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Abstract. Generative or probabilistic modeling is crucial for develop-
ing intelligent agents that can reason about their environment. However,
designing these models manually for complex tasks is often infeasible.
Structure learning addresses this challenge by automating model cre-
ation based on sensory observations, balancing accuracy with complex-
ity. Central to structure learning is Bayesian model comparison, which
provides a principled framework for evaluating models based on their ev-
idence. This paper focuses on model expansion and introduces an online
message passing procedure using Dirichlet processes, a prominent prior
in non-parametric Bayesian methods. Our approach builds on previous
work by automating Bayesian model comparison using message passing
based on variational free energy minimization. We derive novel message
passing update rules to emulate Dirichlet processes, offering a flexible
and scalable method for online structure learning. Our method general-
izes to arbitrary models and treats structure learning identically to state
estimation and parameter learning. The experimental results validate the
effectiveness of our approach on an infinite mixture model.

Keywords: Dirichlet processes · Factor graphs · Infinite mixture model
· Message passing · Probabilistic inference · Scale factors · Structure
learning.

1 Introduction

The task of generative or probabilistic modeling is fundamental in developing
intelligent agents capable of reasoning about their environment. However, it is
often infeasible for human engineers to manually design these models for complex
tasks because of the involved intricacies. Structure learning addresses this chal-
lenge by automating the construction of models based on sensory observations,
thus alleviating the burden on human engineers.

Structure learning is encapsulated in the task of Bayesian model comparison,
which provides a principled framework for comparing models based on their
evidence. This process facilitates the identification of better models that are
either smaller or larger than a baseline, known, respectively, as model reduction
[4,14,15] and model expansion [16,31]. These techniques are critical for refining



and optimizing models, thus enhancing their performance and applicability in
various tasks. This paper will focus on model expansion in particular.

In [9] the tasks of Bayesian model comparison [18], selection and combination
[25] have been automated using message passing based on variational free energy
minimization. This paper extends this set of methods with Dirichlet processes
[6, 10, 26, 33], which are one of the most established priors in non-parametric
Bayes. Effectively, we present an online message passing procedure based on
Dirichlet processes which enables the model to grow automatically over time,
providing a natural trade-off between model accuracy and complexity.

Our approach shows similarities with [36], yet offers more flexibility as a result
of our commitment to message passing. Compared to [23], our approach leverages
scale factors [27, 29, Ch.6] to track the model evidence rather than performing
a partial mean-field approximation. In contrast to [16,31] our approach is based
on non-parametric priors, allowing for a message passing-based treatment of
both state estimation, parameter learning and structure adaptation, which is
not limited to discrete-space models.

This paper presents a novel and principled approach to online structure learn-
ing using message passing. Specifically, we make the following contributions:

• We present a generic and modular approach similar to the sequential updat-
ing and greedy search algorithm [36] for online structure learning utilizing
Dirichlet processes;

• We derive novel message passing update rules to emulate Dirichlet processes,
based on the mixture node recently introduced in [9];

• We demonstrate our approach on an infinite mixture model [28], with the
potential for generalization to arbitrary models.

To provide a solid foundation for all readers, Section 2 introduces Forney-
style factor graphs and message passing, the core methodology behind this paper.
Readers unfamiliar with this methodology and its benefits are encouraged not to
skip this section. Throughout the subsequent sections, we use the infinite mix-
ture model [28], as specified in Section 3, as a running example to elucidate our
approach. It should be noted, however, that the methods presented in this paper
can be easily generalized to more complex graphs due to the inherent modular-
ity of our approach. Using this model, Section 4 details how inference can be
executed to ensure the message passing procedure emulates a Dirichlet process,
facilitating online structure learning. The experimental results validating our
approach are presented in Section 5, and Section 6 follows with a discussion of
the presented approach, concluding the paper.

2 Technical background

This section provides a concise review of factor graphs and message passing algo-
rithms, essential for understanding our core contributions. For a deeper under-
standing, we provide references rather than an exhaustive review. In Section 2.1,
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Fig. 1: A Forney-style factor graph representation of the factorization in (2).

we introduce factor graphs for visualizing factorizable probabilistic models, af-
ter which Section 2.2 covers efficient probabilistic inference through message
passing. Section 2.3 explains how to track model evidence locally with message
passing using scale factors.

2.1 Forney-style factor graphs

A factor graph is a type of probabilistic graphical model. We use the Forney-style
factor graph (FFG) framework from [11] with notations from [21] to visualize
our models. An FFG represents a factorized function:

f(s) =
∏
a∈V

fa(sa), (1)

where s includes all variables, and sa ⊆ s includes the variables of factor fa. In
an FFG, nodes (V) represent factors, and edges (E ⊆ V ×V) represent variables.
An edge connects to a node if the variable is an argument of the factor at that
node. The edges connected to node a ∈ V are denoted by E(a), and the nodes
connected to edge i ∈ E are denoted by V(i). For example, consider

f(s1, s2, s3, s4) = fa(s1)fb(s1, s2)fc(s3)fd(s2, s3, s4), (2)

which represents a factorization whose FFG representation is shown in Figure 1.
For a detailed review of factor graphs, see [21,22].

2.2 Sum-product message passing

Consider the normalized probabilistic model

p(y, s) =
∏
a∈V

fa(ya, sa), (3)

where y represents observed variables and s represents latent variables. The
subset ya ⊆ y can be empty, such as in prior distributions. Upon observing
realizations ŷ, the model p(y = ŷ, s) becomes unnormalized. Probabilistic infer-
ence involves computing the posterior distribution p(s | y = ŷ) and the model
evidence p(y = ŷ) as the decomposition p(y = ŷ, s) = p(s | y = ŷ)p(y = ŷ).



Consider integrating over all variables in the model except sj as
∫
p(y =

ŷ, s) ds\j . This integration can be performed through smaller local computations,
whose results are termed messages, which propagate over the graph edges. The
sum-product message µ⃗sj (sj) flowing from node fa(ya = ŷa, sa) with incoming
messages µ⃗si(si) is given by [19]

µ⃗sj (sj) =

∫
fa(ya = ŷa, sa)

∏
i∈E(a)
i ̸=j

µ⃗si(si) dsa\j . (4)

Edges in the graph are represented by directed arrows to distinguish between for-
ward (µ⃗sj (sj)) and backward ( ⃗µsj (sj)) messages. For acyclic models, the global
integration reduces to the product of messages∫

p(y = ŷ, s) ds\j = µ⃗sj (sj) ⃗µsj (sj). (5)

Posterior distributions can be obtained by normalizing the resulting product.
The computed normalization constant represents the model evidence. For deriva-
tions of the message passing update rules, see [37]. Variations of this approach
also yields alternative algorithms such as variational message passing [35], expec-
tation propagation [24], expectation maximization [8], and hybrid algorithms.

2.3 Scale factors

The previously discussed integration
∫
p(y = ŷ, s) ds\j can be expressed as∫

p(y = ŷ, s) ds\j = p(y = ŷ)

∫
p(s | y = ŷ) ds\j = p(y = ŷ)p(sj | y = ŷ), (6)

where p(sj | y = ŷ) is the marginal distribution of sj . This means that the
product of two colliding sum-product messages µ⃗sj (sj) ⃗µsj (sj) in an acyclic graph
yields the scaled marginal distribution p(y = ŷ)p(sj | y = ŷ). Thus, we can obtain
both the normalized posterior p(sj | y = ŷ) and the model evidence p(y = ŷ) at
any edge or node in the graph.

Theorem 1. [9, Theorem 1] Consider an acyclic Forney-style factor graph
G = (V, E). The model evidence of the corresponding model p(y = ŷ, s) can be
computed at any edge in the graph as

∫
µ⃗sj (sj) ⃗µsj (sj) dsj for all j ∈ E and at

any node in the graph as
∫
fa(ya = ŷa, sa)

∏
i∈E(a) µ⃗si(si) dsa for all a ∈ V.

This local computation of model evidence is enabled by the scaling of mes-
sages resulting from the equality in (4). Consequently, the messages µ⃗sj (sj) can
be decomposed as

µ⃗sj (sj) = β⃗sj p⃗sj (sj), (7)

where p⃗sj (sj) is the normalized probability distribution of the message µ⃗sj (sj),
and β⃗sj is the scaling factor [29, Ch.6], [27]. These scale factors serve as local
summaries of the model evidence passed along the graph.



3 Model specification

In this section, we describe the probabilistic model that underpins our novel
inference approach detailed in Section 4. As a running example, we employ the
infinite mixture model [28]. This model leverages the unique properties of Dirich-
let processes, allowing the model to expand dynamically over time. Consequently,
it serves as an ideal and principled example for structure learning.

The infinite mixture model works as follows. Consider a single observation
yn, which is modelled by a likelihood model p(yn | θ, cn), with parameters θ. The
model assumes multiple possible options or regimes for the parameters depending
on the cluster assignment probability cn. This cluster assignment probability
cn comprises a 1-of-K binary vector with elements cnk ∈ {0, 1} constrained
by

∑K
k=1 cnk = 1. Depending on the class, the observation is modelled by a

different set of parameters. When the kth class is active, the corresponding set
of parameters is given by θk. As a result, the likelihood model can be further
factorized as

p(yn | θ, cn) =
∞∏
k=1

p(yn | θk)cnk . (8)

The infinite mixture model assumes we have an infinite amount of classes (K =
∞). Although this might seem computationally intractable, in practice only a
limited number of classes is active as we will show in Section 4. The model’s
strength lies in its ability to grow the number of active classes over time, pro-
viding opportunities to expand the model in a principled manner.

In addition to the likelihood model, we define the prior over the cluster
parameters as the base distribution G0 as

p(θk) = G0(θk) ∀ k. (9)

Here independence across the clusters is implied by the characterization of [20]
as

p(θ) =

∞∏
k=1

p(θk), (10)

and will also result into independence across the posteriors over the clusters [34].
The cluster assignment probabilities cn are modeled using a categorical dis-

tribution
p(cn |π) = Cat(cn |π), (11)

with event probabilities π. The prior on the event probabilities is in our case
defined as

p(π) = lim
K→∞

Dir
(
π
∣∣ α

K
1K

)
, (12)

with α representing the concentration parameter and 1K denoting a vector of
ones of length K. Alternative definitions are also possible, e.g. using the Griffiths-
Engen-McCloskey (GEM) distribution or using the stick-breaking representa-
tion, however, for ease of inference in Section 4 we use the former. Together,



the base distribution G0 and the concentration parameter α characterize the
underlying Dirichlet process.

With all the individual elements identified, the full generative model of the
infinite mixture model can now be constructed for multiple observations. Given
N observations y = {y1, y2, . . . , yN} the total model factorizes as

p(y, θ, c, π) = p(π)︸︷︷︸
(12)

∞∏
k=1

p(θk)︸ ︷︷ ︸
(9)

N∏
n=1

p(yn | θ, cn)︸ ︷︷ ︸
(8)

p(cn |π)︸ ︷︷ ︸
(11)

. (13)

4 Probabilistic inference

With the model described in the previous section, we will now show how we
can perform inference in this model. Specifically, we are interested in computing
the marginal posterior distributions p(π | y≤n) and p(θk | y≤n)∀ k in the infinite
mixture model. We focus here on online inference, where this inference task
is performed using streaming data, as we highlight the importance of in-the-
field structure learning. Ideally, we wish to solve the discrete equivalent of the
Chapman-Kolmogorov integral [32, Ch.4]

p(θ, π | y≤n) ∝
∑
cn

p(yn | θ, cn) p(cn |π) p(θ, π | y<n) (14)

recursively. However, the infinite dimensionality of cn results in intractable infer-
ence. To circumvent this problem, all inactive components where the posterior
beliefs over the parameters have not yet been updated from the prior belief,
are grouped together. The components or cluster with indices k > K∗, where
K∗ denotes the number of active components, are grouped into a single compo-
nent with concentration parameter limK→∞

∑K
k=K∗+1 α/K = α. This particular

grouping is very beneficial as the problem can now be tackled as a standard model
comparison task as in [9].

Furthermore, to limit the number of excitable components per observation,
the class label cn is constrained to correspond to a single class, such that each
data point can only belong to a single class and therefore has the potential to
initiate no more than a single component, as described in [36]. This constraint
is reflected by constraining the approximate marginal distribution q(cn) [37] to

q(cn) = δ[cn − ek], s.t. k = argmax
k

µ⃗cn(cn = ek) ⃗µcn(cn = ek), (15)

where δ[·] denotes the Kronecker delta function and where we pick the compo-
nent cn as the maximum a posteriori estimate. This is similar to the Bayesian
model selection setup as described in [9, Sec.5.2]. Using the Chinese restaurant
metaphor, this constraint enforces that every customer can only sit at a single
table at once. If we would not enforce this constraint, then there would always
be a non-zero probability of the observation originating from the group of in-
active components, which would be sufficient to activate a new component for
each observation.
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Fig. 2: Factor graphs of the initial time slices of the infinite mixture model of
Section 3. The edge denoted by θ here denotes the active or selected parameter
settings. The edges connected to θ have been dashed to highlight its extensibility
towards arbitrary observation models. The parameter vector below the Dir-node
denotes the simplified vector of concentration parameters.

Based on this constraint, we approximate the marginal posterior distributions
over θk ∀ k and π with approximate posterior distributions qn(θk) and qn(π),
where the subscript n explicitly indexes the latest observation. Online inference
proceeds using the iterative update procedure for θk as

qn(θk) ∝

{
p(yn | θk)qn−1(θk), if q(cn) = δ[cn − ek],

qn−1(θk), otherwise,
(16)

which effectively states that only the parameters gets updated which have been
most likely to have generated the data. The posterior belief over π gets updated



as
qn(π) ∝ qn−1(π)

∑
cn

q(cn)p(cn |π)︸ ︷︷ ︸
⃗µπ(π)

. (17)

The initial conditions of this recursion find their origin in the model specification
and are specified by

q0(θk) = p(θk), (18a)

q0(π) = p(π). (18b)

The above inference procedure can be automated using an adapted version
of the mixture node from [9] as presented in Table 1. Effectively this node in-
ternally computes the model evidences of the individual combinations of inputs
and output using the scale factors from Section 2.3, which are an indicator for
how likely a data point yn originated from one particular set of parameters θk.
Through normalization of these evidences and together with the prior on the
class label cn, one can obtain the posterior distribution of the class label. In
comparison to the mixture node as introduced in [9] the only adaptation occurs
in the backward messages towards the parameters. This adaptation entails that
only the parameters of the active component are being updated. Figure 2 vi-
sualizes the factor graphs corresponding to the initial time slices of the online
training procedure. From this figure it can also be seen how the mixture node
of [9] be used to represent the infinite mixture model.

The biggest benefit of this approach is that the system is inherently modular.
The likelihood and priors can be extended to arbitrarily complex or hierarchical
models to model more complex phenomena. By adding a temporal dependency
p(cn | cn−1) to the model, one effectively creates a sticky Dirichlet process [12,13].
With the message passing updates rules from Table 1 together with rules derived
in earlier works, e.g. [21, 27], one can build arbitrarily complex graphs tailored
to any problem.

5 Experiments

All experiments have been performed using the scientific programming lan-
guage Julia [5] with the state-of-the-art probabilistic programming package
RxInfer.jl [2]. The mixture node specified in Table 1 has been integrated in its
dependency ReactiveMP.jl [1,3]. In addition to the results presented in the up-
coming subsections, interactive Pluto.jl notebooks are made available online4,
allowing the reader to change hyperparameters in real-time.

For online learning of the infinite mixture model as described in Section 4,
we generate observations from a two-dimensional normal mixture model with 8
clusters. As a model for these generated observations, we pick the infinite mixture
model of (13). Here, the likelihood model is set to p(yn | θk) = N (yn | θk, I2)
4 All experiments are publicly available at https://github.com/biaslab/
OnlineMessagePassingDirichletProcess.

https://github.com/biaslab/OnlineMessagePassingDirichletProcess
https://github.com/biaslab/OnlineMessagePassingDirichletProcess


Table 1: Table containing (top) the Forney-style factor graph representation
of the mixture node of [9]. The edge denoted by θ here denotes the active or
selected parameter settings. (bottom) The derived outgoing messages for the
mixture node mimicing a Dirichlet process. It can be noted that the backward
message towards cn resembles a scaled categorical distribution and that the
forward message towards θ represents only one of the incoming messages µ⃗θk(θ).

Factor node

θ1 θ2

· · ·

θK∗+1

↓ µ⃗θ1

↑ ⃗µθ1

↓ µ⃗θ2

↑ ⃗µθ2

↓ µ⃗θK∗+1

↑ ⃗µθK∗+1

θ

↓ µ⃗θ

↑ ⃗µθ

cn
←
⃗µcn

→
q(cn)

Messages Functional form

⃗µcn(cn)

K∗+1∏
k=1

(∫
µ⃗θk (θk) ⃗µθk (θk)dθk

)cnk

µ⃗θ(θ) µ⃗θk (θ) if q(cn) = δ[cn − ek]

⃗µθk (θk)

{
⃗µθ(θk) if q(cn) = δ[cn − ek]

const otherwise

where I2 denotes a two-dimensional identity matrix. The priors over the mean
parameters θk are set to be uninformative as p(θk) = N (θk | 02, 10I2), where
02 denotes a two-dimensional vector of zeros. The concentration parameter is
initialized as α = 0.1.

Figure 3 shows the inferred class assignments and posterior mean parameters,
together with the posterior concentration parameters, as a function of the num-
ber of observations. From the figure we can validate that the inference procedure
indeed recovers the 8 clusters that were used to generate the data. Furthermore,
the mean parameters have converged to the data generating cluster means.

6 Discussion and conclusions

The presented approach in this paper enables model expansion by emulating
Dirichlet processes through message passing. Through the use of scale factors, we
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Fig. 3: Visualization of the results obtained by performing online inference in the
infinite mixture model defined in Section 3 using the message passing implemen-
tation as described in Section 4. Each row represents the number of observations
N . The left column shows the observations colored by their inferred cluster label
and the inferred component means, denoted by square crosses. The right column
denotes the concentration parameters of the approximate posterior distribution
qN (π).

have effectively extended the task of model comparison to model expansion. The
use of Dirichlet processes guarantees a well-grounded and principled approach



to the task of model expansion without any post-hoc treatment. A benefit of
the online nature of the algorithm is that it is well-suited to the development of
intelligent agents, which continuously perceive streams of information. Due to
the online nature of the algorithm, its behavior also naturally depends on the or-
dering of the observations it perceives [36]. This is in contrast to sampling-based
methods, however, these are significantly more computationally demanding.

It is important to note that the presented mixture node does not enforce
any constraints on adjacent parts of the graph and can be used in both discrete
and continuous spaces. A limitation of scale factors is that they can only be
efficiently computed when the model submits to exact inference [27]. Extensions
of the scale factors towards a variational setting would allow the use of the
mixture node with a bigger variety of models. If this limitation is resolved, then
the introduced approach can be combined with more complicated models, such
as, for example, Bayesian neural networks, whose performance is measured by
the variational free energy; see, e.g. [7, 17]. This provides a novel solution to
multi-task machine learning problems where the number of tasks is not known
beforehand [30]. Each Bayesian neural network can then be trained for a specific
task, and additional components or networks can be added if appropriate.
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