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Abstract—The aim of Probabilistic Programming (PP) is to
automate inference in probabilistic models. One efficient realiza-
tion of PP-based inference concerns variational message passing-
based (VMP) inference in a factor graph. VMP is efficient but
in principle only leads to closed-form update rules in case the
model consists of conjugate and/or conditionally conjugate factor
pairs. Recently, Extended Variational Message Passing (EVMP)
has been proposed to broaden the applicability of VMP by
importance sampling-based particle methods for non-linear and
non-conjugate factor pairs. EVMP automates the importance
sampling procedure by employing forward messages as proposal
distributions, which unfortunately may lead to inaccurate esti-
mation results and numerical instabilities in case the forward
message is not a good representative of the unknown correct
posterior. This paper addresses this issue by integrating an
adaptive importance sampling procedure with message passing-
based inference. The resulting method is a hyperparameter-free
approximate inference engine that combines recent advances
in stochastic adaptive importance sampling and optimization
methods. We provide an implementation for the proposed method
in the Julia package ForneyLab.jl.

Index Terms—approximate Bayesian inference, importance
sampling, message passing, variational inference

I. INTRODUCTION

Inference is often considered the challenging stage of prob-
abilistic modelling as it requires expertise in (approximate)
Bayesian inference methods. Probabilistic Programming Lan-
guages (PPLs) [1] aim to automate the inference stage so that
end-users can focus only on model development [2]–[4]. How-
ever, achieving this goal is also challenging as it necessitates
automatable and broadly applicable inference algorithms that
are hopefully hyperparameter-free, too.

This paper proposes a broadly applicable, hyperparameter-
free inference algorithm called Adaptive Importance Sampling
Message Passing (AIS-MP). AIS-MP is a hybrid Monte Carlo
message passing-based inference approach that combines the
efficiency and the speed of rule-based message passing algo-
rithms , such as Belief Propagation (BP) [5], [6], Variational
Message Passing (VMP) [7], [8], and Expectation Propagation
(EP) [9], [10] with the generality of Monte Carlo sampling on
Forney-style Factor Graphs (FFGs).

Our work closely relates to the Extended Variational Mes-
sage Passing (EVMP) algorithm [11], which extends the
applicability of VMP to non-conjugate and non-linear models.
EVMP achieves this through estimation of analytically in-
tractable expectation quantities in VMP message calculations,
either through a Laplace approximation [12, Section 4.4] or
through importance sampling (IS) [13], [14]. To reduce the

burden on PPL end users to specify hyperparameter values
and proposal distributions, EVMP casts so-called forward mes-
sages as proposal distributions in IS. This method coincides
with the popular Bootstrap particle filtering approach [15],
[16], but unfortunately, the method suffers from imprecise ex-
pectation estimations and numerical instabilities if the forward
message is not a good representative of the correct posterior
distribution.

AIS-MP approaches the above shortcomings of EVMP
with an adaptive IS [17] procedure. Specifically, AIS-MP
initializes the proposal distribution with a forward message
and runs a stochastic optimization to tune this distribution
iteratively until the number of efficient samples exceeds a
certain threshold. In the stochastic optimization procedure of
the proposal distribution, we use an approach introduced in
Stochastic Gradient Population Monte Carlo (SG-PMC) [18],
by generalizing it to the exponential family of distributions,
similar to [19], with an α-divergence [20] cost function, where
α = 2. We provide an implementation of AIS-MP in a Julia
[21] language-based PPL, ForneyLab.jl [22] and demonstrate
its performance on a non-conjugate Gamma state-space model.

II. BACKGROUND

In this section, we briefly summarize Forney-style Factor
Graphs (FFGs) [23] and Variational Message Passing (VMP)
on FFGs. An FFG is a probabilistic graphical model comprised
of factor nodes and edges that are associated with conditional
distributions and random variables, respectively. Random vari-
ables that are argument to more than two factors branch out
through equality nodes in FFGs (see Figure 2).

Assume a probabilistic model f(y, z) for a given set
of observations y = {y1, y2, ..., yN} and hidden variables
z = {z1, z2, ..., zM}. In case exact inference is intractable, the
variational inference method approximates the exact posterior
p(z|y) by a “recognition” distribution q(z) through minimiza-
tion of the (variational) Free Energy

F [q(z)] = Eq(z) [log q(z)− log f(y, z)] , (1)

where Eq(z)[·] refers to expectation with respect to q(z). To
cast the free energy minimization as an iterative coordinate-
descent optimization procedure, q(z) is often chosen among
factorized distribution families [12].

Consider the sub-graph given in Figure 1a with a recogni-
tion distribution consisting of factors q(zk)q(za\k)q(zb\k).
Coordinate-descent optimization of the free energy in this
factorized graph is achieved through a distributed inference
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(a)

(b)

Fig. 1: (a) A sub-graph with factor nodes fa and fb connected
through zk. (b) A deterministic node δ(x − g(zk)) allows us
to specify complex models.

procedure, called Variational Message Passing (VMP) [7]. In
an FFG setting, the VMP update for latent variable zk is
described by [8]

−→mzk(zk) ∝ exp
(
Eq(za\k)[log fa(za)]

)
(2a)

←−mzk(zk) ∝ exp
(
Eq(zb\k)[log fb(zb)]

)
(2b)

q(zk) = −→mzk(zk)←−mzk(zk)
/∫ −→mzk(zk)←−mzk(zk)dzk , (2c)

where za denotes the arguments of the factor fa, za\k stands
for all the arguments of fa but zk, and −→mzk(zk) and←−mzk(zk)
are respectively forward and backward messages.

In practice, one has to specify the probabilistic model
carefully such that the messages in (2) and the marginal
posterior in (2c) can easily be calculated. A natural way of
satisfying these conditions is to choose factors as conjugate (or
conditionally conjugate) pairs that leads to following messages

−→m(zk) ∝ exp
(−→
φ zk(zk)ᵀ · −→η zk

)
(3a)

←−m(zk) ∝ exp
(←−
φ zk(zk)ᵀ · ←−η zk

)
, (3b)

where
−→
φ zk(zk) =

←−
φ zk(zk) = φzk(zk) since fa and fb are

conjugate factor pairs. Substituting (3) in (2c), the approximate
posterior turns out to be

q(zk) = hzk(zk) exp
(
φzk(zk)ᵀ · (−→η zk

+←−η zk
)︸ ︷︷ ︸

ηzk

−Azk(ηzk)
)
,

which is a member of exponential family of distributions
[24] with constant base measure hzk(zk), sufficient statistics
φzk(zk), natural parameters ηzk and log-partition function
Azk(ηzk). If the underlying graph consists of conditionally
conjugate factors then VMP is a very efficient algorithm
for approximate Bayesian inference. The presence of non-
conjugate factor pairs often prevents efficient realization of
VMP in practice.

Extended Variational Message Passing (EVMP) [11] re-
moves the limitations of VMP by estimating the expectation

quantities that appear in VMP messages by importance sam-
pling (IS) in an automated way. Consider Figure 1b. This time
we insert a deterministic mapping δ(x − g(zk)) between the
factors fa and fb, which enables the end-user to specify more
complex models using deterministic functions g(zk). In this
sub-graph, the message from the deterministic node to zk is

←−mzk(zk) =

∫
←−mx(x)δ(x− g(zk))dx

=←−mx(g(zk)) ∝ exp
(←−
φ x(g(zk))ᵀ · ←−η x

)
, (4)

which often leads to a backward message ←−m(zk) that differs
from the forward message −→m(zk) in its sufficient statistics.
In this case, we are often prevented from calculating the
approximate marginal q(zk) analytically, since the normal-
ization factor in (2c) is not available in closed form. As a
remedy, EVMP introduces an additional approximation in the
calculation of the posterior p(zk|y), leading to

q(zk) ≈ q̃(zk) =
N∑
i=1

w(i)
zk
δ(zk − z(i)

k ), (5)

where z(i)
k ∼

−→mzk(zk), w(i)
zk

=
←−mzk(z

(i)
k )

N∑
i=1

←−mzk(z
(i)
k )

.

Similarly, q(x) is represented by

q(x) ≈ q̃(x) =

N∑
i=1

w(i)
zk
δ(x− g(z

(i)
k )).

The above approximations follow from IS with a proposal dis-
tribution −→mzk(zk). Once q(zk) and q(x) are represented with
weighted samples, EVMP estimates the expectations, such as
Eq(zk)[Φ(zk)] and Eq(x)[Φ(x)] for an arbitrary function Φ(·),
that are required in calculation of VMP messages around fa
and fb with Monte Carlo summations, e.g.,

Eq(x)[Φ(x)] ≈
N∑
i=1

w(i)
zk

Φ(g(z
(i)
k )),

given that the support of −→mzk(zk) encapsulates the support
of q(zk) [16, Page 118 ]. Casting −→mzk(zk) as the proposal
distribution for IS obviates the need for proposal distribution
specification and hence allows EVMP to be automated in
message passing-based PPLs. However, this automated process
sometimes entails imprecise estimations when the proposal
distribution is not a good representative of the unknown
posterior. Next, we will improve the performance of EVMP
by adaptively adjusting proposal distributions in IS.

III. AIS-MP
In the previous section, we showed that EVMP employs

the pre-defined functional forms of the VMP messages for
inference and fills in the expectation quantities required in
message calculations with their estimates calculated via IS.
In this section, we present Adaptive Importance Sampling
Message Passing (AIS-MP) that aims to improve the IS
procedure of EVMP by using better proposal distributions.
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A. Adaptive IS with Stochastic Gradient Descent

Consider Figure 1 again. We define a weighted particle
approximation q̃(zk) as

q(zk) ≈ q̃(zk) =

N∑
i=1

w(i)
zk
δ(zk − z(i)

k ) , (6)

where

z
(i)
k ∼ π(zk), w(i)

zk
=

−→mzk
(z

(i)
k )←−mzk

(z
(i)
k )

π(z
(i)
k )

N∑
j=1

−→mzk
(z

(j)
k )←−mzk

(z
(j)
k )

π(z
(j)
k )

.

This time the proposal distribution π(zk) explicitly appears in
the computation of weights (6), since we do not set π(zk) =
−→mzk(zk). In selection of optimal π(zk), we choose to find
a minimum variance, unbiased estimator of the normalization
constant of q(zk) that is

∫ −→mzk(zk)←−mzk(zk)dzk. As shown
in [20], this can be achieved by minimizing the α-divergence
between −→mzk(zk)←−mzk(zk) and π(zk) for α = 2:

D2[q(zk)||π(zk)] =
1

2

∫
(−→mzk(zk)←−mzk(zk)− π(zk))

2

π(zk)
dzk

∝
∫
q(zk)2

π(zk)
dzk = Eq(zk)

[
q(zk)

π(zk)

]
, (7)

where the multiplicative and additive constants are dropped.
The last line follows from that we choose our proposal π(zk)
to be a proper distribution. More precisely, we constrain π(zk)
to be in the same distribution family with −→mzk(zk), i.e.,

π(zk;λ) =
−→
h zk(zk) exp

(−→
φ zk(zk)ᵀλ−

−→
A zk(λ)

)
, (8)

with a constant
−→
h zk(zk). Having specified the functional

form of π(zk;λ) in an exponential family, we shall iteratively
tune its parameters in such a way that D2[q(zk)||π(zk;λ)] is
minimized:

λ(t) ←− λ(t−1) − ρ(t)∇λD2[q(zk)||π(zk;λ)], (9)

where t denotes the iteration index and ρ(t) is the step size at
iteration t. We obtain ∇λD2[q(zk)||π(zk;λ)] by

∇λD2 = −Eq(zk)

[
q(zk)∇λπ(zk)

π(zk)2

]
= −Eq(zk)

[
q(zk)

π(zk)
∇λ log π(zk)

]
= −Eq(zk)

[
q(zk)

π(zk)
(
−→
φ zk(zk)− Eπ[

−→
φ zk(zk)])

]
. (10)

The second line follows from ∇λπ(zk)
π(zk) = ∇λ log π(zk) [2].

The last line is due to the property of exponential family
of distributions that the gradient of the log-normalizer is
expectation of sufficient statistics [24], i.e., ∇λ

−→
A zk(λ) =

Eπ[
−→
φ zk(zk)], which is available in closed-form. However, the

overall expectation required to calculate ∇λD2[q||π] does not
have an analytical solution since q(zk) is unknown. Instead,

we follow SG-PMC’s stochastic approximation approach [18]
to estimate the true gradient with

∇̃λD2 = −Eq̃(zk)

[
q(zk)

π(zk)
(
−→
φ zk(zk)− Eπ[

−→
φ zk(zk)])

]
= −

N∑
i=1

w(i)
zk

q(z
(i)
k )

π(z
(i)
k )

(
−→
φ zk(z

(i)
k )− Eπ[

−→
φ zk(zk)]). (11)

Notice that q(z(i)
k ) ∝ −→mzk(z

(i)
k )←−mzk(z

(i)
k ), hence using the

weighting definition in (6) we can write

q(z
(i)
k )

π(z
(i)
k )
∝ w(i)

zk
. (12)

We now substitute (12) back in (11) and find a noisy gradient
estimate of ∇λD2[q||π] in closed-form:

∇̃λD2 ∝ −
N∑
i=1

w(i)2

zk

(−→
φ zk(z

(i)
k )− Eπ[

−→
φ zk(zk)]

)
. (13)

Substituting ∇λD2[q||π] with a noisy gradient estimate
∇̃λD2[q||π] in (9), and setting ρ(t) according to Robins-Monro

conditions [25], i.e.,
∞∑
t=1

ρ(t) = ∞,
∞∑
t=1

ρ(t)2 < ∞, we get a

stochastic gradient descent procedure to tune the parameters
λ of the proposal distribution π(zk;λ).

In our optimization strategy, we use −→mzk(zk) as the ini-
tial proposal distribution π(zk;λ(0)), i.e., λ(0) = −→η zk and
iteratively refine it. At the end of iteration t, we collect new
weighted particles to be used in gradient estimation (13) at
iteration t+ 1 by employing π(zk;λ(t)) in (6).

To diagnose the convergence of the stochastic approxima-
tion, we keep track of the number of efficient particles [16,
Chapter 7]:

neff = 1

/
N∑
i=1

w(i)2

zk
. (14)

Once the number of efficient particles exceeds the specified
threshold, e.g., neff > N/10 [16, Page 124], we stop the
stochastic approximation procedure and use the converged
π(zk) in (6) to evaluate q̃(zk). This procedure relieves the
end-user from choosing the number of iterations and carries
out the convergence diagnosis automatically.

B. Backward Message Calculation with Moment Matching
Approximating q(zk) by a set of weighted samples q̃(zk)

suffices to execute EVMP. We can also find an approximation
q̄(zk) within the distribution family of −→mzk(zk) by using the
weighted samples q̃(zk) and moment matching [9]:

q̄(zk) ∝ exp

(
−→
φ zk(zk)ᵀ ψ−1

([
Eq̃(zk)[zk],Vq̃(zk)[zk]

]ᵀ)
︸ ︷︷ ︸

η̄zk

)
.

Here, Vq̃(zk)[zk] is the variance of zk calculated over q̃(zk) and
ψ(·) is a mapping from natural parameters to central moments
for the chosen exponential family distribution q̄(zk), i.e.,

ψ(ηzk) =
[
Eq̄(zk)[zk],Vq̄(zk)[zk]

]ᵀ
. (15)
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Fig. 2: A time slice of the FFG we build in ForneyLab for
Gamma state-space model. The equality node that generates
an auxilary variable xt performs AIS-MP and approximates
a non-Gamma message (shown by red arrow) with a Gamma
message (shown by green).

The advantages of moment matching are twofold. Firstly, in
the free energy calculation, q̄(zk) yields a closed form solution
for the entropy term, corresponding to zk. Secondly, moment
matching allows us to approximate the backward message
←−mzk(zk) with ←−ν zk(zk) by dividing q̄(zk) with −→mzk(zk) [9],
[26]:

←−ν zk(zk) ∝ exp
(−→
φ zk(zk)ᵀ(η̄zk −

−→η zk)
)
. (16)

Apart from being employed in VMP seamlessly, the above
message is likely to be in a convenient functional form to be
integrated with BP or EP.

C. Algorithm and Node-level Implementation

AIS-MP is summarized in Algorithm 1 and implemented
in a Julia language-based message passing PPL ForneyLab.jl
(Available at https://github.com/semihakbayrak/ForneyLab.jl/
tree/AIS-MP). By default, the number of samples is set to
1000 and ADAM optimizer [27] from Flux.jl [28] package
is employed to adaptively adjust step sizes. The end-user is
free to change these hyperparameters. Note that we keep track
of the convergence and automatically determine whether to
terminate the optimization.

If a deterministic relation is not needed in the model
specification but the inference is still challenging, the end-
user of ForneyLab.jl can execute AIS-MP by introducing an
auxilary random variable x = zk.

IV. RELATED WORK

AIS-MP is an instance of the class of approximate infer-
ence methods for probabilistic programming, like Black Box
Variational Inference (BBVI) [2], Automatic Differentiation
Variational Inference (ADVI) [3] and No-U-Turn Sampler
(NUTS) [4]. Unlike BBVI, ADVI and NUTS, AIS-MP utilizes

Algorithm 1 AIS-MP around a deterministic node in an FFG

Require: A deterministic node δ(x− g(zk))
Collect −→mzk(zk), ←−mzk(zk) =←−mx(g(zk))
Set t = 0; π(zk;λ(0)) = −→mzk(zk)
Find q̃(zk) using (6)
while neff < N/10 do . neff as (14), N = 1000 by default

t + = 1; set ρ(t) . ADAM optimizer by default
Run (9) using (13)
Find q̃(zk) using (6)

Find q̄(zk) and ←−ν zk(zk) using (15) and (16)

Set q̃(x) =
N∑
i=1

w
(i)
zk δ(x− g(z

(i)
k ))

stochastic approximation methods only when closed form mes-
sage passing algorithms do not suffice to run inference in non-
conjugate and nonlinear sections of the model specification.
Similar hybrid approaches are proposed in [30], [31]. We differ
from them in that AIS-MP estimates expectation quantities
with IS, which is accompanied by the number of efficient
samples to track the convergence of stochastic approximations.

Adaptive importance sampling has been incorporated to
enhance the performance of variational inference in [32].
Our work differs from theirs in several notable ways. Most
notably, they utilize adaptive importance sampling to reduce
the variance of the free energy gradient estimates in BBVI.
Whereas we use adaptive importance sampling directly in the
approximation of the posterior marginals and the messages.
Secondly, they use Monte Carlo moment matching in approx-
imation of the optimal proposal distribution for free energy
gradient estimation. In contrast, we adhere to SG-PMC’s
stochastic optimization approach to tune proposal distributions
by generalizing it to exponential family of distributions and
minimizing α-divergence for α = 2.

The gradient estimate in (13) substantially coincides with
the noisy gradient derived in [19] except that their procedure
is in a fully online setting (no summation term as in (13)).
Another difference is that they minimize the variance of the
estimator for expectation quantities such as Eq(zk)[Φ(zk)],
whereas we minimize the variance of the estimator for the
normalization constant of q(zk) by aiming to get a good
weighted samples representation q̃(zk).

V. EXPERIMENTAL VALIDATION

In this section, we use AIS-MP in ForneyLab.jl to analyze
the yearly solar activities between 1945 and 2020 over a
sunspots data set (Source: WDC-SILSO, Royal Observatory of
Belgium, Brussels [29]; see Figure 3; experiments available at
https://github.com/biaslab/AIS-MP). Data samples are rational
numbers as they are calculated by averaging count data. To re-
flect the count nature of the data, we round data sample values
to their closest integer values and model them with Poisson
likelihoods. We designed a non-conjugate Gamma state-space
model to track the rate parameters of the Poisson likelihoods.
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Fig. 3: Figure summarizes the results of the experimental validation. On the left, free energy over VMP iterations are visualized
for AIS-MP algorithm. On the right, black dots indicate sunspot observations [29] rounded to closest integer values. The lines
and shaded regions correspond to mean and variance of the posterior estimates q(zt). Posterior estimates are color-coded based
on the legend corresponding to AIS-MP (this paper) and NUTS (baseline) [4].

More precisely, we propose the following generative model
for the sunspots dataset:

p(y, z, γ) = p(γ)p(z1|γ)p(y1|z1)

T∏
t=2

p(zt|zt−1, γ)p(yt|zt)

where p(γ) = Ga(γ; 1000, 1)

p(z1|γ) = Ga(z1; 1, γ)

p(zt|zt−1, γ) = Ga(zt; zt−1, γ)

p(yt|zt) = Po(yt; zt),

where Ga(·; a, b) denotes Gamma distribution with shape a
and rate b, and Po(·; ζ) is Poisson distribution with rate ζ. We
run VMP on the model by utilizing IS to estimate expectations
quantities that are not available in closed form. We assumed
a mean-field factorization on the recognition distribution

q(γ,z) = q(γ)

T∏
t=1

q(zt). (17)

This is a challenging model specification for EVMP as the
chosen priors lead to forward VMP messages that significantly
diverge from the unknown correct posteriors. Hence, we run
AIS-MP to automatically tune the proposal distributions by
IS estimates of expectations. We build an FFG as in Figure 2
in ForneyLab.jl. Note that we introduce deterministic equality
nodes that generate dummy variables x = z and perform AIS-
MP around these nodes. Running VMP for 10 iterations, the
free energy converges as in Figure 3 (left) and we get Gamma
approximate distributions q(zt), mean and variance of which
are visualized in Figure 3 (right).

We compare AIS-MP’s estimates with NUTS’s in Figure 3.
We use Turing [33] probabilistic programming package of
Julia language to run the NUTS inference engine. We ob-
serve that the mean estimates substantially coincide, whereas
NUTS’s variance estimates are larger in comparison to AIS-
MP’s. The difference in the variance estimations is not sur-
prising as we use a fully factorized distribution to perform
approximate inference in the AIS-MP case, whereas NUTS

performs inference over the joint distribution of the random
variables. In terms of run time, NUTS is preferable to AIS-
MP for this model. AIS-MP converges in 6 VMP iterations,
which takes roughly 2.5 minutes to execute in ForneyLab.jl
including graph construction, whereas NUTS converges very
fast with a reverse mode automatic differentiation [34], in less
than 3 seconds in our personal computer. Nevertheless, AIS-
MP can still be a good alternative to NUTS in different model
specifications. For example, Switching State-Space Model
(SSSM) variants [35] comprise both continuous and discrete
variables, hence NUTS must be combined with other samplers
that perform inference for discrete variables, which sometimes
does not yield satisfactory estimations (see [11, Section 4.3]).
As opposed to NUTS, AIS-MP can be used to estimate discrete
variables. For an SSSM example, we provide an AIS-MP
implementation in our experiments repository. In the SSSM
example, forward messages yield good proposal distributions
and AIS-MP executes EVMP in effect without the need for
stochastic optimization. We additionally provide a simple
Categorical-Normal experiment to demonstrate how AIS-MP
differs from EVMP by running stochastic optimization to
estimate discrete variables.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose Adaptive Importance Sampling
Message Passing (AIS-MP) that uses a stochastic adaptive
importance sampling approach to estimate the required ex-
pectations in the approximation of messages in FFGs. AIS-
MP aims to mitigate the shortcomings of the previously
proposed Extended VMP (EVMP) algorithm for automated
VMP in message passing-based PPLs. As opposed to EVMP,
AIS-MP consists of a stochastic optimization procedure, and
hence inference is slower compared to EVMP. Nonetheless, as
demonstrated by experimental validation, AIS-MP performs
better inference on models that EVMP cannot handle. We
coded AIS-MP in the Julia language-based PPL, ForneyLab.jl
and aim to release it as a full inference engine in the future.
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