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Abstract. We propose an active inference agent to identify and control
a mechanical system with multiple bodies connected by joints. This agent
is constructed from multiple scalar autoregressive model-based agents,
coupled together by virtue of sharing memories. Each subagent infers
parameters through Bayesian filtering and controls by minimizing ex-
pected free energy over a finite time horizon. We demonstrate that a
coupled agent of this kind is able to learn the dynamics of a double
mass-spring-damper system, and drive it to a desired position through
a balance of explorative and exploitative actions. It outperforms the un-
coupled subagents in terms of surprise and goal alignment.

Keywords: Active inference · Expected free energy minimization · Au-
toregressive models · Bayesian filtering · Adaptive control.

1 Introduction

Our society relies heavily on mechatronic systems for manufacturing, energy,
transport, logistics and healthcare. These systems are still largely designed us-
ing physics-driven models, offline system identification and optimal control tech-
niques. However, this design framework leads to systems that tend to be sen-
sitive to "noise", i.e., sensor and actuator imperfections, external disturbances,
and unmodeled physics (e.g., heat, vibrations). Robustness requires adaptation
to a changing environment by updating a model rapidly, continuously and data-
efficiently. This is exactly what embodied artificial intelligence and cognitive
robotics strive to achieve [17,14]. Reinforcement learning is a prime candidate
framework, but it tends to be costly in terms of computational resources and
training time [3]. A more appropriate framework for resource-constrained mecha-
tronic systems is active inference, which characterizes itself by including optimal
information gain in its data acquisition protocol [22,21]. Here we present scalar
active inference agents that are coupled together to jointly control a mechatronic
system with multiple inputs and multiple outputs [20].

Active inference draws its roots from cognitive science where it is a pro-
cess theory for intelligent behaviour [8]. Many agents with discrete state and
action spaces have been proposed as models of learning, exploration and cu-
riosity [7,5,26,4]. The engineering community wants to use active inference as a
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framework for designing intelligent autonomous systems with continuous state
and action spaces [23,16,1,2,12]. A major challenge in designing such agents are
the calculations of the differential entropies involved. Many models assume some
form of Gaussian state transition or likelihood, often with parameters shaped by
neural networks [28,10,11]. We build on recent work using autoregressive models
fit for resource-constrained mechatronic systems [13]. Our contributions include:

– The formulation of a coupled active inference agent consisting of two scalar
agents that share memories (Sec. 3.3).

– An empirical evaluation of coupled versus uncoupled agents on a double
mass-spring-damper system (Sec. 4).

2 Problem statement

We study the class of multi-joint dynamical systems, characterized by simple
mechanical systems connected in sequence. For example, a double mass-spring-
damper system consists of one mass attached to a base through a spring and an
accompanying damper, with a second mass connected to the first mass through
another spring and damper (Figure 1 left). Similarly, a double pendulum consists
of a single pendulum attached to a base and another single pendulum attached to
the end of the first pendulum (Figure 1 right). The task is to find control policies
for each motor such that the multi-joint dynamical system moves to a desired
position. We expect that coupling agents together lets them more accurately
predict joint motion and infer an appropriate control policy sooner.
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Fig. 1: (Left) A double mass-spring-damper system where block 1 is attached
to a stationary frame and block 2 is attached to the first block. The dynamics
of the system are determined by the masses mi of the blocks, the stiffness of
the springs ki, the amount of friction ci the dampeners provide and gravity g.
(Right) A double compound pendulum system consisting of two single compound
pendulums joined end-to-end. The dynamics of the system are determined by
the masses mi and lengths li of the poles.
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3 Agent specification

Consider an agent, operating in discrete time, that sends inputs uk ∈ R (a.k.a.
controls, actions) to a system and measures its output yk ∈ R. The agent must
drive the system to a desired output y∗ without knowledge of its dynamics. Since
this active inference agent minimizes expected free energy (EFE) based on an
autoregressive exogenous (ARX) model, we refer to it as an ARX-EFE agent.

3.1 Probabilistic model

We specify a likelihood function of the form:

p(yk | θ, τ, uk, ūk, ȳk) = N
(
yk | θ⊺

[
uk ūk ȳk

]
, τ−1

)
, (1)

where the vectors ȳk ∈ RMy and ūk ∈ RMu are buffers containing previous
observations of the system outputs and inputs, where My and Mu are the lengths
of the output and input buffers, respectively. This defines the above likelihood
as an autoregressive model. θ ∈ RD, where D = My +Mu + 1, are coefficients
and τ ∈ R+ represents a precision parameter.

The prior distribution on the parameters is a multivariate Gaussian - uni-
variate Gamma distribution [27, ID: D5]:

p(θ, τ) ≜ NG
(
θ, τ | µ0, Λ0, α0, β0

)
= N (θ | µ0, (τΛ0)

−1
)
G
(
τ | α0, β0

)
. (2)

The prior distributions over inputs are assumed to be independent over time:

p(uk) ≜ N (uk | 0, η−1) , (3)

with precision parameter η. This choice has a regularizing effect on the inferred
controls (Sec. 3.2).

3.2 Inference

Our inference procedure is separated into a parameter belief update procedure
given observed data, and control estimation given parameters.

Parameters First, note that, at time k, the control uk has been executed and is
known to the agent. Henceforth, we shall use ûk and ŷk to differentiate observed
variables from unobserved ones. Furthermore, let

xk =
[
uk ūk ȳk

]
. (4)

The parameter posterior distribution is obtained by Bayesian filtering [25]:

p
(
θ, τ | Dk

)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p
(
ŷk | θ, τ, ûk, ūk, ȳk

)
p
(
ŷk | ûk,Dk-1

)︸ ︷︷ ︸
evidence

p
(
θ, τ | Dk-1

)︸ ︷︷ ︸
prior

. (5)
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where Dk = {ŷi, ûi}ki=1 is the data up to time k. The evidence (a.k.a. marginal
likelihood) is

p
(
ŷk | ûk,Dk-1

)
=

∫
p
(
ŷk | θ, τ, ûk, ūk, ȳk

)
p
(
θ, τ | Dk-1

)
d(θ, τ). (6)

We obtain an exact posterior distribution using the multivariate Gaussian -
univariate Gamma prior distribution specified in Eq. 2 [13]:

p(θ, τ | Dk) = NG(θ, τ | µk, Λk, αk, βk) . (7)

where

µk =
(
xkx

⊺
k+Λk-1

)−1(
xkŷk+Λk-1µk-1

)
, Λk = xkx

⊺
k + Λk-1, (8)

αk = αk-1 +
1

2
, βk = βk-1 +

1

2

(
ŷ2k − µ⊺

kΛkµk + µ⊺
k-1Λk-1µk-1

)
. (9)

The marginal posterior distributions are Gamma distributed and multivariate
location-scale T-distributed [27, ID: P36]:

p(τ | Dk) =

∫
p(θ, τ | Dk)dθ = G(τ | αk, βk) , (10)

p(θ | Dk) =

∫
p(θ, τ | Dk)dτ = T2αk

(
θ | µk,

βk

αk
Λ-1
k

)
. (11)

The 2αk subscript refers to the T-distribution’s degrees of freedom parameter.

Controls In order to effectively drive the system to the goal, the agent must
make accurate predictions for future outputs. The predictive probability of the
input, output and parameters at time t = k + 1 is:

p(yt, θ, τ, ut | Dk) = p(yt | θ, τ, ut, ūt, ȳt) p(θ, τ | Dk)p(ut) . (12)

Note that at time t = k+1, the buffers ȳt = [ŷk ŷk−1 . . . ] and ūt = [ûk ûk−1 . . . ]
contain only observed variables (i.e., there are no products between random
variables). To incorporate the goal output, we invert (see Eq. 21) the conditional
dependency in the predictive probability for the output and parameters:

p(yt | θ, τ, ut, ūt, ȳt) p(θ, τ | Dk) = p(yt, θ, τ | ut;Dk) (13)
= p(θ, τ | yt, ut;Dk) p(yt) . (14)

We intervene on the marginal prior distribution over future output, p(yt), with
our chosen goal prior parameters:

p(yt) → p(yt | y∗) ≜ N (yt |m∗, v∗) . (15)

Now, to infer a posterior distribution for the control variable ut, we introduce
an expected free energy functional [7,15],

Fk[q] ≜ Eq(yt,θ,τ,ut)

[
ln

p(θ, τ | Dk)q(ut)

p(θ, τ | yt, ut;Dk)p(yt|y∗)p(ut)

]
, (16)
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with a variational model of the form:

q(yt, θ, τ, ut) ≜ p(yt, θ, τ | ut;Dk)q(ut) . (17)

Inferring the optimal control at time t refers to minimizing the free energy func-
tional with respect to the variational distribution q(ut):

q∗(ut) = argmin
q∈Q

Fk[q] . (18)

where Q represents the space of candidate distributions. We can re-arrange the
free energy functional to simplify the variational minimization problem:

Eq(yt,ut,θ,τ)

[
ln

p(θ, τ | Dk) q(ut)

p(θ, τ | yt, ut;Dk)p(yt | y∗)p(ut)

]
= (19)

Eq(ut)

[
Ep(yt,θ,τ | ut;Dk)

[
ln

p(θ, τ | Dk)

p(θ, τ | yt, ut;Dk)p(yt|y∗)
]

︸ ︷︷ ︸
Jk(ut)

+ ln
q(ut)

p(ut)

]
.

Using Jk(ut) = ln(1/ exp(−Jk(ut))), the expected free energy functional can be
expressed as a Kullback-Leibler divergence

Fk[q] = Eq(ut)

[
ln

q(ut)

exp
(
− Jk(ut)

)
p(ut)

]
, (20)

which is minimal when q∗(ut) = exp
(
− Jk(ut)

)
p(ut) [19]. Thus, we have an

optimal approximate posterior distribution over controls.
The only unknown distribution in Jk(ut) is the distribution over parameters

given the future output and control (see Eq. 13). It can be related to known
distributions through Bayes’ rule:

p(θ, τ | yt, ut;Dk) =
p(yt | θ, τ, ut, ūt, ȳt) p(θ, τ | Dk)∫

p(yt | θ, τ, ut, ūt, ȳt)p(θ, τ | Dk)d(θ, τ)
. (21)

The distribution that results from the marginalization in the denominator is the
posterior predictive distribution p(yt | ut;Dk) and can be derived analytically
within our model specification [13]:

p(yt | ut;Dk) ≜
∫

p(yt | θ, τ, ut, ūt, ȳt)p(θ, τ | Dk)d(θ, τ) (22)

= T2αk

(
yt | µ⊺

kxt,
βk

αk

(
x⊺
tΛ

−1
k xt + 1

))
, (23)

for xt =
[
ut ūt ȳt

]
. If we replace p(θ, τ |yt, ut) in the expected free energy function

with the right-hand side of Eq. 21 and use Eq. 12, then it can be split into two
components:

Jk(ut) = Ep(yt | ut;Dk)

[
− ln p(yt | y∗)

]
(24)

− Ep(yt,θ,τ | ut;Dk)

[
ln

p(yt, θ, τ | ut;Dk)

p(θ, τ | Dk)p(yt | ut;Dk)

]
.



6 T.N. Nisslbeck & W.M. Kouw

One may recognize the first term as a cross-entropy, describing the dissimilarity
between the posterior predictive distribution and the goal prior distribution [19].
The second term is the mutual information between the parameter posterior and
the predictive distribution, describing how much information is gained on the
parameters upon measuring a system output [19]. Solving the expectations yields

Jk(ut)=C+
1

2v∗

(
(µ⊺

kxt−m∗)
2+

βk

αk-1
(x⊺

tΛ
−1
k xt+1)

)
− 1

2
ln(x⊺

tΛ
−1
k xt+1), (25)

where C are constants that do not depend on ut [13].
Unfortunately, the functional form of q∗(ut) does not appear to be a member

of a known parametric family. This means we do not have access to analytic
solutions of the moments of this distribution. If only its most probable value
is of interest, then the most straightforward approach is maximum a posteriori
(MAP) estimation. The MAP estimator can be written as a minimization over
a negative logarithmic transformation of q∗(ut):

ût = argmax
ut ∈U

q∗(ut) (26)

= argmin
ut ∈U

Jk(ut)− ln p(ut) , (27)

where U = {u ∈ R | umin ≤ u ≤ umax} refers to the space of affordable controls.
It can be used to incorporate practical constraints such as torque limits. If an
approximate uncertainty over the controls is required, then the above MAP
estimate can be extended to a Laplace approximation [6].

3.3 Coupling

The above ARX-EFE agent is scalar and can only operate on single-input single-
output systems. We can of course naively group multiple such agents together
to operate on a multi-input multi-output system, as is sometimes done with
Gaussian processes [29, Sec. 9.1]. But that ignores correlations between outputs
which is important for prediction of motion in mechanical systems. We propose
to couple agents together by virtue of incorporating additional signals into the
autoregressive data buffers (i.e., memories) xt. For agent j ̸= i, sharing the
output buffer between agents would take the form of:

p(yi,k | θi, τi, ui,k, ūi,k, ȳi,k, ȳj,k) = N
(
yi,k | θ⊺i

[
ui,k ūi,k ȳi,k, ȳj,k

]
, τ−1

)
. (28)

Through sharing data buffers, the prediction for one system component will
depend explicitly on another component. However, this solution poses a problem
for when the agent wants to extend its time horizon to t > k+1. In principle, due
to the independence assumptions on the prior p(ut) and the variational control
posteriors q(ut), the joint control posterior distribution can be formed as:

q∗(ut, . . . , ut+T ) =

T∏
t=1

p(ut) exp
(
− Jk(ut)

)
. (29)
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For a single agent, the output buffer for t > k+2 can be filled with the maximum
a posteriori value of its prediction at t = k+1 [13]. This solution can be applied
recursively so the time horizon can be extended arbitrarily far. However, in a
coupled setting, agent 1 has to use agent 2’s prediction for k + 1. But agent 2’s
prediction depends on agent 1’s action. Thus, the coupled agents must solve a
nested optimization procedure, iteratively alternating between two scalar opti-
mization procedures. This means coupling becomes computationally expensive
for time horizons t > k + 1.

3.4 Optimization

The optimization problem in Eq. 27 can be solved in a number of ways. Firstly,
using modern automatic or algorithmic differentiation tools, the gradient and
Hessian with respect to ut can be obtained. Iterative procedures such as gradient
descent or (quasi-)Newton methods, will then return approximate minimizers.
The most straightforward way to enforce control space constraints is to utilize
an interior-point method [9]. Such a method imposes a log-barrier function,
which increases an objective function drastically as it approaches the constraint
boundary.

Alternatively, one could quantize the control space U , calculate Eq. 27 for
every possible value and select the minimizer. For a single time-step and a scalar
control, this procedure may actually be computationally cheaper as it does not
require iteration. It does come at the cost of a quantization error for the esti-
mated ût, and, of course, it does not scale well for longer time horizons due to
the curse of dimensionality (the discretization interval becomes a tensor).

4 Experiments

4.1 System description

We perform an experiment1 on a double mass-spring-damper system. Its equa-
tion of motions are the following second-order ordinary differential equations
(ODE) [18]:[

m1 0
0 m2

] [
z̈1
z̈2

]
=

[
−(c1+c2) c2

c2 −c2

] [
ż1
ż2

]
+

[
−(k1+k2) k2

k2 −k2

] [
z1
z2

]
+

[
u1

u2

]
, (30)

where each block i has displacement (or position) zi, velocity żi, acceleration z̈i,
mass i, damping coefficient ci, spring coefficient ki, and external force (control)
ui. In our experiments, we choose c1 = c2 = 0.1, k1 = k2 = 1.0, and m1 = m2 =
1.0. To update the state of the system, we numerically solve the ODE using
the second-order Størmer-Verlet integration method [24]. This method involves
updating the displacement of the mass as follows:

zt+1 = zt +∆tżt +
1

2
∆t2z̈t, (31)

1 Code found at https://github.com/biaslab/IWAI2024-CARXEFE

https://github.com/biaslab/IWAI2024-CARXEFE
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where z̈t is calculated from the equations of motion in Eq. 30. The initial state
of the system is the fixed point z0 = [0.0, 0.0, 0.0, 0.0]. By reducing the step
size ∆t and correspondingly increasing the number of updates niter, we can
reduce the risk of numerical instabilities. In our experiments, we choose ∆t =
0.01 and niter = 120. The observed measurement yt at time t of the system
is the position zt plus measurement noise ε ∼ N (0, σ2

εIMy
), where IMy

is an
identity matrix of size My × My, and σ2

ε is the variance of the noise. We use
σ2
ε = 1×10−5. We discretize the control space U into nU = 999 discrete controls,

U = {umin + k(umax−umin)
nU−1 | k = 0, 1, 2, . . . , nU − 1}, using control limits umin =

−1.0, umax = 1.0. A multi-joint dynamical system has control space UDu and
observation space RDy with dimensions Dy > 1 and Du > 1, respectively. Since
we couple ARX-EFE agents with single input and single output, we require
Dy = Du agents to control and observe the system. In the case of a double
mass-spring-damper system, Dy = Du = 2.

4.2 Comparisons

We compare a set of coupled ARX-EFE agents, referred to as CARX-EFE agents,
with a set of uncoupled ARX-EFE agents. CARX-EFE and uncoupled ARX-EFE
agents differ in the size M of the history vector xk. For each buffer type, we use
a history size of 2. Thus, an uncoupled ARX-EFE agent has a memory size
M = 4 (2 each for a history of its own observations and controls). CARX-EFE
has a memory size of M = 6, as we additionally include a history of observations
of the other agent. Each agent has a set of parameters (µ0, Λ0, α0, β0, η0). By
initializing µ0 as a zero matrix and Λ0 as an identity matrix (each of size M),
we ensure initial conditions for optimization that give each element in xt equal
importance to calculate the control objective in Eq. 25. We further choose α0 =
2.0, β0 = 3.0, and η0 = 0.001. The parameters of the goal priors for each agent
are (m1,∗, v1,∗) = (1.0, 1.0) and (m2,∗, v2,∗) = (2.0, 1.0).

4.3 Results

Figure 2a shows the displacements of the two masses (z1 for mass m1 on the
left and z2 for mass m2 on the right) as a function of time for the coupled
agents (top row) compared to the uncoupled agents (bottom row). The black
scatter points show the observations that the system generated, while the agent’s
one-step ahead predictions are shown as purple lines, accompanied by ribbons
indicating one standard deviation of the prediction variance. The goal prior,
indicating the desired displacement over time, is shown in green with a ribbon
reflecting one standard deviation of the goal prior variance. The CARX-EFE
agents demonstrate rapid stabilization around the goal prior, with displacements
converging towards the goal prior within the first 20 time steps. After reaching
the goal prior, oscillations around it diminish over time, resulting in a stable
state where both displacements remain within a narrow range of the desired
values, as indicated by the low prediction variance. In contrast, the uncoupled
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(a) Observations (scatter points) and predictions of displacements of the two blocks
(left = displacement z1 of mass m1, right = displacement z2 of mass m2, in purple),
plotted over time. Goal prior distributions plotted in green. Both the prediction and
goal prior variance are indicated by a shaded ribbon corresponding to one standard
deviation. Compared to its uncoupled counterpart, CARX-EFE achieves lower predic-
tion uncertainty, as indicated by lower prediction variance.

(b) Controls plotted over time. All agents exhibit a short inactivity phase in the begin-
ning, before choosing non-zero controls. The control signals for both the coupled agent
controlling mass m1 and the uncoupled agent controlling mass m2 have an initial pe-
riod of large oscillations, which gradually diminish in amplitude, eventually converging
to specific values (0.0 for the coupled agent, 0.4 for the uncoupled agent) with narrower
oscillations.

Fig. 2: Comparison of predictions and controls of a set of CARX-EFE agents (top
rows) versus a set of uncoupled ARX-EFE agents (bottom rows). Each column
represents an agent controlling the first and second mass, respectively.
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ARX-EFE agents oscillate more wildly (until around time step 45) and have more
difficulty maintaining close adherence to the goal prior. They exhibit a prolonged
oscillatory phase, where oscillations are more persistent and take significantly
longer to dampen. The higher prediction variance further highlights the increased
uncertainty and instability in the performance of uncoupled ARX-EFE agents
compared to CARX-EFE. The control signals (Fig. 2b) provide further insight
into the observed differences in stabilization performance. Both sets of agents
start with a brief initial phase of inactivity, during which the control signals
remain at zero, keeping the system in its initial, stable state. Following this
inactivity phase, both sets of agents apply non-zero control inputs characterized
by relatively large oscillations where they learn the input-output relationship
before moving to the goal prior. After reaching the goal prior, the control pulse
width of one agent in each set gradually converges to specific values (0.0 for the
coupled agent, 0.4 for the uncoupled agent), while the other agent in the set
alternates between a high and a low control value of the control space U . These
oscillations are more narrow for the agent in control of mass m2, compared to
the uncoupled ARX-EFE agent controlling mass m1.

Figure 3 compares the model performance of both agent sets over time, di-
vided into two subplots: goal alignment (Fig. 3a) and surprise (Fig. 3b). Each
subplot is further split into two rows, showing the performance of agents con-
trolling the first and second mass, respectively. Goal alignment, quantified as
− log p(yt | y∗), measures how closely the agent’s predictions align with the de-
sired outcome (goal prior). As illustrated in Figure 3a, the CARX-EFE agents
consistently achieve better goal alignment over time, compared to the uncou-
pled ARX-EFE agents. Both agent sets exhibit initial peaks in the alignment
error, reflecting difficulty in achieving goal alignment during the early stages of
control. For the uncoupled agents, these peaks are notably larger and more fre-
quent, reflecting greater initial instability and less effective goal adherence. Over
time, the CARX-EFE agents maintain more stable and lower error values, sug-
gesting a more robust alignment with the desired system state. Prediction error,
measured by − log p(yt | ut), reflects the agent’s ability to minimize surprise by
accurately predicting system behavior based on control inputs. Figure 3b demon-
strates that the CARX-EFE agents outperform the uncoupled ARX-EFE agents
by consistently achieving lower surprise values. This suggests that CARX-EFE
agents are more effective in learning the system dynamics and predicting the
outcome of their actions, which in turn helps maintain better goal adherence. In
contrast, the uncoupled agents, initially struggling with higher surprise values,
demonstrate less accurate predictions over time.

Overall, CARX-EFE agents exhibit superior performance by improving sta-
bilization, lower prediction variance, and more efficient control strategies com-
pared to their uncoupled counterparts. These findings underscore the efficacy
of the coupled approach in improving both the accuracy and stability of the
control system, making CARX-EFE a more robust choice for managing complex
dynamical systems.
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(a) Goal alignment, measured by − log p(yt |y∗), plotted over time. Coupled agents have
better overall goal alignment, with less fluctuations compared to uncoupled agents.

(b) Prediction error (surprise), measured by the negative log-likelihood − log p(yt |ut),
plotted over time. CARX-EFE agents achieve better performance by minimizing sur-
prise more effectively.

Fig. 3: Comparison of model performance of a set of CARX-EFE agents versus
a set of uncoupled ARX-EFE agents. Each subplot evaluates a specific aspect of
performance: (a) goal alignment and (b) prediction error (surprise). Lower values
indicate better performance. The top and bottom row in each subplot show the
performance of agents controlling the first and second mass, respectively.
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5 Discussion

Improved ability to stabilize and lower prediction variance demonstrated by
CARX-EFE suggest a significant advantage in scenarios requiring reliable con-
vergence, such as robotic control and adaptive systems in unpredictable environ-
ments. However, the current findings are based on a single simulation run, neces-
sitating further validation. Conducting Monte Carlo experiments would confirm
the robustness of CARX-EFE’s advantages across varied conditions. Future work
should also evaluate the CARX-EFE agents on nonlinear and underactuated sys-
tems, like a double pendulum or acrobot, to assess their ability to generalize.
Additionally, benchmarking against other control methods could provide insights
into the relative strength of CARX-EFE agents. The current implementation of
CARX-EFE agents relies on a one-step ahead prediction, making their perfor-
mance sensitive to the system update step size (∆t). Addressing this limitation
by extending the prediction capability could reduce the dependence on these
parameters, and possibly improve the efficiency of the coupled approach.

6 Conclusion

We investigated the control of a multi-joint mechanical system by coupling multi-
ple autoregressive active inference agents that minimize expected free energy. We
evaluate the effect of sharing data buffers (i.e., memories) in the autoregressive
models of the agents. Our experiments demonstrate that coupling significantly
improves the agent’s ability to achieve both better goal alignment and lower
prediction error. CARX-EFE agents consistently outperformed their uncoupled
counterparts, showing lower prediction uncertainty with higher prediction accu-
racy (lower surprise), and greater long-term stability around the goal prior. It is
important to note that the agent is limited to one-step ahead predictions. Future
research should focus on extending the horizon of the agents, and improving the
optimization procedure in MAP estimation.
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