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Abstract. We describe a Bayesian controller for a cart-pole system, a
well-known benchmark in control theory. The cart-pole system is charac-
terized by its nonlinear and underactuated nature, and we further com-
plicate the scenario by (1) assuming that the controller lacks knowledge
of sensor noise variance, and (2) imposing bounds on the control signal.
Traditional control algorithms often struggle to adapt to uncertainties
and constraints. However, the Bayesian framework, particularly the ac-
tive inference framework, smoothly accommodates these complexities.
In the proposed controller, the entire computational process consists of
online Bayesian inference. This process is streamlined through a toolbox
for fast message passing-based inference in factor graphs. We describe
the mechanics of message passing in factor graphs, addressing challenges
such as non-linear factors, bounded control, and real-time parameter
tracking. The primary objective of this paper is to demonstrate that,
with the advancement of the active inference framework and the effec-
tiveness of automated inference toolboxes, Bayesian control emerges as
an appealing option for application engineers.

Keywords: Active inference · Bayesian control· Factor graphs· Message
passing · NUV priors · Policy estimation

1 Introduction

The cart-pole problem (also known as the inverted pendulum) comprises a pole
that is attached at one end to a movable cart with an associated goal of balancing
the pole at the upright position by controlling the horizontal movements of the
cart.This is a highly non-linear and underactuated system 3 that is widely used
as a benchmark to illustrate the effectiveness of controllers [21]. Despite the
challenges, a standard cart-pole system can be successfully controlled by classical
control algorithms such as Model Predictive Control (MPC)[15].

In the real world, control systems inevitably have to deal with uncertainties
that result from model inaccuracies and simplifications such as un-modeled ex-
ternal influences or sensor imperfections. In this paper, we add some complexity
3 A cart-pole system has two degrees of freedom, namely the pendulum angle and the

linear cart position, and only one actuator, the horizontal force on the cart.
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to the cart-pole control task by assuming that (1) the variance of the sensor
noise is unknown, and (2) the control signal is bounded.

Active inference is a mathematical framework designed for understanding
biological agents, specifically the human brain [6]. This framework is grounded
in a generative model that drives states, controls, and planning based on the
principle of free energy minimizing [4, 19]. Recently, many studies have used
active inference agents in robotic tasks [13, 3]. In this paper, due to the highly
nonlinear and underactuated behavior of the cart pole system, we are interested
in active inference agents with continuous control and state spaces [6, 12, 13].

Current (non-Bayesian) control algorithms have difficulties quantifying or
processing such uncertainties appropriately [20]. In contrast, Bayesian control
through probabilistic inference in a generative model provides a principled way
to keep account of uncertainties and constraints in the system. Unfortunately,
when trying to realize a Bayesian controller, exact inference quickly becomes
computationally intractable, even for relatively simple models. Numerical solu-
tions such as (Monte Carlo) sampling-based inference are often too computa-
tionally intensive or too slow for the application at hand.

This paper presents an approach based on casting both the control and pa-
rameter tracking problems as online inference tasks on a generative model of the
system. To combat the computational issues surrounding probabilistic inference,
we realize the inference tasks by message passing (MP) on a Forney-style factor
graph (FFG) representation of the probabilistic model. Efficient probabilistic
inference in the model is realized using automatable MP procedures that lever-
age the conditional independencies in the model. MP-based inference has a long
history for efficient inference in signal processing and control systems [14].

To keep the control signals within physical bounds, we use a Normal-with-
Unknown-variance (NUV) distribution as a prior distribution for the control
signals. The NUV prior is a distribution that originated in the sparse Bayesian
learning literature [22]. Recently, NUV priors were introduced as a sub-model
to enforce domain constraints [10]. This sub-model has been successfully used in
various MPC applications to impose constraints on the state trajectories [10], as
well as in multi-agent trajectory estimation to prevent collisions [2].

In section 2, we introduce the cart-pole system formally and specify the
control problem. The subsequent sections include our contributions:

– In section 3, we specify the controller, which comprises a probabilistic gen-
erative model for sensory observations from its environment. Crucially, the
model can be used to predict both veridical and desired future observations.

– In section 4, we rehearse factor graphs and various message passing methods
that can be used to automate the control-by-inference process.

– Finally, in section 5, we evaluate the proposed Bayesian control method for
the cart-pole system in a simulated environment.

In short, the novelty of this paper lies not in the introduction of any specific
technique, but rather this paper aims to demonstrate at a systems engineering
level how to realize a complex Bayesian control system. We bring together various
methods to show that Bayesian control with both uncertainties and constraints
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can be systematically realized through the specification of a biased generative
model and a fully automatable inference process.

2 Problem Setting

2.1 The Cart-Pole System

In this paper, we simulate the cart-pole system as a state space model. In this
model, the state variables are defined as a vector z = [x, θ, ẋ, θ̇] , where x ∈ R, θ ∈
R, ẋ ∈ R, and θ̇ ∈ R are the cart position, the pole angle, the cart velocity, and
the angular velocity of the pole, respectively. Based on a Lagrangian mechanics
approach, [21] derives the following equations of motion:

u = (mc +mp)ẍ+mplθ̈ cos θ −mplθ̇
2 sin θ (1a)

0 = mplẍ cos θ +mpl
2θ̈ +mpgl sin θ , (1b)

where mc is the cart mass, mp is the pendulum mass, g is the gravitational con-
stant, and l is the pendulum length. These variables are assumed to be constant.
Furthermore, u ∈ R is the horizontal force applied to the car, ẍ ∈ R is the cart
acceleration, and θ̈ ∈ R is the angular acceleration. For simulation purposes,
based on Euler’s method, we derive a discrete-time state space model with state
variables zt = [xt, θt, vt, ωt] where the xt, θt, vt and ωt are the cart position,
pole angle, cart velocity and the angular velocity of the pole at time t. This
discrete-time state space model is then defined as


xt+1

θt+1

vt+1

ωt+1


︸ ︷︷ ︸

zt+1

=

g(zt,ut)︷ ︸︸ ︷
xt

θt
vt
ωt


︸ ︷︷ ︸

zt

+


vt
ωt

at
αt

 ·∆t (2)

where ∆t is the interval between two time steps, and the at and αt are the cart
acceleration and the angular acceleration at time t. By using the equation of
motion (1), the at and αt at time t can be derived as

at=
ut+mp sin θt(lω

2
t +g cos θt)

mc+mp sin
2 θt

(3a)

αt=
-ut cos θt−mplω

2
t cos θt sin θt−(mc+mp)g sin θt

l(mc+mp sin
2 θt)

. (3b)

For more details, we refer to [21]. In the following, we also use the abbreviation
g(zt, ut) to indicate the right-hand side of (2).

The initial state of the cart-pole system is given by z0 = [0,−π, 0, 0] , indi-
cating that the pole is initially in a downward position and both the cart and
the pole are at rest.
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2.2 The Control Problem

We assume that the horizontal force signal ut can be selected by a control agent.
The agent interacts with its environment through a series of trials. The agent
observes the cart-pole system’s state through a sensor and executes actions ut

via an actuator that connects to the cart.
We assume that the agent partially observes its environment using a mea-

surement matrix C with measurement noise vt:

yt = Czt + vt , (4)

with

C =

[
1 0 0 0
0 1 0 0

]
and vt ∼ N (0, R∗) , (5)

where R∗ is a fixed covariance matrix.
The goal of the agent is to guide the cart-pole system towards a desired goal

state z∗ = [0, 0, 0, 0] , where the pole is steady at the upright position. Given
that direct control over the pole is not feasible (the controller can only apply a
force to the cart), the control agent needs to infer a control sequence (policy)
u1, u2, u3, . . . to reach z∗.

We take a fully Bayesian inference approach to control [18]. In this frame-
work, the controller is equipped with a probabilistic generative model for its
observations. This model can be run forward in time to create predictions of
future observations. As will be discussed in section 3.2, these predictions are
biased toward desirable observations, and Bayes-optimal control signals can be
obtained through online Bayesian inference.

3 The Probabilistic Controller Model

3.1 Specification of Generative (Veridical) Model

This subsection specifies the control agent for the simulated cart-pole system.
The controller’s model is a generative model, so we will specify a model with
hidden dynamics that leads to probabilistic predictions of sensory inputs yt.

We assume that the controller knows the dynamics of the cart-pole system,
with uncertainty characterized by Gaussian process noise. Hence, the controller’s
state transition model is given by

p(st+1 | st, ut) = N (st+1 | g(st, ut), Q) , (6)

where st is controller’s internal state, and Q is a fixed and known covariance ma-
trix. In general, we run our simulation from an initial state p(s0) = N (s0 |z0, Q).
We also assume that the controller can predict its sensory observations with a
"correct" observation model:

p(yt | st, Rt) = N (yt | Cst, Rt) . (7)
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where C is defined as in (5) and Rt is a measurement noise covariance matrix
at time step t. To complicate matters, we assume that the controller does not
know the observation noise covariance matrix Rt, and therefore we will infer
the appropriate value of Rt online, alongside inference for states st and controls
ut. The assumption is that the covariance matrix has a fixed unknown value,
specified to be

p(Rt|Rt−1) = δ(Rt −Rt−1) (8a)

p(R0) =W−1(R0 | V0, n0), (8b)

whereW−1 is an inverse-Wishart distribution, which is a conjugate prior for the
covariance matrix of a multivariate normal distribution.

To complete the generative model, we assume independent priors p(ut) over
admissible actions at each time step. We will choose a Normal-with-Unknown
Variance (NUV) prior, which effectively renders a "box constraint" of the form

p(ut) ∝∼ exp {−γ(|ut − a|+ |ut − b|)} , (9)

where a and b are user-selectable control limits, γ is a parameter to control
the softness of the constraint and ∝∼ means "is approximately proportional to".
The exact form of the prior and subsequent inference procedure is discussed in
section 4.5.

The set of equations (6), (7), (8) and (9) is called the agent’s veridical gen-
erative model since it aims to predict the evolution of future sensory inputs
according to the agent’s knowledge about the environmental dynamics.

3.2 Specification of Target Model for Observations

The veridical model specification in section 3.1 can be used by the controller to
predict future sensory inputs. In a Bayesian active inference framework, sensory
targets are specified by extending the veridical model by target distributions
[5]. These target distributions lead to goal-oriented behavior(such as guiding a
cart-pole system to a target state) through Bayesian inference. We assume the
following target distribution for observations:

p′(yt) =

{
N (yt | Cz∗, 108 · I) if t ≤ T

N (yt | Cz∗, 10−8 · I) otherwise.
(10)

The prime in p′(·) indicates that this distribution relates to desired or target
beliefs, rather than veridical beliefs. Eq. (10) expresses that, for the first T time
steps, the agent has essentially no preference for observations, but any time after
T , the agent has a strong preference for receiving yt ≈ Cz∗.

The vague prior for t ≤ T allows the agent to infer actions that are most
informative about the uncertainties in the model, such as the value of Rt. This
is an explorative phase. For t > T , the tight target priors add an incentive to
infer actions ut that drive the cart-pole to its target state.
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Taking the veridical and target beliefs together, the complete generative
model for the controller can be represented as

p(y, s, u,R) ∝ p(s0)p(R0) (11)

·
∏
t>0

p′(yt)p(yt | st, Rt)p(st | st−1, ut)p(ut)p(Rt|Rt−1) .

Note that, due to the extension with the target prior p′(yt), the controller
holds a biased model of the future! When unrolling this model into the future, this
model predicts desired future observations, in the context of given assumptions
about how the world "really" works (as specified by the veridical model). This
approach aligns with the active inference framework that is claimed to describe
a biologically plausible approach to control in living systems [5].

4 Inference

4.1 Inference is the Only Ongoing Process

Since the controller’s generative model is biased toward predicting target ob-
servations, the actual process to be executed by the controller is just continual
inference over all latent variables as new data yt keeps streaming in through its
sensory channels. This online inference process will update beliefs over its inter-
nal states st, the latent control variables ut, and the latent covariance matrix
Rt.

For a complex non-linear system with some non-conjugate distribution pair-
ings, such as this dynamic Cart-pole controller, it is not possible to derive closed-
form analytical Bayesian inference solutions, and sampling-based inference meth-
ods are usually too slow for real-time systems. Therefore, in this paper, we
automate the online inference process through efficient message-passing-based
inference on a factor graph representation of the controller’s model.

Fortunately, we do not need to derive all messages from scratch. The open-
source Julia package RxInfer supports fast message passing-based inference for a
large range of models [1]. Next, we rehearse factor graphs and message passing-
based inference.

4.2 Forney-style Factor Graphs and the Sum-Product Rule

A Forney-style Factor Graph (FFG) is a graphical representation of a factorized
probabilistic model [14]. In an FFG, edges represent random variables and nodes
represent factors, which are functions that specify the relationships between the
variables. An edge connects to a node if and only if the variable on that edge is an
argument of the node’s function. Figure 1 shows the FFG for the probabilistic
model defined in (11). In an FFG, each edge can maximally connect to two
nodes. If a variable is an argument in more than two factors, we introduce a
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g =

C

+N0

=

N· · ·

p (st−1) ut

−→µ (vt)

←−µ (vt)

↑ −→µ (Rt)

←−µ (Rt) ↓
yt

g

NUV

=

C

+N

=

N

0

...
−→st −→s t+1

↓ −→u t+1

vt+1

Rt+1

yt+1

st+1
g · · ·

NUV

C

+N0

= · · ·

N

ut+T

st+T

vt+T

Rt+T

yt+T

W· · ·

q (Rt−1)

q(Rt)−→µ (Rt−1)

Fig. 1: A Forney-style factor graph representation of the probabilistic control
model in (11). This snapshot illustrates the model at the time step t, with T
future time horizon.

"branching" (also known as "equality") node that effectively copies the variable
to an auxiliary variable with the same beliefs.

Aside from model visualization, FFGs support efficient message passing-
based (MP) inference on the graph. MP-based inference is a highly efficient tool
for performing probabilistic inference on sparsely connected generative models
[14]. It scales well to large inference tasks and significantly speeds up Bayesian in-
ference by effectively taking advantage of the distributive law (ab+ac = a(b+c)),
which converts an (expensive) sum-of-products to a (cheaper) product-of-sums.
We use −→µ (·) and←−µ (·) notations for the forward and backward messages respec-
tively. Following the recipe above of moving factors over integrals (or summation
signs), marginalization and Bayesian inference turn into a sequence of updating
messages. These messages can be computed by the so-called sum-product rule
[14].

In general, for any node f(y, x1, . . . , xn), the sum-product rule for an outgoing
message over edge y is given by

−→µ (y) =

∫
−→µ (x1)...

−→µ (xn)︸ ︷︷ ︸
incoming messages

f(y, x1, ..., xn)︸ ︷︷ ︸
node function

dx1...dxn . (12)

Note that the MP algorithm minimizes the Bethe Free Energy (BFE)[23],
which is known to lack epistemic (information-seeking) qualities. Consequently,
agents using MP do not proactively seek informative states. Ongoing research
seeks to address this limitation, for example, through the development of Con-
strained BFE (CBFE)[11]. The CBFE allows for inference that benefits from
the MP algorithm’s scaling advantages while retaining the epistemic qualities of
expected free energy. Unfortunately, CBFE has thus far only been introduced
for discrete active inference. Therefore, in this paper, we used the BFE.

To make message passing-based inference easy for the application engineer,
there exist software toolboxes that have pre-computed message update rules
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for common factors and common distribution types [1, 16]. In principle, these
toolboxes automate the inference process by calling pre-computed update rules.

Unfortunately, the sum-product rule is not always analytically solvable to
a closed-form expression. In the next two sub-sections, we will discuss alterna-
tive message computation rules (Variational Message Passing and the Unscented
Transform) that mesh seamlessly with the sum-product rule, leading to a hybrid
message passing inference process. The interested reader is referred to [14] for a
more in-depth explanation of message passing.

4.3 Variational message passing

The sum-product rule leads to closed-form outgoing messages if all incoming
messages are Gaussian and the factor is a linear transformation. However, the
graph for the controller’s model contains a few factors where these conditions
are not met. In those cases, Variational Message Passing (VMP) often resolves
the issue since the VMP message computation rules lead to closed-form updates
for all distributions in the exponential family as long as conjugacy is maintained
[8]. VMP is a message-passing implementation of the more general variational
approach to Bayesian inference [8]. Variational inference minimizes an upper
bound (the variational free energy) on Bayesian evidence. In this way, the hard
problem of evaluating an integral (needed for the Bayes rule) is replaced by an
easier optimization problem.

Technically, for any node f(y, x1, . . . , xn), the VMP rule for an outgoing
message over edge y is given by

−→µ (y)=exp
(∫ −→µ (x1)..

−→µ (xn)︸ ︷︷ ︸
incoming messages

ln f(y, x1, .., xn)︸ ︷︷ ︸
log node function

dx1..dxn

)
. (13)

As an example of hybrid sum-product and VMP message passing-based infer-
ence, consider updating Bayesian beliefs about the measurement covariance ma-
trix Rt, given a prior belief q(Rt−1) and a new observation yt, see also Figure 1.
Let the message

−→µ (Rt−1) = q(Rt−1) =W−1(Rt−1 | −→n t−1,
−→
V t−1) (14)

denote the posterior belief about R after observing y1:t−1. This message will be
used as the prior belief for time step t and is passed to the indicated equality
node in Figure 1. The equality node also receives a message from the connected
Gaussian node above. This message can be computed by the sum-product rule,

←−µ (Rt)=

∫
←−µ (vt)N (vt | 0, Rt)dvt ∝ W−1(Rt | ←−n t,

←−
V t). (15)

Note that the computation of ←−µ (Rt) uses an incoming message ←−µ (vt) from
the addition node. The equality node processes the two incoming messages to
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an updated posterior as follows:

q(Rt) =

∫
−→µ (Rt−1)

←−µ (Rt)

equality node︷ ︸︸ ︷
f=(Rt−1, Rt) dRt−1 ∝ W−1

(
Rt | nt, Vt

)
,

and the forward message from the measurement noise can be computed by a
VMP update:

−→µ (vt)∝exp
(
Eq(Rt) [ln p(vt |Rt)]

)
∝N (vt | 0, ntVt) . (16)

4.4 Non-linear Dynamics and the Unscented Transform

In the controller’s model, the transition function g(st, ut) is non-linear. When
Gaussian messages are passed through a non-linear function, the outgoing mes-
sage is non-Gaussian, both for the sum-product and VMP update rules. To keep
going, we need to project the outgoing message in some way back to a Gaussian
distribution.

Here, we discuss using the Unscented Transform (UT) to approximate out-
going messages with normal distributions [18]. As an example, consider the out-
going message −→µ (st+1) for the transition node with incoming messages

−→µ (ut+1) = N (ut+1 | −→mu
t+1,
−→
P u

t+1) ,
−→µ (st) = N (st | −→ms

t ,
−→
P s

t ) , (17)

as illustrated in Figure 1.
The Unscented Transform starts by selecting a set of "sigma points" x

(i)
t

and weights ω(i) for i = −M, . . . ,M . For more details on the computation of
sigma points and the weights, we refer to [7]. Next, the sigma points x

(i)
t are

processed through the nonlinear function as ξ(i)t = g(x
(i)
t ). Then we compute the

parameters of the outgoing (Gaussian) message −→µ (st+1) = N (st+1 |−→ms
t+1,
−→
P s

t+1)
with mean and covariance matrix as

−→ms
t+1 =

M∑
i=−M

ω(i)ξ
(i)
t ,
−→
P s

t+1 =

M∑
i=−M

ω(i)(ξ
(i)
t −−→ms

t+1)(ξ
(i)
t −−→ms

t+1)
⊤. (18)

4.5 Specification and Inference for the Control Prior

Real-world applications are often subject to environmental constraints, such as
limits on engine power. In our application, We are interested in setting a prior
constraint on the control signal in the form of a < ut < b , where a ∈ R and
b ∈ R. While such a prior looks non-Gaussian, [10] describes an interesting way
to implement these kinds of constraints efficiently by Gaussian message passing
in a Normal distribution with Unknown Variance (NUV). A box-NUV prior is
specified by a probabilistic sub-model, which contains two Normal distributions
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with means a and b, and unknown variances σ2
a ∈ R+ and σ2

b ∈ R+ with Gamma
distribution priors. The box-NUV prior is specified as

p(ut, σ
2
a, σ

2
b ) =N (ut | a, σ2

a)N (ut | b, σ2
b )Γ

(
σ2
a

∣∣ 3
2
,
γ2

2

)
Γ

(
σ2
b

∣∣ 3
2
,
γ2

2

)
, (19)

where Γ (·|α, β) represents a Gamma distribution with shape and rate parameters
α and β, respectively. As it is shown in [9] the box-NUV prior can be obtained
by:

p̃(u) = sup
σ2
a,σ

2
b

p(u, σ2
a, σ

2
b ) ∝∼ exp {−γ(|u− a|+ |u− b|)} . (20)

In this paper for finding the σ2
a, σ

2
b we use the expectation maximization update

rules according to [2].

5 Experiments

5.1 Experimental Setup

We evaluate the performance of the proposed controller. All experiments were
simulated using the Julia programming language on a laptop with an Intel Core
i9-12900HK processor and 32 GB of DDR4 RAM. To implement the controller,
we used the open-source Julia package RxInfer [1], which supports (variational)
Bayesian inference in models through hybrid message passing on an FFG. RxIn-
fer implements many message passing techniques, including the needed methods
that we discussed in this paper, namely the sum-product rule for Gaussian mes-
sages, VMP for conjugate distributions, the Unscented Transform for non-linear
factors, and NUV priors for the control signal. In terms of trustworthiness, RxIn-
fer comes with a large set of unit tests and has previously been used successfully
in a wide range of applications, including audio processing devices [17] and con-
trol tasks [12]. In all simulations, we assume the Cart-Pole mechanical system
described in (2), with parameter values mc = 1 (kg), mp = 1 (kg), g = 9.81
(m/s2), l = 0.5 (m), and ∆t = 0.01 (sec).

5.2 Controlling the Cart-Pole System

We validate the performance of the introduced model in section 3 for controlling
the Cart-Pole system. For the controller, we used the model as described in
(6)-(11). The parameters were set to T = 100, a = −100, b = 100, Q = 10−8,
γ = 200, V0 = 0.1 · I, and n0 = 10. We set the controller time step size the same
as the Cart-Pole system, i.e., ∆t = 0.01 (sec).

We add noise with a variance R∗ = 0.01 · I to the observation at each time
step. The system starts in the state s0 = [0,−π, 0, 0] and the goal state is sT =
[0, 0, 0, 0].

Figure 2 illustrates the evolution of the angle θt, position xt, and estimated
noise variance Rt during 800 time steps, totaling 8 seconds. It can be seen that
the controller successfully guides the system to the target position. For R, we
used the mode of q(R), which for both dimensions converges to 0.015, a good
approximation of the true added measurement noise.
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Fig. 2: Evolution of the pole angle (top-left), cart position (top-right), and in-
ferred noise variance (bottom) over time. The dashed red line is the true added
noise (R* = 0.01).

5.3 Alternative Control Limiters

In this experiment, we change the generative model of the controller and measure
the effect on its performance. In particular, we compare using the box-NUV node
with two alternative ways of limiting the control signal.

In the first alternative model, we set the action prior p(u) = N (0, c), where
c = 100 is the control limit. This is the simplest model assumption. In the second
alternative, we set the control prior as p(u) = N (0, c), and also we use a tanh-
node according to the figure 3b. Using the tanh function is motivated by the
fact that a scaled tanh function is a commonly used limiter, which, for instance,
has been successfully used as an action constraint in [12]. But in our application,
using the tanh function leads to a problem in the backward message. Since in
the backward direction, the tanh-node acts like tanh−1 and its input should be
mapped into (−1, 1). This can be achieved by scaling the input as (ut − δ)/c,
where δ is a small number used to prevent hitting the asymptotes 1 and −1
numerically. But, even with a tiny δ = 10−14 the tanh−1 range leads to around
[−18, 18] since tanh−1((100 − 10−14)/100) = 18.7. This dramatically reduces
the controller’s performance. The third approach is using the box-NUV node
discussed in 4.5. The performance of the three controllers is shown in Figure 3a.
Clearly, only the box-NUV node leads to the desired behavior of the controller.

5.4 Alternative Dynamics Approximations

We tested an alternative procedure to UT for passing Gaussian messages through
the non-linear transition function g(st, ut). Linearization refers to a first-order
Taylor approximation of the nonlinear dynamics around an operating point. We
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(a) Comparison of the evolution of pole
angle θt and inferred control ut for
three different control priors: Normal
prior, tanh constraint, and box-NUV
prior.

g

c · tanh

N

· · · · · ·

↑ µ(ut)µ(ut) ↓

(b) The FFG of
setting the limits
on controls using
the tanh trans-
formation.

(c) Comparison of the
evolution of the pole angle
for the Unscented Trans-
form and Linearization
methods.

applied this method to approximate each of the outgoing messages of the g
node. For each, the operating points were the means of the incoming messages.
As illustrated in Figure 3c, the agent reaches the goal sooner. We may thus
conclude that UT is a more useful approximation.

6 Conclusions

We introduced a fully Bayesian controller for a cart-pole system. While the
Bayesian approach to control has a reputation for being both conceptually and
computationally challenging, our findings demonstrate a viable path forward.
By leveraging the active inference framework and employing a fast message
passing-based inference toolbox, we showed how the role of the application en-
gineer predominantly involves specifying a (biased) generative model for the
controller. The clear separation of model specification from the inference pro-
cess offers numerous benefits, notably streamlining the coding process, with the
typical generative model requiring no more than half a page of code, even for
complex controllers. Moreover, by automating the inference process, the appli-
cation engineer can divert focus from computational efficiency issues, with this
responsibility resting with the designers of the inference toolbox. In light of these
advancements, we anticipate a growing prominence of Bayesian control applica-
tions.
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