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Abstract. We consider active inference as a novel approach to the de-
sign of synthetic autonomous agents. In order to assess active inference’s
feasibility for real-world applications, we developed an agent that con-
trols a ground-based robot. The agent contains a generative dynamic
model for the robot’s position and for performance appraisals by an ob-
server of the robot. Our experiments show that the agent is capable of
learning the target parking position from the observer’s feedback and
robustly steer the robot toward the learned target position.
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1 Introduction

The idea of autonomously operating synthetic agents is an active research area in
the machine learning community. Development of these agents involves a number
of hard challenges, for instance the need for agents to be capable of adaptively
updating their goals in dynamic real-world settings.

In this project we investigated a novel solution approach to the design of
autonomous agents. We recognize that any “intelligent” autonomous agent needs
to be minimally capable of realizing three tasks:

– Perception: online tracking of the state of the world.
– Learning: updating its world model in case real-world dynamics are poorly

predicted.
– Decision making and control: executing purposeful behavior by taking ad-

vantage of its knowledge of the state of the world.

Active Inference (ActInf) is a powerful computational theory of how biological
agents accomplish the above mentioned task palette. ActInf relies on formulat-
ing all tasks (perception, learning and control) as inference tasks in a biased
generative model of the agent’s sensory inputs [8].

In order to assess the feasibility and capabilities of active inference as a
framework for the design of synthetic agents in a real-world setting, we develop
here an agent for a ground-based robot that learns to navigate to an initially
undisclosed location. The agent can only learn where to park through situated
interactions with a human observer who is aware of the target location.
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2 Problem Statement

In this design study, we are particularly interested in two issues:

1. Can the agent learn the correct target position from situated binary ap-
praisals by a human observer?

2. Can the agent robustly steer the robot to the inferred target position?

3 Model Specification

Active inference, a corollary of the free energy principle, brings together per-
ception, learning and control in a unifying theory [8]. Active inference agents
comprise a biased generative model that encodes assumptions about the causes
of the agent’s sensory signals. The generative model is biased in the sense that
the agent’s goals are encoded as priors over future states or observations.

Following [11,12], the agent’s model at time step t in this paper takes the
form of a state-space model

pt(o, s, u) ∝ p(st−1)

t+T∏
k=t

p(ok|sk)︸ ︷︷ ︸
observation

p(sk|sk−1, uk)︸ ︷︷ ︸
state transition

p(uk)︸ ︷︷ ︸
control

p′(ok)︸ ︷︷ ︸
goal

, (1)

where o, s and u refer to the agent’s observations, internal states and control
signals respectively. Note that the model includes states and observations for T
time steps in the future.

The agent’s generative model consists of two interacting sub-models: a phys-
ical model for the robot’s position and orientation and a target model for user
appraisals, see Fig. 1. Initially, the physical model has no explicit goal priors.
However, the agent’s target model infers desired future locations from appraisals
and relays this information to the physical model. Thus, as time progresses, the
physical model acquires increasingly accurate information about desired future
positions.

3.1 The Physical Model

The physical model is responsible for inferring the controls necessary for navigat-
ing the agent from any position a to position b. Observations are noisy samples
of the robot’s position and orientation. The inferred controls are translation and
rotation velocities that are used in a differential steering scheme [7].

The states of the physical model are given by sk = (xk, yk, φk) where (xk, yk)
specify the (latent) position of the agent and φk the orientation. Controls are
given by uk = (∆φk, ∆dk), where ∆φk specifies rotation velocity and ∆dk spec-
ifies translation velocity. The transition dynamics are specified as

p(sk|sk−1, uk) = N (sk | g(sk−1, uk), 10−1I) (2)
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Fig. 1: The information processing architecture of the active inference agent and
its environmental interactions. The environment consists of a robot and a human
observer that (wirelessly) casts performance appraisals.

where

g(sk−1, uk) =

 φk−1 +∆φk
xk−1 +∆dk · cos(φk)
yk−1 +∆dk · sin(φk)

 . (3)

In these expressions, N (·|m, v) is a Normal distribution with mean m and
variance v, and I denotes an identity matrix (of appropriate dimension). To
couple the observations to internal states, we specify an observation model as

p(ok|sk) = N (ok | sk, 10−1I) (4)

We choose the following controls and state priors:

p(uk) = N (uk | [0, 0], 10−2I) (5a)

p(s0) = N (s0 | [0, 0, π/2], 10−2I) (5b)

Finally, the goal priors are specified as a prior on observations:

p′(ok) = N (ok | ô, 10−2I) . (6)

where we denote ô as a “target parameter” of the physical model.

3.2 The Target Model

The target model is responsible for inferring beliefs about the intended target
location ô by observing user feedback. The inferred beliefs about the target
location are subsequently used as a prior belief for the physical model’s target



4 B. Ergul et al.

parameter ô. The idea of learning a goal prior by a second generative model
for additional sensory inputs is further explored in [11]. Technically, the target
model is a generative model for user appraisals. In order to reason about the
target location, the target model will also be aware of the robot’s current and
previous position.

Specifically, we use a target model at time step t given by

p(rt, bt,bt−1, λ, ô | yt, yt−1) =

p(rt | bt, bt−1, λ, ô)︸ ︷︷ ︸
appraisal

· p(bt | yt)p(bt−1|yt−1)︸ ︷︷ ︸
position

· p(λ)︸︷︷︸
precision

· p(ô)︸︷︷︸
target

(7)

where

p(rt | ô, bt, bt−1, λ) = Bernoulli(rt |σ(U(bt, bt−1, ô, λ))) (8a)

p(bt | yt) = N (bt | yt, 10I) (8b)

p(bt−1 | yt−1) = N (bt−1 | yt−1, 10I) (8c)

p(λ) = N (λ | [2, 2], 5I) (8d)

p(ô) = N (ô | o0, 100I) (8e)

The model for binary user appraisals uses a “utility” function

U(bt, bt−1, ô, λ) = f(yt, ô, λ)− f(yt−1, ô, λ) (9)

with

f(y, ô, λ) = −
√

(y − ô)T eλ(y − ô) (10)

to score the current position yt to the previous position yt−1, given the current
belief over the target ô. λ is a precision parameter governing the width of the
utility function. The utility is passed through a sigmoid σ(x) = 1/(1 + e−x) to
parameterize a Bernoulli distribution over binary user appraisals rt. The user
provides appraisals by observing the current and previous positions of the robot.
The observed user appraisal is set to 1 if the user thinks that the current robot
position is closer to the target than the previous assessment, and otherwise the
appraisal is set to 0 (zero). The model was validated in a simulation environment
first and later ported to the robot.

The physical model and the target model are linked by drawing a sample
from the posterior belief about the intended target location in the target model.
This sample is used to parameterize the goal prior of the physical model, i.e.,
p′(ok) = N (ok | ô∗, 10−2I) with ô∗ sampled from q(ô|mtarget), see Fig. 2 for the
factor graphs of both models.

4 Experimental Validation

4.1 Setup

In this study we design an active inference-based control agent for a two-wheeled
robot made by Parallax, Inc. [14]. The actuators of the robot are two continuous-
rotation servo motors (one for each wheel) and the robot’s sensors include a
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Fig. 2: (a) A Forney-style factor graph (FFG) of the physical model. (b) FFG
of the Target model. Note that the mean of the future target position in the
physical model (ô∗) is sampled from the posterior belief by the Target model
about that position.

gyroscope and two angular position feedback sensors. The agent’s control signals
are independent (delta) velocity signals to the servo motors. While the gyroscope
reports the current orientation of the robot, the angular position feedback sensors
are used for determining how many degrees the wheels have rotated. The current
position of the robot is calculated by dead reckoning. Dead reckoning is an
infrastructure-free localization method where the current position of a mobile
entity is calculated by advancing a previously known position using estimated
speed over time and course [5].

We employed a Raspberry Pi 4 [9] as a platform for executing free energy
minimization (coded in Julia [3], running on Raspberry Pi’s Linux variant) and
an Arduino Uno [1] for gathering sensor readings and actuating the motors. The
Raspberry Pi is wirelessly connected to a PC and user appraisals are provided
using this wireless connection.

Inference algorithms were automatically generated using the probabilistic
programming toolboxes ForneyLab [4] and Turing [10].

We use an online active inference simulation scheme that comprises three
phases per time step: (1) act-execute-observe, (2) infer, (3) slide, as described in
[15]. The simulation ran for 30 time steps with a horizon T = 2.
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4.2 Results

Typical simulation results of the trajectory of the robot are shown in Fig. 3.
The results show that the agent is capable of steering the robot to the intended
target.

Fig. 3: Simulation results of the physical model. Green arrows show the orien-
tation of the agent and the red arrows show the proposed motion for the next
iteration.

Fig. 4 depicts a typical evolution of the agent’s belief about the intended
target location. The mean of the belief ô comes within 2 cm of the target location
in approximately 60 iterations.

We also tested the performance of the agent after interventions such as phys-
ically changing the orientation of the agent en route. The following video frag-
ment demonstrates how the active inference agent immediately corrects a se-
vere manual interruption and continues its path towards the target location:
https://youtu.be/AJevoOmKMO8.

5 Related Work

Prior work on agent-based models within the active inference framework has
mainly focused on simulated agents, with a few real-world implementations only
recently emerging. In [2] a simulated photo-taxis agent is introduced with a
focus on performance evaluation based on achieving goal-directed tasks rather
than accurately describing world dynamics. In our work, we followed a similar
approach. The physical model introduced in section 3.1 encodes information

https://youtu.be/AJevoOmKMO8
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Fig. 4: Simulation results of the target model with a user in the loop. The agent
converges to the target location on a 2D plane by observing binary user ap-
praisals. The initial position of the agent is (0,0) and the target location specified
by the user is (15,30). The user provides a binary appraisal in each time step.

about world dynamics. A major difference between [2] and this paper is the way
goal-directed behavior is induced. In [2] a goal state is not explicitly specified, but
rather is a consequence of how priors relating to observations and controls are
implemented. In our formulation, a goal state is defined as a prior distribution
over future observations.

More recent work, notably [13], addresses the gap between simulated agent
implementations and real-world applications. In [13] an active inference model
for body perception and actions in a humanoid robot is implemented with a
comparison to classical inverse kinematics. Their results show improved accuracy
without an increase in computational complexity providing further evidence for
active inference’s promise for real-world applications.

6 Conclusions

In order to assess active inference’s feasibility for real-world applications, we
developed an agent that controls a ground-based robot. The experiments provide
support for the notion that active inference is a viable method for constructing
synthetic agents that are capable of learning new goals in a dynamic world. More
details about this project are available in [6].
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