wi(g(χi)−µt)(g(χi)−µt)ᵀ , (58)

where the (−1)(i+j) drops out because for i = j, i+ j will always be even. One
may now recognize that (47) has two terms that cancel each other:

1

2
ln |

2Dx∑
i′=0

wi′(g(χi′)−µt)(g(χi′)−µt)ᵀ+R−
2Dx∑
i=0

wi(g(χi)−µt)(g(χi)−µt)ᵀ|

=
1

2
ln |R| . (59)

Using this result and Lemma 1, we have proven Theorem 3.
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