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Abstract—Hierarchical autoregressive (AR) models can de-
scribe many complex physical processes. Unfortunately, online
adaptation in these models under non-stationary conditions
remains a challenge. In this paper, we track states and parameters
in a hierarchical AR filter by means of variational message
passing (VMP) in a factor graph. We derive VMP update rules for
an "AR node” that can be re-used at various hierarchical levels
and supports automated message passing-based inference for
states and parameters. The proposed method is experimentally
validated for a 2-level hierarchical AR model.

I. INTRODUCTION

Autoregressive (AR) models predict future observations as
a weighted combination of past observations. These models
are extensively used to describe many natural processes [1]–
[4]. Quite often, the statistics of dynamic processes vary
over time, e.g. for speech signals. In order to capture time-
varying dynamics, the AR model’s coefficients should vary
over time. An important variant for modeling time-varying
AR coefficients is to let the dynamics of the AR coefficients
themselves be modelled by an AR process (and so on), thus
yielding a hierarchical AR model (HAR) [5] .

In this paper, we aim to solve the problem of Bayesian
tracking of states and parameters in a hierarchical AR model.
Unfortunately, the hierarchical structure of these models yields
an inference problem that is not solvable in closed-form.
Numerical approximation methods such as Monte Carlo sam-
pling, are too slow for real-time inference in realistic models
on small computing platforms.

Roberts and Penny [6] proposed a variational Bayes proce-
dure for generalized autoregressive (GAR) models. Their work
focused on parameter estimation of stationary signals with
non-Gaussian and/or non-stationary noise processes. Here, we
follow the variational lead by Roberts and Penny, but in order
to develop a scalable and modular inference method that
applies to tracking non-stationary signals as well, we employ
variational message passing (VMP) on a factor graph. It lets
us exploit the factorized (Markovian) structure of the HAR
model, [7], [8].

In related work, [9] proposes a message-passing version of
the expectation maximization (EM) algorithm to estimate AR
coefficients. Unlike EM, which yields point estimates, VMP
tracks approximate posterior distributions over the hidden
states and parameters. Furthermore, we infer process noise
precision, while [9] assumes that the noise is known.

The contributions in this paper include the following: First,
we define an “AR node” for a Forney-style factor graph (FFG)
and describe the factor graph structure of an HAR model
that is composed of multiple AR nodes (Fig. 1 and Sec. II).
Secondly, we derive new variational update rules for the AR
nodes (Table I). With these rules, a hybrid message passing-
based inference algorithm can be used to track time-varying
coefficients and process noise parameters of the HAR model.
Lastly, we experimentally validate our inference procedure
by estimating coefficients and parameters in a 2-layer HAR
model from a synthetic non-stationary data stream (Sec. III).
Visualizations of the inferred coefficients in the upper layer of
the HAR model show its ability to capture the time-varying
dynamics.

II. METHODS

A. Model specification

Consider a signal yt ∈ R where t indexes discrete time
steps. We write the dynamics of a 2-layer1 autoregressive
model (AR) of order M ∈ N+ for yt as a state-space model
as

θ
(1)
t = A(θ(2))θ

(1)
t−1 + cv

(1)
t (1a)

θ
(0)
t = A(θ

(1)
t )θ

(0)
t−1 + cv

(0)
t (1b)

yt = c>θ
(0)
t + wt (1c)

where c = (1, 0, ..., 0)>, the ith layer state vector θ
(i)
t =

(θ
(i)
t , θ

(i)
t−1, . . . , θ

(i)
t−M+1)>, and v

(i)
t and wt represent zero-

mean Gaussian noise signals. The state transition matrix A(θ)
is given by

A(θ) =

[
θ>

IM−1 0

]
, IM−1 =


11 0 . . . 0
0 12 . . . 0
...

...
. . .

...
0 0 . . . 1M−1

 .

In this model, Eq. 1b is a regular AR model in state
space form for signal θ(0)

t , parameterized by θ
(1)
t , which by

themselves are dynamically generated by AR model Eq. 1a.

1The description generalizes easily. We use a 2-layer model for simplicity.
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Eq. 1c is an observation model that selects the first component
of state vector θ(0)

t and adds observation noise.
In this paper, we will develop inference methods on this

model by message passing on a Forney-style Factor Graph
(FFG) representation of the model. Factor graphs are graphical
models for factorized probability distributions and the hierar-
chical AR model can alternatively be written as the following
(factorized) generative probabilistic distribution:

p(Θ,y,γ) = (2a)

p(Θ0)p(γ)︸ ︷︷ ︸
priors

T∏
t=1

p(yt|θ(0)
t )︸ ︷︷ ︸

observation

N∏
i=0

p(θ
(i)
t |θ

(i+1)
t ,θ

(i)
t−1, γ

(i))︸ ︷︷ ︸
state transition

p(Θ0) =
N∏
i=0

N (θ
(i)
0 |m

(i)
θ0
, V

(i)
θ0

) (2b)

p(γ) =

N∏
i=0

Γ(γ(i)|α(i), β(i)) (2c)

p(θ
(i)
t |θ

(i+1)
t ,θ

(i)
t−1, γ

(i)) = N
(
θ
(i)
t |A(θ

(i+1)
t )θ

(i)
t−1, V

(i)
)

(2d)

p(yt|θ(0)
t ) = N

(
yt|, c>θ(0)

t , τ−1
)

(2e)

where y , y1:T = (y1, y2, ..., yT ) is a sequence of ob-
servations and τ ∈ R+ is a precision parameter for the
Gaussian observation noise. Eqs. 2b and 2c are priors for
the hidden states Θt = (θ

(0)
t ,θ

(1)
t , . . . ,θ

(N)
t ) and parame-

ters γ = (γ(0), γ(1), . . . , γ(N)), respectively. The covariance
matrix V (i) is defined as

V (i) =


1/γ(i) 0 . . . 0

0 0 . . .
...

...
. . .

 (3)

The generative model introduced in Eq. 2 can be visually
represented by a Forney-style factor graph (FFG) as shown in
Fig. 1 (the details of factor graphs will be discussed in Sec.
II-C).

B. Problem: online inference of states and parameters
The central quantity of interest is the (joint) posterior

distribution of states Θt and parameters γ, given all past
observations y1:t. In principle, this posterior can be obtained
through recursive application of Bayes rule as

p(Θt, γ|y1:t)︸ ︷︷ ︸
posterior

=
1

p(yt|y1:t−1)︸ ︷︷ ︸
evidence

p(yt|Θt)︸ ︷︷ ︸
likelihood

·
∫
p(Θt|Θt−1,γ)︸ ︷︷ ︸

state transitions

p(Θt−1, γ|y1:t−1)︸ ︷︷ ︸
prior

dΘt−1 (4)

Unfortunately, this expression is analytically intractable due
to the integration over large state spaces and non-conjugate
prior-posterior pairings. Moreover, evaluation of the evidence
factor involves an integral without a closed-form solution. In
this paper we work out an approximate inference solution
based on variational message passing (VMP).

AR

=

. . . = . . .
θ
(0)
t−1 θ

(0)
t

γ(0)

=AR

=

. . . . . .

γ(1)

θ
(1)
t−1 θ

(1)
t

=θ(2)

cT

Nτ

yt

Fig. 1. One time segment of a Forney-style factor graph (FFG) for the 2- layer
HAR model as defined by Eq. 2. The AR node denotes a transition model
(Eq. 2d). The small black node corresponds to an observed variable (yt);
medium-sized nodes represent deterministic factors and large nodes denote
stochastic factors. Solid and dashed edges are associated with states and
parameters respectively. The dotted edges on the left and right of the graph
indicate that this model extends in the same way to the other time steps. The
arrowheads indicate the “generative” direction but do not affect any inference
computations.

C. Forney-style Factor Graphs

In this section, we shortly summarize Forney-style Factor
Graphs (FFG). An FFG is a diagram of a factorization of a
function of several variables, where variables and factors are
represented by edges (or half-edges) and nodes respectively
[10]. An edge is connected to a node if and only if the (edge)
variable is an argument of the (node) function. If a variable
appears in more than two factors, equality (“branching”) nodes
connect copies of the variable to the other factors under the
constraint that the marginal beliefs for all copies (and original
variable) are equal.

As an example, consider the factorized probabilistic model

p(x1, x2, x3, x4) = fA(x1, x2)fB(x2, x3)fC(x3, x4) , (5)

and assume that we are interested in the marginal distribution
of x3, given by

p(x3) =

∫ ∫ ∫
p(x1, x2, x3, x4) dx1dx2dx4 (6)

Due to the factorization of Eq. 5, we can optimize the amount
of computations by using the distributive law (i.e., by moving
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factors over the integration signs), leading to:

p(x3) =

∫
fA(x1, x2)dx1︸ ︷︷ ︸
−→µ (x2)

∫
fB(x2, x3)dx2

︸ ︷︷ ︸
−→µ (x3)

∫
fC(x4, x3)dx4︸ ︷︷ ︸
←−µ (x3)

(7)

In this way, the three-dimensional integral of Eq. 6 reduces
to (multiplications of the results of) much simpler one-
dimensional integrals. In the context of an FFG, the results of
these sub-integrals can be interpreted as locally computable
messages as depicted in Fig. 2.

fA fB fCx1 x2

−→µ (x2)

x3

−→µ (x3)
←−µ (x3)

x4

Fig. 2. An FFG corresponding to the model given by Eq. 5, including
messages as per Eq. 7.

This example illustrates the idea of the sum-product rule which
states that for a generic node f(y, x1, . . . , xn), the outgoing
message −→µ (y) is given by

−→µ (y) =

∫
· · ·
∫
f(y, x1, . . . , xn)

n∏
i=1

−→µ (xi)dxi . (8)

A more detailed explanation of sum-product message passing
in FFGs can be found in [11].

D. Variational Message Passing

Since the integrals in Eq. 4 are not tractable, we cannot solve
the inference problem by only using sum-product messages.
Therefore we resort to Variational Message Passing (VMP),
which is an approximate Bayesian inference technique based
on minimization of the variational free energy (FE),

Ft[q] ,
∫
q(Θt, γ) log

q(Θt, γ)

p(yt,Θt, γ|y1:t−1)
dΘtdγ (9)

= − log p(yt|y1:t−1)︸ ︷︷ ︸
−log evidence

+

∫
q(Θt, γ) log

q(Θt, γ)

p(Θt, γ|y1:t)
dΘtdγ︸ ︷︷ ︸

KL divergence

where q(Θt, γ) is an approximate posterior distribution (also
called the recognition distribution) for the hidden variables
Θt and γ. Since the Kullback-Leibler (KL) divergence is
guaranteed to be non-negative and only equals zero if
q(Θt, γ) = p(Θt, γ|y1:t), minimization of Ft[q] with re-
spect to q leads to q(Θt, γ) ≈ p(Θt, γ|y1:t) and Ft[q] ≈
− log p(yt|y1:t−1). Thus, minimization of Eq. 9 approximately
solves the Bayesian filtering problem of Eq. 4, [12].

Eq. 9 can be minimized by a “variational” message passing
algorithm [7], [8]. Consider a generic node f(y, x1, . . . , xn)
as depicted in Fig. 3. It can be shown that minimization of FE
results in sending a (variational) message of the form

−→ν (y) ∝ exp
(∫

q(x) log f(y, x1, . . . , xn)dx
)
, (10)

f...

q
1 (x

1 )

qn
(xn

)

−→ν (y)

Fig. 3. A generic node f(y, x1, ..., xn) with incoming variational messages
qi(xi) and outgoing variational message −→ν (y) , see Eq. 10.

where x = (x1, . . . , xn) and q(x) =
∏
qi(xi), [7]. The

approximate marginal q(y) can be obtained by multiplying
incoming and outgoing messages on the edge for y, i.e.,

q(y) = −→ν (y)←−ν (y) . (11)

For a more detailed explanation of VMP in FFGs, we refer to
[8].

E. Online VMP for HAR models

Within the context of FFGs, a hierarchical autoregressive
(HAR) model is a configuration of stacked AR nodes, see
Fig. 4. An AR node is internally structured as shown in the
top panel of Table I. We are interested in tracking states and
parameters by message passing. While a sum-product message
from the observation block 13 is possible, the outgoing sum-
product messages from the AR nodes (e.g. 8 , 14 , 15 for the
first layer) do not have a closed-form solution. Hence, we use
a hybrid message passing scheme consisting of sum-product
messages when possible and otherwise we use variational
messages. Due to the modularity of the FFG framework, we
only need to work out the message update rules for an AR
node once and re-use these rules at all instances of the AR
node.

For the sake of notational generality, we now replace θ
(i)
t ,

θ
(i)
t−1, θ(i+1)

t and γ(i) by y, x, θ and γ respectively. We then
specify the AR node function by the factor

fAR(y,x,θ, γ) = N (y |A(θ)x, V ) . (12)

with V as defined by Eq. 3. In Table I, we provide the full set
of variational messages that we derived using the naive mean
field assumption2 over y,x, θ, γ, i.e., we assumed that

q(y,x,θ, γ) = q(y)q(x)q(θ)q(γ) . (13)

These update rules support automated message passing-based
online inference in complex models with AR nodes as sub-
models, see Fig. 4.

III. EXPERIMENTAL VALIDATION

In order to validate inference with the tabulated AR-node
messages in a full HAR(1) model, we modeled a data set with
a 2-layer AR model. The data set was generated by the 2-layer
AR model in Eq. 2, with τ = 2, γ(0) = 1.0 and γ(1) = 2,

2Derivations of update rules can be found at http://biaslab.github.io/pdf/
isit2020/a_podusenko_AR_meanfield_derivations.pdf.
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TABLE I
VARIATIONAL MESSAGE UPDATE RULES FOR THE AUTOREGRESSIVE (AR)

NODE (DASHED BOX) OF EQ. 12. DISTRIBUTIONS q(θ) = N (mθ , Vθ),
q(x) = N (mx, Vx), q(y) = N (my, Vy) AND q(γ) = Γ(α, β) ARE

ASSOCIATED WITH INCOMING MESSAGES. OUTGOING MESSAGES ν(·) ARE

TABULATED BELOW. THE SUPERSCRIPTS IN V
(1,1)
y AND m

(1)
y DENOTE

THE FIRST ELEMENT OF THE MATRIX AND VECTOR, RESPECTIVELY.

Node

A

× +

N
A(θ)

←−ν (θ) q(θ)↑ ↓

−→ν (y)

q(y)
←
→

←−ν (x)

q(x)

←
→

N (0, V )

←−ν (γ) q(γ)↑ ↓

Messages Update Rule
−→ν (y) N

(
A(mθ)mx,m

−1
W

)
←−ν (x) N

(
D-1

1 z1,D
-1
1

)
←−ν (θ) N

(
D-1

2 z2,D
-1
2

)
←−ν (γ) Γ

(
3
2 ,

B
2

)
Auxiliary variables

D1 = A(mθ)>mWA(mθ) + Vθmγ

z1 = A(mθ)>mWmy

D2 = Vxmγ +mxmγm
T
x

z2 = mxc
>mWmy

B = V (1,1)
y +m(1)

y m(1)
y − 2m(1)

y m>θmx

+m>x Vθmx+m>θ (Vx+mxm
>
x )mθ

mW =


mγ 0 . . . 0

0 1/ε . . . 0
...

...
. . .

...

0 0 . . . 1/ε


ε > 0 , mγ =

α

β

θ(2) = −0.556. The inference schedule for one time segment
for the HAR(1) model is depicted in Fig. 4. Messages 3
and 7 carry posterior estimates from the previous time step
t − 1. The messages 12 and 16 propagate estimates q(θ(0)

t )

and q(θ(1)
t ) of the state posteriors p(θ(0)

t |y1:t) and p(θ(1)
t |y1:t)

respectively. The messages 14 and 15 carry the parameter
estimates q(γ(0)) for p(γ(0)|y1:t) and q(γ(1)) for p(γ(1)|y1:t).
The AR node sends variational messages according to the
update rules described in Table I. To update the posteriors we
iterate through messages 1 - 19 for each time segment. We
implemented our method with the open source Julia package
ForneyLab that is under development in our research group
[13].

AR

=

. . . = . . .

6 ↓ 14↑
θ
(0)
t−1

7
→

8
→
13← θ

(0)
t

12
→

γ(0)

=AR

=

. . . . . .

5 ↓ 15↑

2 ↓ 18↑

γ(1)

θ
(1)
t−1

3
→

4
→
17← θ

(1)
t

16
→

=

1 ↓ 19↑

θ(2)

cT

Nτ

yt

9 ↓ 11↑

10
→

Fig. 4. The message passing schedule for online state estimation in a 2-layer
HAR(M ). The messages are computed in increasing number order.

A. Baseline models

We compared the performance of the 2-layer HAR(1) model
to an AR(1) model and to a random walk (RW) model. The
AR(1) model is a special case of HAR(1) in the sense that it
has only one layer,

p(Θ,y, γ) =

p(θ
(0)
0 )p(γ(0))

T∏
t=1

p(yt|θ(0)
t )p(θ

(0)
t |θ

(0)
t−1,θ

(1), γ(0)) (14)

and the RW model is a special case of AR(1) in that the
coefficient is fixed at θ(1) = 1. Therefore, comparing RW
with AR(1) shows the effect of freeing the autoregressive
coefficient, while comparing AR(1) to HAR(1) shows the
effect of allowing the autoregressive coefficient to be time-
varying. Note that we used identical prior parameters for all
three models where possible, to keep the comparison fair.3

B. Performance metric

In order to assess model performance, we track a loss
function

Lt(mθ
(0)
t
, v
θ
(0)
t
, θ

(0)
t ) =

(m
θ
(0)
t
− θ(0)t )2

v
θ
(0)
t

+ log v
θ
(0)
t

3The Jupyter notebook with the experiments can be found at https://github.
com/biaslab/ISIT-2020
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80

time t

HAR(1)

AR(1)

RW

Fig. 5. Zoom-in of performance signal Lt values from t = 630 to t = 660
for the validation experiment in Sec. III. Lower values for Lt correspond to
better performance.

where m
θ
(0)
t

and v
θ
(0)
t

are estimated mean and variance of the

hidden state, while θ
(0)
t corresponds to the real value (used

during data synthesis).
This metric is inspired by the Free Energy functional

(energy minus entropy), where both weighted prediction errors
and uncertainty (large variance) are penalized. When compar-
ing models, lower values of L = (1/T )

∑T
t=1 Lt signify better

performance. We expect the HAR model to exhibit the best
performance as it is the closest match to the data generating
process.

C. Results

Fig. 6 plots state estimates for HAR(1), AR(1) and RW from
t = 600 to t = 700. At t ≈ 645, the true signal spikes (red
line in the top sub-figure). The HAR(1) model captures this
in the state of its top layer θ(1) (black dotted line in top sub-
figure). The result is that HAR(1) approaches the true state in
the lower layer θ(0) (black dotted line approaches pink solid
line around t ≈ 645 in second sub-figure), which is something
that RW and AR(1) fails at (third and fourth sub-figures). Note
that the RW model approaches the true state around the top
of the spike, but falls short of the bottom of the spike. In
general, the RW model is less accurate since the model is too
simple. Table II reports the performance scores for the three
models over the entire time series (T=1000), i.e. L. Evidently,
HAR(1) performs (on average) better than AR(1), which in
turn outperforms the RW model. In Fig. 5 we plot the values
of Lt for 30 time steps. Both RW and AR(1) models clearly
fail at the spike around t ≈ 645.

TABLE II
PERFORMANCE SCORES (L, ROUNDED TO THE SECODN DECIMAL POINT)

FOR THE HIERARCHICAL AUTOREGRESSIVE (HAR) MODEL, THE
AUTOREGRESSIVE MODEL (AR) AND THE RANDOM WALK (RW),

AVERAGED OVER THE FULL LENGTH OF THE SIGNAL (t = 1 TO 1000).

HAR AR RW
L 1.08 1.46 1.49

-2

-1

0

1

2

3

HAR

-20

-10

0

10

-20

-10

0

10

AR

630 640 650 660

-20

-10

0

10

RW

time t

Fig. 6. Simulation results. The dashed line corresponds to the mean value
of the posterior approximation of the hidden states.The shadowed region
corresponds to one standard deviation (extracted from the variational approx-
imation) below and above the mean. The top two graphs show inferred states
for the first and second layers, as recovered by the HAR(1) model. The two
bottom plots display AR and RW inference results.

IV. CONCLUSIONS

In this paper, we presented a hierarchical autoregressive
model and showed how to track the states and parameters by
automatable message passing-based inference in a factor graph
framework. We derived variational message passing update
rules for an “AR node” that can be applied locally wherever
AR sub-models appear in a more complex model. In the future,
we plan to extend our investigations to online tracking of time-
varying process noise statistics by message passing.
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