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Stochastic approximation methods for variational inference have recently gained popularity 
in the probabilistic programming community since these methods are amenable to 
automation and allow online, scalable, and universal approximate Bayesian inference. 
Unfortunately, common Probabilistic Programming Languages (PPLs) with stochastic appro-
ximation engines lack the efficiency of message passing-based inference algorithms with 
deterministic update rules such as Belief Propagation (BP) and Variational Message Passing 
(VMP). Still, Stochastic Variational Inference (SVI) and Conjugate-Computation Variational 
Inference (CVI) provide principled methods to integrate fast deterministic inference 
techniques with broadly applicable stochastic approximate inference. Unfortunately, imple-
mentation of SVI and CVI necessitates manually driven variational update rules, which 
does not yet exist in most PPLs. In this paper, we cast SVI and CVI explicitly in a 
message passing-based inference context. We provide an implementation for SVI and CVI 
in ForneyLab, which is an automated message passing-based probabilistic programming 
package in the open source Julia language. Through a number of experiments, we 
demonstrate how SVI and CVI extends the automated inference capabilities of message 
passing-based probabilistic programming.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Probabilistic programming refers to a programming paradigm that aims to automate and facilitate probabilistic inference 
for end users with varying degrees of expertise in probabilistic modeling methods [1]. A considerable amount of inference 
methods and tools have been developed over the past decade to support this endeavor. A very important development 
in this realm concerns stochastic approximation methods for variational inference where noisy gradient estimates of a 
variational objective are used to update posterior distributions [2,3]. These methods have been implemented in Probabilistic 
Programming Languages (PPLs) such as Turing.jl [4], Stan [5], Pyro [6] and TensorFlow Probability [7]. Realizing variational 
inference as a stochastic optimization task paves the way toward universal inference and scales well to large data sets [8]. 
Still, stochastic approximation methods for variational inference come with their own challenges. For example, Black-Box 
Variational Inference (BBVI) [9] often requires additional steps, such as Rao-Blackwellization [10], control variates [11], or 
variable reparameterization [12,13] to reduce the variance in noisy gradient estimates and to attain stable convergence. 
Another popular method, Automatic Differentiation Variational Inference (ADVI) [14] maps continuous random variables 
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Fig. 1. A sub-graph G ({a,b}, j). The edge j is connected to factors a and b, which implies that z j is an argument to functions fa and fb . We denote the 
message on edge j from fa and fb with maj(z j) and mbj(z j), respectively.

to the real domain and runs stochastic optimization by applying reparameterization in this new domain to prevent high 
variance in gradient estimates and domain violations. However, the applicability of ADVI is limited to continuous random 
variables. Moreover, neither BBVI nor ADVI were developed with conjugate model structures in mind, and hence they do 
not utilize the speed and computational advantages of message passing-based inference methods, such as Belief Propagation 
(BP) [15,16], Expectation Propagation (EP) [17,18] and Variational Message Passing (VMP) [19,20].

In this paper, we focus on two other well-recognized stochastic approximation methods for scalable and universal vari-
ational inference, namely Stochastic Variational Inference (SVI) [21] and Conjugate-Computation Variational Inference (CVI) 
[22]. Unlike BBVI and ADVI, both SVI and CVI take advantage of conjugacy structures in the model specifications. They use 
natural gradient descent [23,24] to minimize a variational free energy objective in a stochastic setting. By incorporating 
Fisher information into stochastic optimization by natural gradient descent, both SVI and CVI adjust steepest descent di-
rections better than raw stochastic gradient descent, which further yields faster and more stable convergence. Whereas SVI 
aims to scale variational inference for conjugate models to large data sets, CVI extends this idea to non-conjugate mod-
els. While both methods seem very efficient on paper, automating them in a PPL is a challenging task as both methods 
necessitate analytical calculations.

In the message passing branch of probabilistic programming, PPLs such as Infer.NET [25] and Julia language [26] packages 
ReactiveMP.jl [27] and ForneyLab.jl [28] aim to execute automated Bayesian inference by employing predefined, deterministic 
message update rules. ForneyLab often executes inference faster than stochastic approximation-based methods for conjugate 
or conditionally conjugate probabilistic models with small data sets. However, it does not scale well to large data sets, does 
not provide a formal mechanism for online variational inference and its inference capabilities are more or less limited to a 
priori defined deterministic rules in conjugate model specifications. We shall discuss an alternative approach based on [29]
in Section 5. Nevertheless, ForneyLab possesses in principle the required inference rules to automate and harness CVI and 
SVI in order to alleviate its shortcomings to a large extent. We present how to incorporate CVI and SVI into ForneyLab’s 
automated message passing framework on factor graphs and show the favorable features of these new extensions by a 
number of experiments.

The paper is organized as follows. In Section 2 we review Forney-style Factor Graphs (FFGs), Belief Propagation (BP) and 
Variational Message Passing (VMP). We conclude Section 2 by introducing the problems that are addressed in this paper. 
Section 3 addresses these problems by transferring SVI and CVI methods to the FFG framework. In Section 4, we apply the 
proposed solutions to a variety of experiments that demonstrate the efficiency of these solutions. In Section 5, we provide 
a discussion on our implementation and future work and Section 6 summarizes with conclusions.

2. Background

This section provides a review on FFGs, BP, VMP, and the exponential family of distributions. We also introduce notational 
conventions and conclude the section by providing the limitations of probabilistic programming with message passing on 
FFGs.

2.1. Forney-style Factor Graphs (FFGs)

Given a factorized function f (z) = ∏
a∈V

fa(za) of a collection of random variables z, where za stands for the subset of 

random variables that are arguments of fa , a Forney-style Factor Graph (FFG) [30,31] visualizes the independency structure 
between the variables. Specifically, an FFG is a graph G = (V, E), where V stands for the set of factor nodes and E ⊆ V × V
denotes the set of edges. The edges connected to a node a ∈ V are denoted by E(a). Similarly, V(i) denotes the two factor 
nodes an edge i ∈ E is connected to. We associate the indices a, b, c, d with nodes and i, j, k, l with edges. As we shall detail, 
it is often sufficient to focus on sub-graphs in FFGs to formulate inference operations. We refer to the sub-graph around a 
node a ∈ V by G(a) = (a, E(a)). In a similar vein, G(i) = (V(i), i) denotes the edge i and the factor nodes it is connected 
to. We also introduce G(a, i) = (V(i), E(a)) and G({a,b} , i) = (V(i),E(a) ∪ E(b)) to allow larger sub-graph specifications. We 
sometimes index sub-graphs to differentiate them, e.g., Gp(Vp, Ep). In FFGs, random variables are branched out to more than 
two factor nodes through equality constraints. This is achieved by introducing an “equality” node fa(za) = δ(z j − zi)δ(z j − zk)

that generates the copies of z j as zi and zk .
Inference in FFGs, such as marginal calculations like f (z j) =

∫
f (z)dz\ j , is carried out by a distributed set of operations. 

As an example, consider the sub-graph G ({a,b}, j) given in Fig. 1. Suppose we are interested in obtaining the marginal for 
z j , which amounts to computing
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f (z j) =
∫

fa(za)dza\ j︸ ︷︷ ︸
maj(z j)

∫
fb(zb)dzb\ j︸ ︷︷ ︸

mbj(z j)

. (1)

In this notation, maj(z j) and mbj(z j) denote the messages on edge j propagating from fa and fb respectively. Once 
the messages maj(z j) and mbj(z j) have been calculated, the marginal distribution calculation refers to multiplication of the 
messages followed by a normalization:

p(z j) = f (z j)∫
f (z j)dz j

= maj(z j)mbj(z j)∫
maj(z j)mbj(z j)dz j

. (2)

This exact inference procedure in tree-like FFGs is known as Belief Propagation (BP) [15,16].

2.2. Variational message passing

The integrals for computing messages in BP rarely have analytical solutions. Instead of calculating the marginals ex-
actly, VMP iteratively approximates them by introducing additional factorizations in joint distributions and minimizing a 
variational objective called (variational) free energy.

Consider a sub-graph G (b). As we will be working around the factor fb without specifying the neighboring nodes, we 
denote the message propagating towards fb from the other end of edge j with m jb(z j). For example, in Fig. 1, the outgoing 
message maj(z j) from node a is referred to as m jb(z j) when interpreted as an incoming message to node b. The joint 
distribution of zb in the sub-graph G (b) under marginalization and normalization constraints is given by [32]

p(zb) = f (zb)∫
f (zb)dzb

(3a)

where f (zb) = fb(zb)
∏

i∈E(b)

mib(zi) . (3b)

We approximate this joint distribution by a structured factorization q(zb) = q(zb\ j)q(z j) by minimizing the free energy

F[q(zb)] = Eq(zb)

[
log

q(zb)

f (zb)

]
≥ − log

∫
f (zb)dzb, (4)

which is an upper bound to the negative log normalizer in (3a). In the presence of observations in probabilistic models, the 
bound is set to negative log-evidence and consequently, the free energy equals the negative Evidence Lower BOund (ELBO). 
Keeping only the terms with z j in (4),

F ∝ Eq(z j)[log q(z j)] −Eq(z j)

[
log m jb(z j)

] −Eq(z j)

[
Eq(zb\ j)[log fb(zb)]], (5)

we find that the stationary points of F w.r.t. q(z j) are (Appendix A)

q(z j)
∗ = m jb(z j)mbj(z j)∫

m jb(z j)mbj(z j)dz j
, (6)

where mbj(z j) is a VMP message calculated by

mbj(z j) ∝ exp
(
Eq(zb\ j)[log fb(zb)]

)
. (7a)

If the messages m jb(z j) and mbj(z j) take the functional forms (with identical sufficient statistics)

m jb(z j) ∝ exp(φ j(z j)
ᵀη jb) (8a)

mbj(z j) ∝ exp(φ j(z j)
ᵀηbj), (8b)

then the factors in V( j) are called conjugate factor pairs [33, Chapter 2.4]. Conjugate factor pairs allow the approximate 
marginal q(z j)

∗ in (6) to be analytically evaluated in the exponential family of distributions [34]

q(z j)
∗ = h j(z j)exp(φ j(z j)

ᵀ (η jb + ηbj)︸ ︷︷ ︸
η j

−A j(η j)). (9)

Above h j(z j) is a constant base measure, φ j(z j) is a vector of sufficient statistics, η j is a natural parameters vector and 
A j(η j) is the log-normalizer

A j(η j) = log

(∫
h j(z j)exp(φ j(z j)

ᵀη j)dz j

)
. (10)
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Fig. 2. Three possible issues a message passing-based PPL may encounter are visualized. On the left, the equality node requires VMP messages from all the 
dashed sub-graphs to calculate mbj(z j), which might not be feasible for large N . In (b), mbj(z j) and m jb(z j) differ in sufficient statistics, which preclude 
analytical marginal calculations. On the right, fb is a custom factor node defined by the end-user. The message mbj(z j) is not available in the PPL due to a 
missing analytical solution or message passing rule.

2.3. Problem specification

By defining message calculation rules on node level and marginal distribution calculation rules on edges as previously 
described, a modular, automated message passing-based inference engine can be developed. In Fig. 2, we list the potential 
difficulties a message passing-based inference engine may encounter and how we attack them:

• Scalability: In principle, the VMP algorithm requires the entire data set to be processed at once, e.g., in Fig. 2a the 
equality node fb needs to collect VMP messages from all the dashed sub-graphs to calculate the message mbj(z j). 
Unfortunately, this may not be feasible in real-world applications when the data set is received in sequential order or 
is just too large to be processed at once due to memory limitations. Stochastic Variational Inference (SVI) [21], among 
others in the literature [35,36], provides a principled method for scalable variational inference. In Section 3.1, we show 
that SVI is easy to implement in our message passing-based inference engine.

• Non-conjugacy: Non-conjugate factor pairs yield messages with different sufficient statistics, shown in Fig. 2b, which 
preclude analytical marginal calculations. In Section 3.2, we attack this problem with Conjugate-Computation Variational 
Inference (CVI) [22] and approximate mbj(z j) with a message νbj(z j) having sufficient statistics φ j(z j).

• Generality: Deterministic message passing algorithms such as BP and VMP necessitate message passing rules to be de-
fined around factor nodes in advance, which hinders custom model specifications. In Section 3.3, we provide a strategy 
based on Monte Carlo summation and CVI to approximate a message mbj(z j) that is not available in closed form or 
missing in the inference engine.

In all three cases, we assume that the message m jb(z j) = exp(φ j(z j)
ᵀη jb) is given and the problems are associated with 

mbj(z j). We will preserve this convention in the next section.

3. Stochastic variational message passing with natural gradient descent

In this section, we address the above three problems depicted for a node fb . We will use SVI and CVI that are both based 
on Natural Gradient Descent (NGD) [23,24] optimization of the free energy, otherwise known as the Bayesian Learning Rule 
[37],

η
(t)
j ←− η

(t−1)
j − ρ(t)∇N

η j
F

(
η

(t−1)
j

)
(11)

to tune the natural parameters of the approximate marginal

q(z j;η j) = h j(z j)exp(φ j(z j)
ᵀη j − A j(η j)). (12)

In (11), t is the iteration index in NGD, ρ(t) is a step size and ∇N
η j
F

(
η

(t−1)
j

)
is the natural gradient of the free energy w.r.t. 

η j , evaluated at η(t−1)
j . In our message passing framework, we access F(η j) through the messages propagating on edge j:

F(η j) = Eq(z j;η j)[log q(z j;η j)] −Eq(z j;η j)

[
log m jb(z j)

] −Eq(z j;η j)

[
log mbj(z j)

] + c, (13)

where c collects the terms independent of η j . Assuming that

m jb(z j) ∝ exp(φ j(z j)
ᵀη jb) , (14)

the natural gradient ∇N
η F(η j) evaluates to (Appendix A):
j
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∇N
η j
F(η j) = η j −

(
η jb + G−1(η j)∇η jEq(z j;η j)[log mbj(z j)]︸ ︷︷ ︸

∇N
η j
Eq(z j ;η j )

[log mbj(z j)]

)
, (15)

where G(η j) refers to the Fisher information matrix of q(z j; η j), given by the Hessian of the log-normalizer:

G(η j) = ∇2
η j

A j(η j) . (16)

Next, we will discuss how to estimate ∇N
η j
Eq(z j;η j)[log mbj(z j)] for all three cases given in Section 2.3 to optimize the free 

energy in a stochastic manner by setting ρ(t) according to Robbins-Monro conditions [38], i.e., 
∞∑

t=1
ρ(t) = ∞ and 

∞∑
l=1

ρ(t)2
<

∞.

3.1. SVI for scalable VMP

Consider the FFG depicted in Fig. 2a, where fb is defined to be an equality node, i.e., z j is shared across N sub-graphs 
denoted by dashed boxes. The sub-graphs are comprised of identical functions with distinct local random variables in 
their arguments, e.g., Ga = (Va, Ea), Gn = (Vn, En) with d ∈ Va , e ∈ Vn such that fd(y1, zk, z j) = h(y1, zk, z j), fe(yN , zl, z j) =
h(yN , zl, z j). Consider VMP in this FFG and suppose the messages towards fb have identical sufficient statistics with distinct 
natural parameters, i.e.,

mib(zi) ∝ exp(φ j(zi)
ᵀηib). (17)

In the message passing interpretation of SVI [39], we work with M < N sub-graphs at a VMP iteration by estimating the 
message mbj(z j) from the equality node as

mbj(z j) ≈
(∫ ∏

i∈E ′(b)
i = j

δ(z j − zi)mib(zi)dzi

)N/M

∝ exp

(
φ j(z j)

ᵀ N

M

∑
i∈E ′(b)

i = j

ηib

)
. (18)

Here, E ′(b) ⊆ E(b) denotes M edges on which the messages are available towards fb . Substituting the above estimate in 
(15), the natural gradient estimate of the free energy evaluates to

∇̃N
η j
F(η j) = η j −

(
η jb + N

M

∑
i∈E ′(b)

i = j

ηib

)
. (19)

For an FFG G = (V, E), Algorithm 1 shows how SVI is executed by applying NGD around equality nodes V= ⊂ V that are 
associated with shared variables z̄ such that z̄ ⊂ z.

Algorithm 1 SVI on an FFG.
Require: A graph G = (V, E) for f (z) such that z̄ ⊂ z is a collection of variables shared across sub-graphs {Ga, . . . ,Gn} through equality nodes V= ⊂ V ; 
Number of iterations: T
for all z j ∈ z̄ do

Initialize q(z j) ∝ exp(φ j(z j)
ᵀη

(0)
j )

for t = 1, . . . , T do
Choose a subset G′ of sub-graphs to be processed
for all G̃ ∈ G′ do

Inside the sub-graph G̃ , run VMP for one step as in Section 2.2
Calculate VMP messages towards b for all b ∈V=

for all b ∈V= do
Collect all available messages mib(zi) s.t. i ∈ E ′(b)

Calculate ∇̃N
η j
F(η j) using (19) � Given that z j ∈ z̄

Set a step size ρ(t)

Update q(z j) using (11)

3.2. CVI for non-conjugate inference

Next, we consider the factors in V( j) as non-conjugate pairs that yield messages with different sufficient statistics (see 
Fig. 2b):
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m jb(z j) ∝ exp(φ j(z j)
ᵀη jb) (20a)

mbj(z j) ∝ exp(φbj(z j)
ᵀηbj) (20b)

Motivated by the message approximation scheme within the exponential family of distributions in [40], we will use CVI to 
replace mbj(z j) with an approximate message νbj(z j) that has sufficient statistics φ j(z j). In an ideal scenario, νbj(z j) needs 
to satisfy that q(z j) ∝ m jb(z j)νbj(z j) is a stationary point of the free energy. To search a stationary point, we run NGD given 
in (11) until convergence, and then find νbj(z j) as described by [17,41],

νbj(z j) = q(z j;η∗
j )

m jb(z j)
∝ exp(φ j(z j)

ᵀ(η∗
j − η jb)). (21)

In the NGD-based optimization of the free energy, we employ an estimate for ∇N
η j
Eq(z j;η j)[logmbj(z j)], which does not 

have an analytical solution, since q(z j) and mbj(z j) differ in sufficient statistics. In some cases, such as when q(z j; η j)

is a Gaussian distribution, it is possible to directly estimate the natural gradients without explicitly evaluating the Fisher 
information matrix and its inverse, see [22, Appendix B] for details, which follows from [42]. In our implementation, we 
stick to their computationally efficient approach for the Gaussian case. In other cases, we compute G(η) with automatic 
differentiation [43] and estimate ∇η jEq(z j;η j)[logmbj(z j)] with the REINFORCE algorithm that is also the core algorithm of 
BBVI [9]:

∇̃η jEq(z j;η j)[log mbj(z j)] := 1

S

S∑
s=1

∇η j log q
(

z(s)
j ;η j

)
log mbj

(
z(s)

j

)
, where z(s)

j ∼ q(z j;η j) . (22)

In Section 4.4, we will demonstrate that approximate messages νbj(z j) ease hybrid inference procedures in message passing-
based PPLs.

3.3. CVI for generality

Above, we addressed the case that mbj(z j) is available in closed form but differs from m jb(z j) in sufficient statistics. 
However, there might be cases that mbj(z j) is not available in the PPL either because calculations do not have analytical 
solutions or due to missing message passing rule implementations, as illustrated in Fig. 2c. To address this problem, we 
propose a strategy harnessing the existing deterministic message passing rules at the utmost level. Our strategy is based on 
a decomposition of the factor fb(zb) as

fb(zb) =
∫

δ(zi − g(zc\i))︸ ︷︷ ︸
fc(zc)

fd(zd)dzi, (23)

where zi is an auxiliary random variable between the factors fc and fd , g(zc\i) is a generic, deterministic function that 
maps the variables zc\i to zi and accounts for generality in model specifications. This strategy has been discussed in [29, 
Appendix A.3] before. Here, we show how composite factor nodes enable us to take full advantage of the CVI algorithm 
by delegating the analytical calculations in CVI to already existing message passing rules in the PPL. fb is illustrated as a 
composite node in Fig. 3. We require that fd(zd) is a factor, on which message passing rules, such as VMP, are defined and 
arise proportional to the exponential family of distributions, i.e., fd allows the terms zd to be arranged as

fd(zd) ∝ exp
(
φdi(zi)

ᵀλdi(zd\i)
)
, (24)

where λdi(zd\i) is a function of all the arguments zd but zi , which leads to a VMP message

mdi(zi) ∝ exp
(
Eq(zd\i)[log fd(zd)]

)
∝ exp

(
φdi(zi)

ᵀEq(zd\i)[λdi(zd\i))]︸ ︷︷ ︸
ηdi

)
. (25)

We also require q(zb\ j) to be factorized as q(zb\ j) = q(zc\{ j,i})q(zd\i), where q(zc\{ j,i}) and q(zd\i) may contain further 
factorizations within themselves, but not given explicitly. Then, the log of VMP message mbj(z j) from the factor fb to z j

evaluates to (Appendix B)

log mbj(z j) ∝Eq(zb\ j)[log fb(zb)] ∝ Eq(zc\{ j,i})[log mdi(g(zc\i))] . (26)

Since g(zc\i) is a custom function defined by the end-user, there will be no rule registered beforehand in the PPL to calculate 
the above expectation. Nevertheless, we resort to Monte Carlo summation to estimate it as
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Fig. 3. A factor node fb(zb), visualized as a composite node, where zb\ j = zc\{ j,i} ∪ zd\i . In case the message mbj(z j) is not defined in closed form for the 
factor fb , we require the end-user to define fb(zb) as a composite node such that the components of fb are fc(zc) = δ(zi − g(zc\i)) and fd(zd). g(zc\i) is a 
custom deterministic function defined by the end-user. We do not put any restrictions on g(zc\i) and hence allow the end-user to define almost universal 
model specifications. We require fd to be a factor registered in the PPL together with the message passing rules on it.

log mbj(z j) = logmcj(z j) ≈ 1

S

S∑
s=1

logmdi

(
g
(

z j, z(s)
c\{ j,i}

))
, where z(s)

c\{ j,i} ∼ q
(
zc\{ j,i}

)
. (27)

Once log mbj(z j) is estimated, we use CVI as in Section 3.2 to find an approximate message νbj(z j) that has sufficient 
statistics φ j(z j). Notice that instead of resorting to Monte Carlo estimation at first step in Eq(zb\ j)[log fb(zb)], we harnessed 
the message passing rules defined in our message passing-based PPL to reduce the number of variables to be sampled, 
which further reduces the variance in log mbj(z j) estimates (see Appendix B for a discussion). Next, we will provide CVI 
algorithm around the deterministic node fc .

3.3.1. CVI around deterministic nodes
Given fb(zb) is decomposed as (23), we carry out CVI by defining message passing rules around the deterministic com-

ponent fc(zc) = δ(zi − g(zc\i)) by imposing a mean field assumption on q(zc\i):

q(zc\i) =
∏

j∈E(c)
j =i

q(z j). (28)

We provide a high level summary for CVI around the deterministic node fc(zc) in Algorithm 2.

Algorithm 2 CVI around a deterministic node in an FFG.
Require: A sub-graph G(c) = (c, E(c)) s.t. fc(zc) = δ(zi − g(zc\i)); Number of iterations: T j for all j ∈ E(c), j = i; Number of samples: S
for all j ∈ E(c) do

Collect m jc(z j) ∝ exp
(
φ jc(z j)

ᵀη jc
)

for j ∈ E(c), j = i do
Estimate logmcj(z j) as in (27)

Set η(0)
j ←− η jc

for t = 1 : T j do
Calculate ∇̃N

η j
F(η j) � See Section 3.2

Set a step size ρ(t)

Update η j using (11)

Set q(z j) ∝ exp
(
φ j(z j)

ᵀη
(T j )

j

)
Set νcj(z j) ∝ exp(φ j(z j)

ᵀ(η
(T j )

j − η jc))

Set q(zi) =
{

g
(

z(s)
c\i

) ∣∣∣ for s ∈ {1, . . . , S}
}

where z(s)
c\i ∼ q(zc\i) � q(zc\i) is given in (28)

Algorithm 2 is defined for a generic case with multiple input function g . In case the number of input variables is 1, i.e., ∣∣zc\i
∣∣ = 1, the algorithm simplifies further since log mcj(z j) is available in closed form and no Monte Carlo summation is 

needed to estimate it. By setting the deterministic node to an identity function, the end-user of our PPL can run CVI for 
non-conjugate inference with known messages as in Section 3.2.

CVI seamlessly interfaces with deterministic message passing procedures. Consider a composite likelihood node accounts 
for complex observations through a non-linear deterministic node. Running CVI on this deterministic node, the approximate 
messages νcj(z j) are ready to interface with BP and EP procedures. Similarly, the approximate marginals q(z j) and q(zi) that 
are estimated in Algorithm 2 allow VMP messages to be computed in neighboring factor nodes. Notice that in the last line 
of Algorithm 2, we set q(zi) to a set of samples, which allows expectation quantities in VMP messages to be estimated with 
Monte Carlo summation, automatically [29] (Appendix B), similarly to [44].

In Algorithm 2, we make use of the CVI algorithm to allow almost universal model specifications and inference with 
non-conjugate factor pairs. For the sake of brevity, we skip the details for scalability and online variational inference related 
solutions of CVI that are analogous to the SVI algorithm and implemented in our framework.
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Fig. 4. Visualization of the marginal posterior and free energy estimations with SVI. These results verify that our SVI implementation in ForneyLab performs 
as expected in the theory.

4. Experiments

In this section, we show the effectiveness of the SVI and CVI implementations in the message passing-based PPL Forney-
Lab.jl. Our implementation is readily available.1 The experiments can be also accessed online.2

4.1. Gaussian mixture model

SVI is meant to be beneficial when working with gigantic data sets that can not be processed at once as needed in VMP. 
In this experiment, however, we aim at validating that our SVI implementation in ForneyLab is functioning as expected in 
theory. Therefore, we use a small data set to run VMP and use its free energy as a performance benchmark. We measure the 
performance of the SVI over a Gaussian Mixture Model (GMM) [45, Chapter 20] for the Iris data set [46,47] after reducing 
the dimensionality of the data samples from 4 to 2 by Principal Component Analysis [48, Chapter 12]. The Iris data set 
comprises 150 data samples, equally distributed among three classes. We define the GMM by

f (y, z,μ, W , s) = f s(s)
3∏

k=1

fμ(μk) f W (Wk)

150∏
n=1

f z(zn, s) f y(yn, zn,μ, W ), (29)

f s(s) = Dir(s; [50,50,50])
fμ(μk) = N (μk;02, I 2×2)

f W (Wk) = W2(Wk; I 2×2,2)

f z(zn, s) = Cat(zn; s)

f y(yn, zn,μ, W ) =
3∏

k=1

N
(

yn;μk, W −1
k

)I[zn=k]
, (30)

where N , W , Dir, Cat stand for Gaussian, Wishart, Dirichlet and Categorical distributions respectively. 02 is two dimen-
sional vector of zeros and I 2×2 is two by two identity matrix. I[zn = k] is an indicator function that takes the value one if 
the equality is satisfied, and zero otherwise. All the factors given above are registered in our PPL including f y(yn, zn, μ, W ), 
which is called GMM likelihood node. We approximate the true posterior p(z, μ, W , s|y) by a fully factorized q(z, μ, W , s):

q(z,μ, W , s) = q(s)
3∏

k=1

q(μk)q(Wk)

150∏
n=1

q(zn). (31)

For SVI, we randomly split 150 data samples into five mini-batches equal in size to process per iteration. The estimations 
with stochastic VMP are visualized in Fig. 4. We use the mean estimates for q(μk) and q(Wk) to set the mean and precision 

1 https://github .com /semihakbayrak /ForneyLab .jl /tree /StochasticVMP.
2 https://github .com /biaslab /StochasticVMP.
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Fig. 5. Coal mining accidents in the United Kingdom from 1851 to 1962. In 1887, new safety regulations are exerted to prevent accidents in mining sites. 
We show that it is possible to achieve online BP using SVI with a step size satisfying the Robins-Monro conditions. Violating the Robins-Monro conditions 
and keeping the step size fixed over iterations, we are able to track the hidden non-stationary process shown by the red curve.

parameters of the visualized clusters. The cluster assignments for data samples are shown in red, blue, and yellow colors. 
To colorize the data samples on the plot, we use the maximum of q(zn). On the right-hand side of Fig. 4, we see that SVI 
performs on par with VMP in terms of free energy minimization. Notice that whereas SVI employs 30 data samples per 
iteration, VMP uses all 150 of them. Thus, ForneyLab can be run in SVI mode instead of VMP to carry out inference on 
models require working with large data sets.

4.2. Tracking a non-stationary process

In this experiment, we demonstrate how stochastic optimization enables us to track a non-stationary process. For this 
purpose, we use a coal mining accidents data set [49], visualized with black points in Fig. 5.

We model the number of accidents with a Poisson likelihood, i.e., f y(yt , zt) = Po(yt; zt) and aim at estimating the rate 
zt to get the notion of policies regarding the safety regulations in mining sites. At first, we postulate that the safety policies 
do not change and the rate is shared among all the likelihoods, i.e., zt = z for all t . We put a shape-rate parameterized 
Gamma prior f z(z) = Ga(z; 1, 1) on z. We run BP in an online setting, processing the number of accidents one by one and 
updating the prior f z(z) at each time step with the posterior estimated in the previous time step. We visualize the mean 
estimations with a blue curve in Fig. 5.

Next, we investigate the behavior of stochastic approximation for variational inference. We set the distribution family of 
q(z; η) to the Gamma distribution family, same with f z . Notice that f y and f z are conjugate factor pairs, thus the natural 
gradient of the free energy with respect to η is available in closed form and hand-coded in our PPL through SVI. Therefore, 
by running SVI in ForneyLab, we can investigate the inference with NGD over the free energy objective. In Section 3, we 
discussed that the step size ρ(t) must satisfy Robins-Monro conditions for convergence. Setting it to 1/t for t = 1 : 112, we 
satisfy Robins-Monro conditions and the estimations coincide with online BP.

So far, we treated the example as if zt = z for all t . However, countries change their safety regulations over time and 
the assumption that zt = z does not reflect the true process well. We may consider enriching our model specification as in 
[50]. However, this new model may complicate our automated inference procedure and lead to unsatisfactory estimations. 
Instead of inserting the changes in zt explicitly within a new model specification, we retain our simple model as it is and 
implicitly treat the problem at hand as a non-stationary process. We achieve this by violating the Robins-Monro conditions 
and setting ρ(t) = ρ = 0.1 for all t . This is a widely preferred approach in bandit problems to track non-stationary hidden 
rewards [51]. Keeping ρ(t) fixed over time weighs the contributions from recent observations more than earlier observations 
in updating η through (11). The mean of q(z) over time is visualized by a red curve in Fig. 5. Note that the mean is around 3
until the 1890s, which steadily declines to around 1 later on. This analysis estimates a policy change just before the 1890s, 
which is indeed the case: authorities in the UK exerted new safety regulations in 1887 to prevent accidents in mining 
sites. Regarding the mean estimates around 3 and 1, a Gibbs sampling over a change point model gives similar estimations 
[52]. This experiment supports the notion that the devised stochastic message passing algorithms enable us to go beyond 
conventional inference approaches in message passing-based PPLs.

4.3. Hierarchical probabilistic modeling with a non-conjugate prior

In this experiment, we build a hierarchical probabilistic model with a non-conjugate prior to test the performance of the 
CVI implementation in ForneyLab. Inspired by the famous eight school example from [53], we introduce a slightly different 
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Table 1
Run time (sec.) and free energy comparisons for the hierarchical model and the sensor fusion experiments.

Hierarchical model Sensor fusion

Run time (sec.) Free energy Run time (sec.) Free energy

ForneyLab with CVI 10.961 209.127 6.820 94.784
Turing with ADVI 0.969 208.244 27.238 104.374

hierarchical model to analyze the effects of eight special coaching programs on the SAT score of students. In our experiment, 
we assume that we work with students’ data who take the exam second time after attending a special coaching program:

f (y, x, w,α,β,μ, s) = fα(α) fβ(β) fμ(μ) f s(s)
8∏

i=1

fx(xi,μ, s) f w(wi,α,β)

Ni∏
n=1

f y(yin, xi, wi), (32)

fα(α) = Ga(α;0.1,0.1)

fβ(β) = Ga(β;0.1,0.1)

fμ(μ) = N (μ;0,10)

f s(s) = Ga(α;0.1,1)

fx(xi,μ, s) = N (xi;μ,1/s)

f w(wi,α,β) = Ga(wi;α,β)

f y(yin, xi, wi) = N (yin; xi,1/wi).

We change the original problem and model specification in [53] to introduce a non-conjugacy that stems from fα(α) in our 
model specification. In this model, we aim at analyzing the effect of special coaching in general by estimating the global 
variables α, β , μ and s that are shared among eight schools. We also desire to estimate the effect of the schools individually 
by estimating the local variables xi and wi . Our model differs from the original model specification in that we make an 
analysis over participants’ SAT scores taken before and after the special coaching. We denote the change in the SAT score of 
the nth participant of the ith school with yin . We generate yin values from Normal distributions parameterized with means 
and standard errors given in [53, Table 5.2].

For the inference, we make the mean-field factorization assumption in the approximate posterior:

q(x, w,α,β,μ, s) = q(α)q(β)q(μ)q(s)
8∏

i=1

q(xi)q(wi). (33)

In ForneyLab, we run VMP for 10 iterations. We tie α to an identity deterministic function g(α) = α just to execute NGD 
variational inference for the non-conjugate section of the factor graph and to estimate q(α) as a member of Gamma distri-
bution family with CVI. At each VMP iteration, the natural parameters of q(α) are updated by NGD with ADAM optimizer 
for 10000 iterations.

For the comparison, we use the ADVI inference engine of Turing. We observe that ADVI converges in 5000 iterations 
with forward-mode automatic differentiation [54] and the default optimizer set by Turing. The run time and free energy 
comparisons are given in Table 1.3 We see that Turing and ForneyLab perform almost equally well in terms of free energy, 
while Turing outperforms ForneyLab in run time. Nevertheless, this experiment validates the quality in our estimates with 
the CVI implementation and encourages us to test it in a state space model, where we can take full advantage of the 
deterministic message passing rules of ForneyLab. The next experiment focuses on a state space model example.

4.4. Sensor fusion

In this experiment, we show how ForneyLab casts stochastic optimization for variational inference as an efficient, dis-
tributed operation. We use a variant of a sensor fusion example given in [52, Example 3]. Assume an object moves in a 
two-dimensional environment where three noisy sensors are set in pre-specified locations: ξ1,2,3. At a discrete time t , each 
sensor measures the Euclidean distance ||ξi − ht || between the object’s position ht and itself. Our task is to estimate the 
position of the moving object over time using noisy sensory measurements.

3 Specs of the computer: Julia v1.5.3, Turing v0.18.0, 7 GHz Quad-Core Intel Core i7 CPU, 6 GB 2133 MHz RAM.
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4.4.1. Smoothing with fixed model parameters
We build a state space model using Newtonian dynamics to model the transitions. At first, we use fixed transition and 

measurement noise matrices in our model specification:

f (y, x, z) = f z(z1) fx(x1, z1) f y(y1, x1)

T∏
t=2

f z(zt, zt−1) fx(xt , zt) f y(yt, xt), where (34)

f z(z1) = N (z1;04, I 4×4)

f z(zt, zt−1) = N (zt; Azt−1, I 4×4)

fx(xt , zt) = δ(xt − g(zt)) with g(zt) = [||ξ1 − Bzt ||, ||ξ2 − Bzt ||, ||ξ3 − Bzt ||]ᵀ
f y(yt , xt) = N (yt; xt, I 3×3),

where zt is the vector of hidden position ht and speed values, A =
[

I2×2 I2×2
02×2 I2×2

]
and B = [

I2×2 02×2
]
. In this model, 

the non-conjugacy stems from the deterministic function g(zt ). We circumvent the non-conjugacy issue by incorporating 
the CVI algorithm to our message passing procedure through the factors fx . At a given time step t , we run CVI algorithm 
around fx for 100 iterations with a descent optimizer with learning rate 0.1 to find a message towards the equality node 
that connects zt to fx(xt , zt) (see Fig. 6 for the visualization of a closely related model). The approximate message combines 
with BP messages at the equality node to construct the forward and backward messages towards f z factors. Therefore, in 
ForneyLab, the number of parameters to be estimated by stochastic approximation scales linearly with T and the rest of the 
computation is carried out with deterministic BP messages.

We generate synthetic data with T = 15 and compare ForneyLab’s performance with ADVI of Turing. We define a fully 
structured Gaussian approximate posterior q(z) to be estimated with ADVI as it is in ForneyLab. Whereas ForneyLab es-
timates the structured approximate distribution with distributed operations through message passing, ADVI estimates the 
parameters of q(z) solely with stochastic optimization. Therefore the number of parameters to be estimated by stochastic 
approximation scales quadratically with T in ADVI due to the Cholesky factor of the covariance matrix in q(z). We use 
reverse-mode [55] automatic differentiation background in Turing to speed up the inference. ADVI converges in 6000 iter-
ations with a default optimizer set by Turing. The run time and the free energy comparisons are given in Table 1. We see 
that equipped with CVI, ForneyLab attains a slightly lower free energy in a shorter time compared to Turing’s ADVI. This 
experiment demonstrates the efficiency of our CVI implementation in ForneyLab.

4.4.2. Bayesian parameter and state estimation with structured variational message passing
In the previous experiment, we worked with fixed noise parameters in transition and measurement components. Let us 

relax this assumption and estimate these parameters as well. The model specification in (34) slightly changes as

f (y, x, z, W , S) = f W (W ) f S(S) f z(z1) fx(x1, z1) f y(y1, x1, S)

T∏
t=2

f z(zt, zt−1, W ) fx(xt , zt) f y(yt , xt, S), where (35)

f z(z1) = N (z1;04, I 4×4)

f W (W ) = W4(W ; I 4×4,4)

f S(S) = W3(S; I 3×3,3)

f z(zt, zt−1, W ) = N (zt; Azt−1, W −1)

fx(xt, zt) = δ(xt − g(zt)) with g(zt) = [||ξ1 − Bzt ||, ||ξ2 − Bzt ||, ||ξ3 − Bzt ||]ᵀ
f y(yt , xt, S) = N (yt; xt, S−1),

where Wd(V , n) is a Wishart distribution with d × d positive definite matrix V and n degrees of freedom. We generate 
a synthetic data with T = 30 and approximate the exact posterior p(z, W , S|y) with a structured mean-field assumption: 
q(z, W , S) = q(z)q(W )q(S), where q(z) is not factorized over z. The factor graph and the message passing procedure for 
one time slice is depicted in Fig. 6.

Notice that we resort to NGD stochastic approximation only around the factor fx to compute a message visualized with a 
red arrow and parameterized with a Normal distribution. At a time step t , CVI computes the approximate message in 1000
NGD iterations with a step size of 0.1. The rest of the computations are carried out with deterministic distributed operations. 
We run 30 VMP iterations, which minimizes the free energy as in Fig. 7. For qualitative analysis, we also visualize the final 
position estimations with 1000 samples drawn from q(z).
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Fig. 6. A sub-graph of the model defined in (35). In order to provide the reader with the intuition of the message passing procedures in ForneyLab, 
we visualize the messages as well. The arrow shapes indicate the probability distribution families that messages are carrying. The messages are colored 
according to the algorithm types that generate them with an additional black color indicating approximate marginal distributions to be employed in 
VMP. ForneyLab resorts to stochastic optimization only around the factor fx and carries out the rest of the computations by deterministic distributed 
message passing operations. Notice that CVI sends a Gaussian message, visualized with the red arrow, towards the equality node that is incorporated in 
the calculation of the forward and backward messages with BP. We also allow VMP to be executed around the node f y by setting q(xt ) to a set of samples 
over which the expectation quantities are estimated for VMP.

Fig. 7. On the left is the free energy over VMP iterations for the model defined in (35). On the right is the 2-d environment the object moves in. The red 
curve shows the true trajectory of the movement with the star being the initial point. Black squares are the sensors measuring the Euclidean distances 
with some perturbations. Once the inference is complete, we draw 1000 samples from q(z) and visualize the corresponding position estimates with cyan 
curves.

This experiment provides the reader with the intuition behind our CVI implementation in ForneyLab. CVI around a 
deterministic node renders NGD locally to circumvent intractable operations due to non-conjugacies and approximates the 
problematic messages with approximate messages amenable to analytical calculations.

4.5. Regression with a Bayesian neural network

Many PPLs support integration with deep learning libraries to allow complex probabilistic model specifications with 
neural networks, e.g., Pyro [6] and TensorFlow Probability [7] respectively interface with PyTorch [56] and Tensorflow [57]; 
Turing [4] supports model specifications with Flux.jl [58]. Inspired by Turing, here we show how to use ForneyLab’s CVI to 
make inference in a Bayesian Neural Network (BNN) built [59] with Flux deep learning package.

For this experiment, we generated 40 data samples with input xn and output yn values from a sinusoidal function. We 
run inference for the following model specification:
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Fig. 8. A simple example proves that equipped with CVI, ForneyLab is compatible with Julia language’s deep learning package Flux. We use Flux to build 
a neural network architecture and insert it into an FFG through a deterministic node. In these plots, observations are red points. The blue curves are the 
outputs of neural networks parameterized with weights sampled from q(w) after the inference with CVI on the left and EVMP on the right. The scale of 
y-axes differs as well as the estimations.

f (y, x, s, w) = f w(w)

40∏
n=1

δ(sn − g(w, xn))︸ ︷︷ ︸
Deterministic node

f y(yn, sn), where (36)

f w(w) = N (w;022, I 22×22)

f y(yn, sn) = N (yn; sn,0.1).

In the above model specification, g(w, xn) is a three-layered neural network comprised of 22 weights with a prior f w(w), 
where 022 is 22 dimensional vector of zeros and I 22×22 is an identity matrix. Exogenous inputs to the neural network are 
xn values. We run CVI to approximate p(w|y, x) with a Gaussian q(w). We use a descent optimizer with a step size 0.01 
and run 10000 iterations over the entire data set.

After the inference is completed, we generate 100 neural networks parameterized with weights sampled from q(w) and 
run each neural network with xn in the range (−5, 5). The results are visualized in Fig. 8a. We see that the neural network 
captures the sinusoidal shape confidently for the interpolation task in the range (−2, 2). Outside of this range, we obtain 
flattened extrapolation with higher uncertainty. This simple experiment demonstrates how ForneyLab with CVI seamlessly 
interfaces with a deep learning package.

In Section 5, we shall discuss an alternative automatic message passing approach called Extended Variational Message 
Passing (EVMP) that is also implemented in ForneyLab [29]. Here, by running EVMP on this BNN model, we show how CVI 
extends the inference capabilities of ForneyLab. The EVMP inference engine automatically runs a gradient-based optimization 
method for the Laplace approximation [48, Chapter 4.4] in this BNN model. However, EVMP initializes the optimization with 
the mean of the prior, which is a vector of zeros in this example, and a stationary point that the mode-seeking gradient-
based optimizer gets stuck at. To avoid this stationary point, we slightly change the prior by randomly drawing the samples 
of the mean parameter from N (0, 0.1) and then run EVMP. The results are visualized in Fig. 8b. Although the sinusoidal 
shape is captured, the variance is overestimated in the EVMP case. This is due to that the automated Laplace procedure 
in EVMP is a mode-seeking approach, and the covariance estimation is realized by local curvature evaluation. In contrast, 
covariance parameters are actively adjusted by the NGD optimization procedure of CVI.

5. Discussion and implementation details

SVI and CVI greatly extend the inference capabilities of our message passing-based PPL, equipping it with some favor-
able features over the existing non-message passing-based PPLs. For instance, many of the non-message passing-based PPLs 
achieve scalable variational inference by adhering to doubly stochastic variational inference [8], in which the stochasticity is 
due to both mini-batch selection process from the data set and sampling from the candidate approximate posterior distri-
bution. This process is same both in conjugate and non-conjugate models for non-message passing-based PPLs. In contrast, 
running SVI in a message passing-based PPL for conjugate model specifications obviates the need for sampling from the can-
didate approximate posterior distribution and reduces the source of stochasticity to the mini-batch selection process only. 
Reducing the dependency on sampling processes often results in faster and more stable convergence behaviors. Further-
more, as opposed to non-message passing-based PPLs, SVI enables message passing-based PPLs to employ natural gradients 
that are available in closed form for conjugate factor pairs. Similar to SVI, CVI is also an efficient inference procedure that 
involves analytical calculations in gradient estimations. We show that message passing frameworks provide convenient tools 
to take full advantage of CVI algorithm: pre-defined message passing rules carry out the analytical calculations in CVI and 
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reduce the number of variables that are to be sampled. For example, the term η jb , appears in the natural gradient (15), 
relates to the natural parameters of the message m jb(z j) from a factor V( j) \ b and allows to calculate the contribution 
of V( j) \ b to the natural gradient without sampling. Similarly, the estimation of log mbj(z j) ∝ Eq(zb\ j)[log fb(zb)] in (26)
involves some analytical calculations that are automatically addressed by the pre-defined message mdi (zi).

Non-conjugate models make use of natural gradient terms ∇N
η j
Eq(z j;η j)[logmbj(z j)] that are not available in closed form. 

The original CVI article [22] proposes an efficient estimation approach that does not necessitate the explicit evaluation of 
Fisher information matrix for Gaussian approximate distributions and recommends reparameterization trick [12,13,8] for the 
other distributions. We adhere to their efficient approach for the Gaussian case, but use the REINFORCE estimator (22) for 
the other distributions, instead. This is mainly because REINFORCE is an easy-to-implement, global estimator for the free 
energy gradient. However, it is often considered a high variance estimator requiring additional variance reduction techniques 
to be used in practice. [9] shows that Rao-Blackwellization [10] and control variates [11] considerably reduce the variance 
in free energy gradient estimations. Fortunately, message passing frameworks inherently support Rao-Blackwellization and 
closed-form solutions (Appendix B). Nevertheless, it is still valuable to get the gradient estimations over reparameterization 
of random variables to further reduce the variance in estimations. The reparameterization trick is generalized beyond Gaus-
sian distributions in recent works by [60–62]. The most recently introduced approach is the implicit reparameterization trick 
[62], which reparameterizes variables using Cumulative Distribution Functions (CDFs). We plan to implement this feature in 
a future release of ForneyLab.

Stochastic optimization methods, in general, require hyperparameters such as step size to be set carefully for fast and 
stable convergence. The current ForneyLab implementation allows step sizes to be set by optimizer objects defined in Julia 
language’s deep learning package Flux [58]. We also implemented the optimizer proposed in [21, Equation 26] satisfying 
Robins-Monro conditions. Additionally, we provide an implementation for [63], which adjusts step sizes adaptively using 
already calculated natural gradients. Another hyperparameter required in CVI is the number of iterations per message ap-
proximation. To free our PPL’s end-user from specifying the number of iterations, we provide her with two options that 
automatically determine when to stop doing iterations: one based on tracking the relative change of the variational objec-
tive; the other based on viewing the optimization algorithm as producing a Markov chain and using Markov Chain Monte 
Carlo diagnostic tools to determine the stopping criterion [64]. The former method runs faster but can prematurely end the 
optimization algorithm in some cases, whereas the latter method is more robust but has a significantly higher computational 
load as it runs several optimization chains in parallel for each iteration.

We present the stochastic approximation for variational inference as if it is an unconstrained optimization task. How-
ever, the domain of the probability distribution functions is often constrained, e.g., shape and rate parameters of a Gamma 
distribution are constrained to be in the positive real axis. Unfortunately, NGD steps given in (11) are susceptible to viola-
tions of constraints. In our ForneyLab implementation, we avoid domain violations in Gaussian and Gamma distributions by 
discarding the samples that causes violations. In the future, we plan to integrate the recent researches along this line [65]
to our message passing-based PPL.

ForneyLab possesses an alternative automated inference engine for universal approximate inference called Extended Vari-
ational Message Passing (EVMP) [29]. At the core of EVMP is the idea that FFGs partition the high dimensional manifolds, 
and message passing algorithms arise as distributed inference operations defined on smaller dimensions. In EVMP, impor-
tance sampling [48, Chapter 11.1.4] locally interfaces with message passing to allow inference in non-conjugate sub-graphs. 
This approach works well for many model specifications, it is fast and it requires almost no hyperparameters as one of the 
messages on the edge constitutes the proposal distribution for importance sampling. However, the quality of estimations in 
EVMP strictly depends on the model specification. In comparison to EVMP, the inference with CVI is more detached from 
the model specification thanks to the NGD optimization procedure. However, the CVI algorithm is more hyperparameter 
dependent than the EVMP algorithm. Another disadvantage of importance sampling is that it is notorious for being ineffi-
cient in high dimensions [66], and there might be cases that the partitioned manifolds are still high-dimensional. To support 
inference in high dimensions, EVMP incorporates the Laplace approximation into message passing with automatic differenti-
ation. The Laplace approximation first finds the mode and then estimates the covariance matrices of approximating Gaussian 
distributions with local curvature information. In contrast, CVI implicitly tunes the covariance matrix over the course of the 
optimization procedure in Gaussian case. The difference between these two approaches is sketched in Section 4.5. Moreover, 
SVI and CVI address scalability issues that EVMP does not deal with.

6. Conclusions

This paper demonstrates how to cast stochastic optimization methods for variational inference as distributed, local op-
erations on FFGs for probabilistic programming. Choosing NGD as the optimizer of the free energy, the resulting method 
automates the well-recognized SVI and CVI algorithms in a message passing-based PPL. In SVI, the natural gradients of 
the free energy objective are analytically acquired from pre-defined messages in the message passing-based PPL. In CVI, 
the natural gradients are partially available in the messages in closed form, and the components that are not amenable to 
closed-form calculation can be locally estimated by automatic differentiation tools and Monte Carlo summation. Both SVI 
and CVI operate at node level and seamlessly interface with the message passing procedures. The efficiency of SVI and CVI 
within a message passing-based PPL has been validated by a number of experiments.
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Appendix A. Stationary points of the free energy

Consider the free energy objective given in (4). This objective is a functional of q(zb). We first find the stationary q(z j)

for this functional. Let us rewrite it here:

F[q(z j)] = Eq(z j)[log q(z j)] −Eq(z j)[log m jb(z j)] −Eq(z j)

[
Eq(zb\ j)[log fb(zb)]

] + c,

where c stands for the terms independent of z j . It can be equivalently written as

F[q(z j)] =DKL

[
q(z j)

∣∣∣∣∣
∣∣∣∣∣ m jb(z j)exp(Eq(zb\ j)[log fb(zb)])∫

m jb(z j)exp(Eq(zb\ j)[log fb(zb)])dz j

]

− log
∫

m jb(z j)exp(Eq(zb\ j)[log fb(zb)])dz j + c,

which is a KL divergence summed with a constant. Setting q(z j) equal to the right hand side of the KL divergence minimizes 
the free energy w.r.t. q(z j).

Now, consider the other interpretation of the variational objective that casts the free energy as a function of η j as in 
(13) given that q(z j; η j) = h j(z j) exp(φ j(z j)

ᵀη j − A j(η j)) with a constant h j(z j). Functional form of the message m jb(z j) is 
given in (14). Then the gradient of the free energy w.r.t. η j is

∇η jF(η j) = ∇η j

(
Eq(z j;η)[log q(z j;η j)] −Eq(z j;η j)

[
logm jb(z j)

] −Eq(z j;η j)

[
log mbj(z j)

])
= ∇η j

(
Eq(z j;η j)[φ j(z j)]ᵀ(η j − η jb) − A j(η j) −Eq(z j;η j)

[
logmbj(z j)

])
= ∇η jEq(z j;η j)[φ j(z j)]ᵀ(η j − η jb) +Eq(z j;η j)[φ j(z j)] − ∇η j A j(η j) − ∇η jEq(z j;η j)[log mbj(z j)]
= ∇2

η j
A j(η j)

[
η j − η jb

] − ∇η jEq(z j;η j)[log mbj(z j)].
The last line above follows from ∇η j A(η j) =Eq(z j;η j)[φ j(z j)] [34]. We denote the Hessian of the log-normalizer, ∇2

η j
A j(η j)

with G(η j), which is the Fisher information matrix of q(z j; η j). Following [21], we write the natural gradient of the free 
energy as

∇N
η j
F(η j) = G−1(η j)∇η jF(η j) = η j −

(
η jb + G−1(η j)∇η jEq(z j;η j)[log mbj(z j)]

)
.

Appendix B. VMP on composite nodes and Rao-Blackwellization

Consider the composite node fb(zb) =
∫

δ(zi − g(zc\i))︸ ︷︷ ︸
fc(zc )

· fd(zd) dzi visualized in Fig. 3. Given that q(zb\ j) = q(zc\{ j,i})q(zd\i)

and fd is a function amenable to be arranged as fd(zd) ∝ exp
(
φdi(zi)

ᵀλdi(zd\i)
)
, log of the VMP message mbj(z j) evaluates 

to

log mbj(z j) ∝Eq(zb\ j)[log fb(zb)]

= Eq(zb\ j)

[
log

∫
δ(zi − g(zc\i)) fd(zd)dzi

]

∝Eq(zb\ j)

[
log

∫
δ(zi − g(zc\i))exp

(
φdi(zi)

ᵀλdi(zd\i)
)

dzi

]
= Eq(zb\ j)

[
φdi(g(zc\i))

ᵀλdi(zd\i)
]
. (B.1)

A trivial approach to estimate the above expectation is to use Monte Carlo summation by drawing samples from q(zb\ j). 
However, we aim to reduce the variance in our estimates by avoiding sampling and sticking to analytical solutions as much 
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as possible. This strategy relates to Rao-Blackwellization [10] and VMP rules defined in ForneyLab help us to carry out 
variance reduction in an automated way:

log mbj(z j) ∝Eq(zc\{ j,i})
[
Eq(zd\i |zc\{ j,i})

[
φdi(g(zc\i))

ᵀλdi(zd\i)
]]

= Eq(zc\{ j,i})
[
Eq(zd\i)

[
φdi(g(zc\i))

ᵀλdi(zd\i)
]]

= Eq(zc\{ j,i})
[
φdi(g(zc\i))

ᵀEq(zd\i)

[
λdi(zd\i)

]]
∝Eq(zc\{ j,i})[log mdi(g(zc\i))], (B.2)

where mdi(·) is the VMP message defined from fd to zi . The second line above follows from q(zb\ j) = q(zc\{ j,i})q(zd\i). 
The number of variables to be sampled for the estimation of log mbj(z j) in (B.2) is less than (B.1). The message passing 
framework of ForneyLab equips us with the tools to carry out analytical calculations automatically. This feature is missing in 
many other PPLs.

For VMP procedure to progress flawlessly, the VMP messages towards zd\i need to be evaluated, as well. Keeping q(zd\i)

structured and arranging zd terms inside fd(zd) as fd(zd) ∝ exp
(
φE(d)\i(zd\i)

ᵀλE(d)\i(zi)
)
, we get the following VMP message

mE(d)\i(zd\i) ∝ exp(Eq(zi)[log fd(zd)])
= exp

(
φE(d)\i(zd\i)

ᵀEq(zi)[λE(d)\i(zi)]
)
, (B.3)

which is a function of the expectation quantity Eq(zi )[λE(d)\i(zi)] with a fixed functional form. In our message passing-based 
PPL, message passing rules are locally defined on a factor as functions of expectation quantities related to arguments of the 
factor that is zi for the message mE(d)\i(zd\i).

Let us evaluate the same message over the composite factor node fb(zb):

mE(d)\i(zd\i) ∝ exp(Eq(zc\i)[log fb(zb)])
= exp

(
Eq(zc\i)

[
log

∫
δ(zi − g(zc\i)) fd(zd)dzi

])
∝ exp

(
φE(d)\i(zd\i)

ᵀEq(zc\i)

[
λE(d)\i(g(zc\i))

])
. (B.4)

Having estimated q(zc\i) with CVI, the VMP message can be approximated by estimating the expectation
Eq(zc\i)

[
λE(d)\i(g(zc\i))

]
with

Eq(zc\i)

[
λE(d)\i(g(zc\i))

] ≈ 1

S

S∑
s=1

λE(d)\i

(
g
(

z(s)
c\i

))
, where z(s)

c\i ∼ q(zc\i).

This is equivalent to setting q(zi) to a set of samples

q(zi) =
{

z(s)
i = g

(
z(s)

c\i

) ∣∣∣for s ∈ {1, . . . , S}
}

,

where the expectations are calculated as

Eq(zi)[λE(d)\i(zi)] = 1

S

S∑
s=1

z(s)
i ,

and employed in the pre-defined local VMP message function given in (B.3) to approximate the VMP message mE(d)\i(zd\i).
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