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Abstract—We address the problem of online state and pa-
rameter estimation in the Hierarchical Gaussian Filter (HGF),
which is a multi-layer dynamic model with non-conjugate cou-
plings between upper-layer hidden states and parameters of a
lower layer. These non-conjugacies necessitate the approximation
of marginalization and expectation integrals, while the online
inference constraint renders batch learning and Monte Carlo
sampling unsuitable. Here we formulate the problem as a message
passing task on a factor graph and propose an online variational
message passing-based state and parameter tracking algorithm,
which uses Gaussian quadrature to deal with non-conjugacies.
We present improved message update rules for all non-conjugate
couplings, thus allowing a plug-in inference method for alterna-
tive models with equivalent non-conjugate layer couplings. The
method is validated on a recorded time series of Bitcoin prices.

Index Terms—dynamic modeling, variational message passing,
hierarchical Gaussian filter, factor graphs, online learning

I. INTRODUCTION

The hierarchical Gaussian filter (HGF) is a generative multi-
layer random walk model for time series that is popular in the
computational neuroscience literature [1]–[3]. Due to the non-
conjugate coupling between layers, inference in the HGF is
challenging. In [1], analytic update equations for online HGF
state estimation are derived via variational Bayes with a mean-
field assumption, and model parameters are offline estimated
by a maximum a-posteriori (MAP) procedure. [4] builds upon
this work by casting inference in the HGF as a message
passing algorithm on a factor graph. In that work, results
were derived by assuming a mean-field factorization and eval-
uating non-Gaussian messages with a Laplace approximation
(Chapter 4.4 of [5]). These Laplace messages carry constant
variances which lead to less accurate inference results in the
higher layers of hierarchical models. In this paper, we extend
and finesse the message passing procedure of [4]. Firstly, we
remove the mean-field assumption in the temporal dimension,
which results in messages whose functional forms contain
temporal correlations that depend on the sufficient statistics
of the states and parameters from upper and lower layers [6].
Secondly, instead of using a Laplace approximation for the
non-conjugate messages, here we work out the application
of more accurate Gaussian quadrature [7] to approximate
the required marginal distributions. By changing to a struc-
tured factorization and approximating marginals rather than

messages we propagate more informative messages to higher
layers.

Specifically our contributions include the following:
• In Section II-D we show that online inference in the HGF

model (1) can be carried out as a message passing algo-
rithm and a structured factorization assumption results in
more accurate message update rules than in [4].

• In Section II-E we isolate the challenging part of
the model as a composite “Gaussian-with-Controlled-
Variance” (GCV) node and derive message passing up-
date rules for the GCV node that support joint tracking
of states and parameters. All updates of the composite
node are summarized in Table I.

• In Section II-F we show how the Gauss-Hermite quadra-
ture can be used to approximate the multiplication of two
non-conjugate messages by a Gaussian distribution.

• In Section III we validate the proposed inference algo-
rithm on a real-world data set and provide free-energy
performance tracks. The new HGF inference algorithm
enjoys a higher accuracy compared to [4].

II. METHODS

A. Model Specification

The hierarchical Gaussian filter is a Gaussian random walk
model for a sequence of observations, where the variance of
the random walk is itself modeled as a Gaussian random walk
and so on [1]. Specifically, for an observation sequence y ,[
y1 y2 . . . yT

]>
, an HGF model p (y,x,θ) is specified as

p (θ)p(x0)︸ ︷︷ ︸
prior

T∏
t=1

p
(
yt|x(1)t

)
︸ ︷︷ ︸

likelihood

N∏
i=1

p
(
x
(i)
t |x

(i)
t−1, x

(i+1)
t ,θ(i)

)
︸ ︷︷ ︸

state transitions

(1)

with state transition model

p
(
x
(i)
t |x

(i)
t−1, x

(i+1)
t ,θ(i)

)
=

N
(
x
(i)
t |x

(i)
t−1, g

(i)
t

)
i < N

N
(
x
(i)
t |x

(i)
t−1, ξ

)
i = N,

(2)

g
(i)
t = exp

(
κ(i)x

(i+1)
t + ω(i)

)
and ξ is a constant. Here, x(i)t

and θ(i) =
[
κ(i) ω(i)

]>
respectively denote the hidden state

and parameters of layer i at time t.
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Fig. 1. A Forney-style factor graph (FFG) for one time-segment of the
HGF model in Eq. 1. The arrow heads indicate the generative direction.
Edges are named by the associated variable names. The triple dots indicate
a graph continuation (replication) in both temporal directions. Dark small
nodes indicate observations or set values for parameters. Equality nodes
resolve the constraint that each variable can be connected to only two nodes.
Circled numbers refer to the messages that are passed along the graph during
inference. Details of the composite GCV node are provided in Table I.

The HGF model couples the state of a random walk layer to
the variance parameter of the layer below through a positive
non-linearity gt. The model parameters κ(i) and ω(i) determine
the scale and bias of the random walks. The state vector
at time t is denoted by xt =

[
x
(1)
t x

(2)
t . . . x

(N)
t

]>
and

the collection of all states and parameters are written as

x ,
[
x1 x2 . . . xT

]>
and θ ,

[
θ(1) θ(2) . . . θ(N)

]>
.

In order to complete the model, the priors and likelihood
should be specified. Technically any likelihood and prior can
be combined with the HGF state transition model. In this
paper we choose the priors x(i)0 ∼ N

(
m

(i)
x0 , v

(i)
x0

)
, κ(i) ∼

N
(
m

(i)
κ , v

(i)
κ

)
and ω(i) ∼ N

(
m

(i)
ω , v

(i)
ω

)
. For simplicity, we

select a Gaussian likelihood p
(
yt|x(1)t

)
= N

(
yt|x(1)t , ψ

)
where ψ is a constant. A two-layer (Forney-style) factor graph
of the HGF is given in Fig. 1.

B. Signal Processing as Inference

We are interested in joint tracking of states and parameters
in model (1). This can be achieved by sequential Bayesian
updating that leads to the Chapman-Kolmogorov integral [8]

p(xt,θ|y1:t) =

p(yt|xt)
p(yt|y1:t−1)

∫
p(xt|xt−1,θ)p(xt−1,θ|y1:t−1)dxt−1 , (3)

where the denominator p(yt|y1:t−1) is a running Bayesian
evidence score, which can be evaluated as∫
p(yt|xt)

∫
p(xt|xt−1,θ)p(xt−1,θ|y1:t−1)dθdxt−1dxt . (4)

While (3) and (4) represent the exact solutions to joint tracking
and evidence updating, due to the integration over states
(and parameters) and non-conjugate prior-posterior pairing, the
computation of these integrals is intractable in the HGF model.

In this paper, we propose an online hybrid message passing
algorithm on a factor graph for the HGF model to perform
approximate joint state and parameter tracking.

C. Forney-style Factor Graphs
A factor graph is a bipartite graph representing a factor-

ization of a global function [9]. A Forney-style factor graph
(FFG) is a specific type of factor graph, where nodes represent
factors and edges correspond to variables [10]. In an FFG, an
edge is connected to a node if and only if the (edge) variable
is part of the argument list of the (node) function (see Chapter
3 of [11]). Since an edge cannot be connected to more than
two nodes, auxiliary equality nodes are used to resolve this
problem through the creation of copies of variables (see [11]–
[13] for full explanation).

Fig. 1 is a time segment of an FFG corresponding to
the model in (1). We call the state transition function
f
(i)
t , p

(
x
(i)
t |x

(i)
t−1, x

(i+1)
t ,θ(i)

)
a Gaussian-with-Controlled-

Variance (GCV), which can be represented as a composite
node in an FFG. The internal structure of GCV is given in
Table I. Next, we show how variational inference can be
implemented as a message passing algorithm in an FFG and
then discuss message passing-based inference in the HGF.

D. Free Energy Minimization and Variational Message Pass-
ing

In the variational Bayes approach to inference, the in-
tractable posterior p(x,θ|y) is approximated by a simpler dis-
tribution q(x,θ) that is obtained by minimizing a divergence,
usually the Kullback-Leibler (KL) divergence. Since the KL
divergence is always non-negative, we can write

F [q] , Eq(x,θ)
[
log

q(x,θ)

p(y,x,θ)

]
≥ − log p(y) , (5)

where F [q] is known as the (variational) free-energy func-
tional, which is an upper bound to negative log-evidence.

We are interested in the recognition distribution that min-
imizes the free energy functional. To simplify computations
we will assume a factorization across the layers q(x,θ) =∏
i q
(
x(i)
)
q
(
θ(i)
)

where x(i) =
[
x
(i)
1 x

(i)
2 . . . x

(i)
T

]>
.

However, we make no mean-field assumptions for the posterior
across the temporal dimension. Following the generic recipe
for structural variational message passing given in section 5
in [6], we can now compute the optimizing distributions as

q
(
x(i)
)
∝ exp

(
Eq(θ)q(x\i) [log p(y,x,θ)]

)
(6a)

q
(
θ(i)
)
∝ exp

(
Eq(θ\i)q(x) [log p(y,x,θ)]

)
(6b)
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where q
(
x\i
)
,
∏
j 6=i q

(
x(j)

)
and similarly for q

(
θ\i
)

.
Next, we will show how marginalization of (6a) leads to

the computation of q
(
x
(i)
t

)
that approximates the marginal

distribution for states p
(
x
(i)
t |y1:t

)
. Then, we will rewrite the

approximate marginal as a multiplication of two variational
messages (Eq. 10).

Suppose we are interested in the marginal

q
(
x
(i)
t

)
∝
∫
q
(
x(i)
)

dx
(i)
\t . (7)

Substituting (6a) into (7) leads to

q
(
x
(i)
t

)
∝
∫ T∏

τ=1

exp
(
Eq(x\i)

[
log p

(
yτ |x(1)τ

)])
· (8)

N∏
j=1

exp
(
Eq(θ)q(x\i)

[
log p

(
x(j)τ |x

(j)
τ−1, x

(j+1)
τ ,θ(j)

)])
dx

(i)
\t

where we omit the constant term (that is due to integration of
p(θ) with q(θ)). Note that the term Eq(x\i)

[
log p

(
yτ |x(1)τ

)]
is constant for 1 < i ≤ N .

The expectation inside the exponent in the second line of
(8) produces results that depend on x

(i)
t only when j = i or

j = i − 1. Using this property we can write the right hand
side of (8) as∫ T∏

τ=1

exp
(
Eq(θ)q(x\i)

[
log p

(
x(i)τ |x

(i)
τ−1, x

(i+1)
τ ,θ(i)

)])
(9)

exp
(
Eq(θ)q(x\i)

[
log p

(
x(i−1)τ |x(i−1)τ−1 , x(i)τ ,θ(i−1)

)])
dx

(i)
\t .

Equation (9) can be further simplified by rearranging the order
of integral. As a result we can write the marginal as a product

q
(
x
(i)
t

)
∝ −→ν

(
x
(i)
t

)←−ν (x(i)t ) (10)

where we define forward and backward messages as

−→ν
(
x
(i)
t

)
∝ ν↑

(
x
(i)
t

)∫ −→ν (x(i)t−1) f̃ (x(i)t−1, x(i)t )dx
(i)
t−1 (11a)

←−ν
(
x
(i)
t

)
∝
∫
ν↑
(
x
(i)
t+1

)←−ν (x(i)t+1

)
f̃
(
x
(i)
t+1, x

(i)
t

)
dx

(i)
t+1 (11b)

and auxiliary functions

ν↑
(
x
(i)
t

)
∝ exp

(
E
q(θ(i−1))q(x

(i−1)
t−1 ,x

(i−1)
t )

[
log f

(i)
t

])
(12a)

f̃
(
x
(i)
t−1, x

(i)
t

)
= exp

(
E
q(θ(i))q(x

(i+1)
t )

[
log f

(i)
t

])
. (12b)

For i = 1, the upward message (12a) becomes the likelihood
message, i.e., ν↑

(
x
(1)
t

)
= p

(
yt|x(1)t

)
.

The results for parameter updates follow from the same line
of reasoning. The only difference is that we do not assume a
transition model between time steps for the parameters, which
leads to a forward message that is equal to the prior, i.e.,
−→ν (κ(i)) ∝ p(κ(i) and −→ν (ω(i)) ∝ p(ω(i). Backward messages
evaluate to
←−ν
(
κ(i)
)
∝exp

(
E
q(ω(i))q(x

(i+1)
t )q(x

(i)
t−1,x

(i)
t )

[
log f

(i)
t

])
(13a)

←−ν
(
ω(i)

)
∝exp

(
E
q(κ(i))q(x

(i+1)
t )q(x

(i)
t−1,x

(i)
t )

[
log f

(i)
t

])
(13b)

TABLE I
MESSAGE PASSING UPDATE RULES FOR THE GCV NODE.

GCV Node Auxilary
z

×

+

exp

Nx y

κ

ω

N (y|x, exp(κz+ω))

−→ν z↓ ←−ν z↑

−→ν κ
→

←−ν κ
←

−→ν ω
→

←−ν ω
←

−→ν x
→

←−ν x
←

−→ν y
→

←−ν y
←

γ1 m2
zvκ +m2

κvz + vzvκ
γ2 exp (−mκmz + 0.5γ1)

γ3 exp (−mω + 0.5vω)

γ4 (m1−m2)2+Λ11+Λ22−Λ12−Λ21

γ5 γ4γ3 exp
(
−mκz+0.5z2vκ

)
γ6 γ4γ2 exp (−ω)

γ7 γ4γ3 exp
(
−mzκ+0.5κ2vz

)
m Λ−1

[−→mx/
−→v x

←−my/
←−v y

]

Λ

[
1/−→v x+γ2γ3 −γ2γ3
−γ2γ3 1/←−v y+γ2γ3

]
Messages

←−ν (y) N
(←−my ,

←−v y
)

−→ν (y) N
(−→mx,

−→v x + γ2γ3
)

−→ν (x) N
(−→mx,

−→v x
)

←−ν (x) N
(←−my ,

←−v y + γ2γ3
)

−→ν (z) N (−→mz ,
−→v z)

Marginals ←−ν (z) exp (−0.5 (mκz+γ5))

q(x, y) = N (m,Λ) −→ν (κ) N (−→mκ,
−→v κ)

q(z) = N (mz , vz) ←−ν (κ) exp (−0.5 (mzκ+γ6))

q(κ) = N (mκ, vκ) −→ν (ω) N (−→mω ,
−→v ω)

q(ω) = N (mω , vω) ←−ν (ω) exp (−0.5 (mω + γ7))

Entropy Average Energy
0.5 log(2πe)5|Λ−1|vzvκvω 0.5 (log 2π +mκmz +mω + γ4γ3γ2)

The integration scheme specified by (11a) and (11b) is
called message passing because all computations can be
evaluated locally in space and time (even though the pos-
terior distributions were derived from a global objective).
Note that in (12a) and (12b), the expectations require only
q
(
x
(i−1)
t−1 , x

(i−1)
t

)
and q

(
x
(i)
t

)
as opposed to the whole joint

distributions. This means that the model induces a factoriza-
tion.

E. Messages for the GCV Node

In order to realize message passing in the model, we need to
compute the messages for states and parameters according to
rules that are defined in Section II-D and implement a schedule
as illustrated in Fig. 1.

Messages around Gaussian and equality nodes have already
been tabulated in Chapter 4 of [12]. What remains is to
derive messages around the GCV node. In Table I, we present
update rules for all outgoing messages for the GVC node.
For notational clarity, in these formulas we have renamed the
variable names for the GVC node as indicated in the figure in
Table I.1

F. Marginal Approximation with Gaussian Quadrature

After having derived the messages, we now address the
computation of marginals in (10). Here, we approximate the

1 Derivation of these rules can be found in http://biaslab.github.io/pdf/
isit2020/i senoz derivations.pdf.
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multiplication with a Gaussian through application of the
Gauss-Hermite quadrature. For instance, (11b) requires the
multiplication ν ↑

(
x
(i)
t

)←−ν (x(i)t ). From Table I we see that
←−ν
(
x
(i)
t

)
∝ N

(←−m(i)
t ,←−v (i)

t

)
is a Gaussian message. However

ν↑
(
x
(i)
t

)
is neither a Gaussian nor conjugate to a Gaussian.

Still, ν↑
(
x
(i)
t

)←−ν (x(i)t ) is an integrable function, which means
that it can be normalized.

We define the normalized distribution corresponding to the
multiplication of the messages as

q̃
(
x
(i)
t

)
=
ν↑
(
x
(i)
t

)←−ν (x(i)t )
Z

(i)
t

, (14)

where
Z

(i)
t =

∫
ν↑
(
x
(i)
t

)←−ν (x(i)t )dx
(i)
t (15)

is a (Gaussian integral-based) normalization constant that can
be solved by a Gaussian quadrature as described in Chapter 6
of [8]. This means we approximate Z(i)

t as

Z
(i)
t ≈

1√
π

∑
k

W(k)ν↑
(
←−m(i)
xt

+ φ(k)
√

2←−v (i)
xt

)
, (16)

where W and φ are quadrature weights and abscissas respec-
tively that can be calculated by the Golub-Welsch algorithm
[7]. The order of quadrature, k, is fixed to 10 in the simula-
tions.

We can now evaluate the moments of x(i)t through quadra-
ture, i.e.,

E
q̃
(
x
(i)
t

) [(x(i)t )n] ≈ 1

Z
(i)
t

√
π
.

∑
k

W(k)

(
←−m(i)
xt

+φ(k)
√

2←−v (i)
xt

)n
ν↑
(
←−m(i)
xt

+φ(k)
√

2←−v (i)
xt

)
(17)

Finally, we approximate the marginals q̃
(
x
(i)
t

)
by a Gaus-

sian distribution by computing the mean and variance parame-
ters using (17). As a result, using a quadrature approximation,
we can keep propagating Gaussian messages even after receiv-
ing a non-conjugate message from a layer below.

III. EXPERIMENTAL VALIDATION

We validate the presented message passing methods by
measuring the predictive performance of Bitcoin prices be-
tween 25/10/2010 and 29/11/2011. We measure the predictive
performance by the free-energy. The top row in Fig. 2 shows
the recorded prices. We employed a 3-layer HGF model to
predict this sequence and discuss here the estimation and
evaluation results.

We implemented all message passing algorithms in
ForneyLab [14], which is an open source FFG Package for
Julia [15] that is under development in our research group.2

For comparison we include the results that are obtained by

2The Jupyter notebook with the experiments can be found at https://github.
com/biaslab/ISIT 2020 HGF.
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Fig. 2. Experimental validation results. Estimates by the inference method
described in this paper are labeled as “Struct-Quad (SQ)” and estimates
returned by [4] as “MF-Laplace (MFL)”. The top row shows Bitcoin prices,
i.e., the observations yt. The inset plot in the top row shows time-averaged
free-energy (in nats) over iterations. Both algorithms converge, but the
proposed Strut-Quad message passing algorithm converges to a lower value.
The second and third subplots show state estimates x(2)t (the “volatility”) and
x
(3)
t respectively. The solid and dashed lines represent the mean estimates for

SQ and MFL respectively, and shaded regions represent one standard deviation
(mean ± standard deviation). The fourth and fifth subplots depict estimates
for the ω and κ parameters over time, respectively.

[4]. In the following, we refer to message passing algorithm
described in this paper as the “Struct-Quad” algorithm and
compare it to the “MF-Laplace” algorithm of [4].

A. Experimental Setup: Choice of Priors

In order to perform inference in the model, the sufficient
statistics of the priors should be specified. For the “tonic”
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Fig. 3. Predictions for Bitcoin prices. For clarity, we only plot 40 days. The
dotted line shows the actual prices and the solid and dashed lines represent the
mean of Struct-Quad and MF-Laplace predictions. The width of the shaded
areas indicate two standard deviations.

parameters ω(i) we choose uninformative priors ω(i) ∼
N (0.0, 10.0) and for the “scale” parameters κ(i) we choose
κ(i) ∼ N (1, 0.01), where i = 1, 2. In [1], the κ(i) values are
fixed to 1 and the justification behind this choice is to ensure
parameter identifiability. However, we suspect that allowing κ
to vary relatively slowly relative to states x(i)t might have ben-
efits in terms of adapting to changing market dynamics. Hence
we set the mean of the κ priors to 1 and add a small variance.
Finally, we choose ξ ∼ Γ(0.001, 0.001) as the state transition
precision in the third layer and ψ ∼ Γ(0.0001, 0.0001) for the
precision of the observation model. These choices are mainly
motivated by the conjugacy.

B. Analysis of Results

We will examine the state estimates first, see second and
third subplots in Fig. 2. At the second layer, both algorithms
return estimates that share similar patterns. The tracks of
x
(2)
t capture the trends of increase and decrease in volatility.

Nevertheless, the Struct-Quad algorithm tracks more smoothly
compared to MF-Laplace. While there are still some salient
events, the third-layer state of Struct-Quad evolve smoothly.
On the other hand the third-layer state for MF-Laplace is
quite active. Smoothness of the Struct-Quad estimates is
due to structured assumption which keeps track of temporal
correlations.

The fourth and fifth subplots show the estimation tracks
for tonic and phasic parameters ω(i) and κ(i) respectively.
Estimates for ω(i) vary at slower time scale than the states, but
they do exhibit certain variation and adaptation. The κ tracks
in the last subplot show a decreasing trend for Struct-Quad that
leads to reduced impact of changes in superior layer states on
the inferior layer parameters.

We measure the performance of the two algorithms by the
free energy functional which can be interpreted as accuracy
plus model complexity cost function. The inset plot in the
top subplot in Fig. 2 shows the free-energy averaged over
number of iterations per time step. Smaller free energy values
represents a better fit. While both algorithms converge, the
proposed Struct-Quad algorithm converges to a lower free

energy value in comparison to the MF-Laplace algorithm of
[4]. To visualize the predictive power of the algorithms we
plot the prediction results in Fig 3. In the first 10 days, the
prediction and confidence interval of MF-Laplace algorithm
is not as accurate as the predictions of Struct-Quad. This
advantage is due to the improved accuracy of the message
passing updates.

IV. CONCLUSIONS

In this paper, we extended previous work [4] by introducing
an improved online variational message passing algorithm
for the HGF model. In order to propagate more accurate
backward messages to higher levels we assume a structured
factorization over time and apply Gaussian quadrature to
obtain the distribution corresponding to multiplication of two
non-conjugate messages. By exploiting the modularity of the
FFG framework, we obtained local update equations for the
posterior distributions of parameters and states. The presented
method supports plug-in online parameter and state estima-
tion in alternative models with equivalent layer couplings.
We showed on a real-world Bitcoin time series that online
variational tracking with structured factorization of states and
slowly-varying parameters in a 3-layer HGF with quadrature
resulted in convergence to a lower final free energy value in
comparison to [4].
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