
International Journal of Approximate Reasoning 148 (2022) 235–252
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Probabilistic programming with stochastic variational message

passing

Semih Akbayrak a,∗, İsmail Şenöz a, Alp Sarı a, Bert de Vries a,b

a Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, the Netherlands
b GN Hearing BV, JF Kennedylaan 2, 5612AB Eindhoven, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 January 2022
Received in revised form 9 June 2022
Accepted 22 June 2022
Available online 30 June 2022

Keywords:
Factor graphs
Message passing
Natural gradient descent
Probabilistic programming
Variational inference

Stochastic approximation methods for variational inference have recently gained popularity
in the probabilistic programming community since these methods are amenable to
automation and allow online, scalable, and universal approximate Bayesian inference.
Unfortunately, common Probabilistic Programming Languages (PPLs) with stochastic appro-
ximation engines lack the efficiency of message passing-based inference algorithms with
deterministic update rules such as Belief Propagation (BP) and Variational Message Passing
(VMP). Still, Stochastic Variational Inference (SVI) and Conjugate-Computation Variational
Inference (CVI) provide principled methods to integrate fast deterministic inference
techniques with broadly applicable stochastic approximate inference. Unfortunately, imple-
mentation of SVI and CVI necessitates manually driven variational update rules, which
does not yet exist in most PPLs. In this paper, we cast SVI and CVI explicitly in a
message passing-based inference context. We provide an implementation for SVI and CVI
in ForneyLab, which is an automated message passing-based probabilistic programming
package in the open source Julia language. Through a number of experiments, we
demonstrate how SVI and CVI extends the automated inference capabilities of message
passing-based probabilistic programming.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Probabilistic programming refers to a programming paradigm that aims to automate and facilitate probabilistic inference
for end users with varying degrees of expertise in probabilistic modeling methods [1]. A considerable amount of inference
methods and tools have been developed over the past decade to support this endeavor. A very important development
in this realm concerns stochastic approximation methods for variational inference where noisy gradient estimates of a
variational objective are used to update posterior distributions [2,3]. These methods have been implemented in Probabilistic
Programming Languages (PPLs) such as Turing.jl [4], Stan [5], Pyro [6] and TensorFlow Probability [7]. Realizing variational
inference as a stochastic optimization task paves the way toward universal inference and scales well to large data sets [8].
Still, stochastic approximation methods for variational inference come with their own challenges. For example, Black-Box
Variational Inference (BBVI) [9] often requires additional steps, such as Rao-Blackwellization [10], control variates [11], or
variable reparameterization [12,13] to reduce the variance in noisy gradient estimates and to attain stable convergence.
Another popular method, Automatic Differentiation Variational Inference (ADVI) [14] maps continuous random variables

* Corresponding author.
E-mail address: s.akbayrak@tue.nl (S. Akbayrak).
https://doi.org/10.1016/j.ijar.2022.06.006
0888-613X/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.ijar.2022.06.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2022.06.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:s.akbayrak@tue.nl
https://doi.org/10.1016/j.ijar.2022.06.006
http://creativecommons.org/licenses/by/4.0/

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 1. A sub-graph G ({a,b}, j). The edge j is connected to factors a and b, which implies that z j is an argument to functions fa and fb . We denote the
message on edge j from fa and fb with maj(z j) and mbj(z j), respectively.

to the real domain and runs stochastic optimization by applying reparameterization in this new domain to prevent high
variance in gradient estimates and domain violations. However, the applicability of ADVI is limited to continuous random
variables. Moreover, neither BBVI nor ADVI were developed with conjugate model structures in mind, and hence they do
not utilize the speed and computational advantages of message passing-based inference methods, such as Belief Propagation
(BP) [15,16], Expectation Propagation (EP) [17,18] and Variational Message Passing (VMP) [19,20].

In this paper, we focus on two other well-recognized stochastic approximation methods for scalable and universal vari-
ational inference, namely Stochastic Variational Inference (SVI) [21] and Conjugate-Computation Variational Inference (CVI)
[22]. Unlike BBVI and ADVI, both SVI and CVI take advantage of conjugacy structures in the model specifications. They use
natural gradient descent [23,24] to minimize a variational free energy objective in a stochastic setting. By incorporating
Fisher information into stochastic optimization by natural gradient descent, both SVI and CVI adjust steepest descent di-
rections better than raw stochastic gradient descent, which further yields faster and more stable convergence. Whereas SVI
aims to scale variational inference for conjugate models to large data sets, CVI extends this idea to non-conjugate mod-
els. While both methods seem very efficient on paper, automating them in a PPL is a challenging task as both methods
necessitate analytical calculations.

In the message passing branch of probabilistic programming, PPLs such as Infer.NET [25] and Julia language [26] packages
ReactiveMP.jl [27] and ForneyLab.jl [28] aim to execute automated Bayesian inference by employing predefined, deterministic
message update rules. ForneyLab often executes inference faster than stochastic approximation-based methods for conjugate
or conditionally conjugate probabilistic models with small data sets. However, it does not scale well to large data sets, does
not provide a formal mechanism for online variational inference and its inference capabilities are more or less limited to a
priori defined deterministic rules in conjugate model specifications. We shall discuss an alternative approach based on [29]
in Section 5. Nevertheless, ForneyLab possesses in principle the required inference rules to automate and harness CVI and
SVI in order to alleviate its shortcomings to a large extent. We present how to incorporate CVI and SVI into ForneyLab’s
automated message passing framework on factor graphs and show the favorable features of these new extensions by a
number of experiments.

The paper is organized as follows. In Section 2 we review Forney-style Factor Graphs (FFGs), Belief Propagation (BP) and
Variational Message Passing (VMP). We conclude Section 2 by introducing the problems that are addressed in this paper.
Section 3 addresses these problems by transferring SVI and CVI methods to the FFG framework. In Section 4, we apply the
proposed solutions to a variety of experiments that demonstrate the efficiency of these solutions. In Section 5, we provide
a discussion on our implementation and future work and Section 6 summarizes with conclusions.

2. Background

This section provides a review on FFGs, BP, VMP, and the exponential family of distributions. We also introduce notational
conventions and conclude the section by providing the limitations of probabilistic programming with message passing on
FFGs.

2.1. Forney-style Factor Graphs (FFGs)

Given a factorized function f (z) = ∏
a∈V

fa(za) of a collection of random variables z, where za stands for the subset of

random variables that are arguments of fa , a Forney-style Factor Graph (FFG) [30,31] visualizes the independency structure
between the variables. Specifically, an FFG is a graph G = (V, E), where V stands for the set of factor nodes and E ⊆ V × V
denotes the set of edges. The edges connected to a node a ∈ V are denoted by E(a). Similarly, V(i) denotes the two factor
nodes an edge i ∈ E is connected to. We associate the indices a, b, c, d with nodes and i, j, k, l with edges. As we shall detail,
it is often sufficient to focus on sub-graphs in FFGs to formulate inference operations. We refer to the sub-graph around a
node a ∈ V by G(a) = (a, E(a)). In a similar vein, G(i) = (V(i), i) denotes the edge i and the factor nodes it is connected
to. We also introduce G(a, i) = (V(i), E(a)) and G({a,b} , i) = (V(i),E(a) ∪ E(b)) to allow larger sub-graph specifications. We
sometimes index sub-graphs to differentiate them, e.g., Gp(Vp, Ep). In FFGs, random variables are branched out to more than
two factor nodes through equality constraints. This is achieved by introducing an “equality” node fa(za) = δ(z j − zi)δ(z j − zk)

that generates the copies of z j as zi and zk .
Inference in FFGs, such as marginal calculations like f (z j) =

∫
f (z)dz\ j , is carried out by a distributed set of operations.

As an example, consider the sub-graph G ({a,b}, j) given in Fig. 1. Suppose we are interested in obtaining the marginal for
z j , which amounts to computing
236

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
f (z j) =
∫

fa(za)dza\ j︸ ︷︷ ︸
maj(z j)

∫
fb(zb)dzb\ j︸ ︷︷ ︸

mbj(z j)

. (1)

In this notation, maj(z j) and mbj(z j) denote the messages on edge j propagating from fa and fb respectively. Once
the messages maj(z j) and mbj(z j) have been calculated, the marginal distribution calculation refers to multiplication of the
messages followed by a normalization:

p(z j) = f (z j)∫
f (z j)dz j

= maj(z j)mbj(z j)∫
maj(z j)mbj(z j)dz j

. (2)

This exact inference procedure in tree-like FFGs is known as Belief Propagation (BP) [15,16].

2.2. Variational message passing

The integrals for computing messages in BP rarely have analytical solutions. Instead of calculating the marginals ex-
actly, VMP iteratively approximates them by introducing additional factorizations in joint distributions and minimizing a
variational objective called (variational) free energy.

Consider a sub-graph G (b). As we will be working around the factor fb without specifying the neighboring nodes, we
denote the message propagating towards fb from the other end of edge j with m jb(z j). For example, in Fig. 1, the outgoing
message maj(z j) from node a is referred to as m jb(z j) when interpreted as an incoming message to node b. The joint
distribution of zb in the sub-graph G (b) under marginalization and normalization constraints is given by [32]

p(zb) = f (zb)∫
f (zb)dzb

(3a)

where f (zb) = fb(zb)
∏

i∈E(b)

mib(zi) . (3b)

We approximate this joint distribution by a structured factorization q(zb) = q(zb\ j)q(z j) by minimizing the free energy

F[q(zb)] = Eq(zb)

[
log

q(zb)

f (zb)

]
≥ − log

∫
f (zb)dzb, (4)

which is an upper bound to the negative log normalizer in (3a). In the presence of observations in probabilistic models, the
bound is set to negative log-evidence and consequently, the free energy equals the negative Evidence Lower BOund (ELBO).
Keeping only the terms with z j in (4),

F ∝ Eq(z j)[log q(z j)] −Eq(z j)

[
log m jb(z j)

] −Eq(z j)

[
Eq(zb\ j)[log fb(zb)]], (5)

we find that the stationary points of F w.r.t. q(z j) are (Appendix A)

q(z j)
∗ = m jb(z j)mbj(z j)∫

m jb(z j)mbj(z j)dz j
, (6)

where mbj(z j) is a VMP message calculated by

mbj(z j) ∝ exp
(
Eq(zb\ j)[log fb(zb)]

)
. (7a)

If the messages m jb(z j) and mbj(z j) take the functional forms (with identical sufficient statistics)

m jb(z j) ∝ exp(φ j(z j)
ᵀη jb) (8a)

mbj(z j) ∝ exp(φ j(z j)
ᵀηbj), (8b)

then the factors in V(j) are called conjugate factor pairs [33, Chapter 2.4]. Conjugate factor pairs allow the approximate
marginal q(z j)

∗ in (6) to be analytically evaluated in the exponential family of distributions [34]

q(z j)
∗ = h j(z j)exp(φ j(z j)

ᵀ (η jb + ηbj)︸ ︷︷ ︸
η j

−A j(η j)). (9)

Above h j(z j) is a constant base measure, φ j(z j) is a vector of sufficient statistics, η j is a natural parameters vector and
A j(η j) is the log-normalizer

A j(η j) = log

(∫
h j(z j)exp(φ j(z j)

ᵀη j)dz j

)
. (10)
237

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 2. Three possible issues a message passing-based PPL may encounter are visualized. On the left, the equality node requires VMP messages from all the
dashed sub-graphs to calculate mbj(z j), which might not be feasible for large N . In (b), mbj(z j) and m jb(z j) differ in sufficient statistics, which preclude
analytical marginal calculations. On the right, fb is a custom factor node defined by the end-user. The message mbj(z j) is not available in the PPL due to a
missing analytical solution or message passing rule.

2.3. Problem specification

By defining message calculation rules on node level and marginal distribution calculation rules on edges as previously
described, a modular, automated message passing-based inference engine can be developed. In Fig. 2, we list the potential
difficulties a message passing-based inference engine may encounter and how we attack them:

• Scalability: In principle, the VMP algorithm requires the entire data set to be processed at once, e.g., in Fig. 2a the
equality node fb needs to collect VMP messages from all the dashed sub-graphs to calculate the message mbj(z j).
Unfortunately, this may not be feasible in real-world applications when the data set is received in sequential order or
is just too large to be processed at once due to memory limitations. Stochastic Variational Inference (SVI) [21], among
others in the literature [35,36], provides a principled method for scalable variational inference. In Section 3.1, we show
that SVI is easy to implement in our message passing-based inference engine.

• Non-conjugacy: Non-conjugate factor pairs yield messages with different sufficient statistics, shown in Fig. 2b, which
preclude analytical marginal calculations. In Section 3.2, we attack this problem with Conjugate-Computation Variational
Inference (CVI) [22] and approximate mbj(z j) with a message νbj(z j) having sufficient statistics φ j(z j).

• Generality: Deterministic message passing algorithms such as BP and VMP necessitate message passing rules to be de-
fined around factor nodes in advance, which hinders custom model specifications. In Section 3.3, we provide a strategy
based on Monte Carlo summation and CVI to approximate a message mbj(z j) that is not available in closed form or
missing in the inference engine.

In all three cases, we assume that the message m jb(z j) = exp(φ j(z j)
ᵀη jb) is given and the problems are associated with

mbj(z j). We will preserve this convention in the next section.

3. Stochastic variational message passing with natural gradient descent

In this section, we address the above three problems depicted for a node fb . We will use SVI and CVI that are both based
on Natural Gradient Descent (NGD) [23,24] optimization of the free energy, otherwise known as the Bayesian Learning Rule
[37],

η
(t)
j ←− η

(t−1)
j − ρ(t)∇N

η j
F

(
η

(t−1)
j

)
(11)

to tune the natural parameters of the approximate marginal

q(z j;η j) = h j(z j)exp(φ j(z j)
ᵀη j − A j(η j)). (12)

In (11), t is the iteration index in NGD, ρ(t) is a step size and ∇N
η j
F

(
η

(t−1)
j

)
is the natural gradient of the free energy w.r.t.

η j , evaluated at η(t−1)
j . In our message passing framework, we access F(η j) through the messages propagating on edge j:

F(η j) = Eq(z j;η j)[log q(z j;η j)] −Eq(z j;η j)

[
log m jb(z j)

] −Eq(z j;η j)

[
log mbj(z j)

] + c, (13)

where c collects the terms independent of η j . Assuming that

m jb(z j) ∝ exp(φ j(z j)
ᵀη jb) , (14)

the natural gradient ∇N
η F(η j) evaluates to (Appendix A):
j

238

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
∇N
η j
F(η j) = η j −

(
η jb + G−1(η j)∇η jEq(z j;η j)[log mbj(z j)]︸ ︷︷ ︸

∇N
η j
Eq(z j ;η j)

[log mbj(z j)]

)
, (15)

where G(η j) refers to the Fisher information matrix of q(z j; η j), given by the Hessian of the log-normalizer:

G(η j) = ∇2
η j

A j(η j) . (16)

Next, we will discuss how to estimate ∇N
η j
Eq(z j;η j)[log mbj(z j)] for all three cases given in Section 2.3 to optimize the free

energy in a stochastic manner by setting ρ(t) according to Robbins-Monro conditions [38], i.e.,
∞∑

t=1
ρ(t) = ∞ and

∞∑
l=1

ρ(t)2
<

∞.

3.1. SVI for scalable VMP

Consider the FFG depicted in Fig. 2a, where fb is defined to be an equality node, i.e., z j is shared across N sub-graphs
denoted by dashed boxes. The sub-graphs are comprised of identical functions with distinct local random variables in
their arguments, e.g., Ga = (Va, Ea), Gn = (Vn, En) with d ∈ Va , e ∈ Vn such that fd(y1, zk, z j) = h(y1, zk, z j), fe(yN , zl, z j) =
h(yN , zl, z j). Consider VMP in this FFG and suppose the messages towards fb have identical sufficient statistics with distinct
natural parameters, i.e.,

mib(zi) ∝ exp(φ j(zi)
ᵀηib). (17)

In the message passing interpretation of SVI [39], we work with M < N sub-graphs at a VMP iteration by estimating the
message mbj(z j) from the equality node as

mbj(z j) ≈
(∫ ∏

i∈E ′(b)
i = j

δ(z j − zi)mib(zi)dzi

)N/M

∝ exp

(
φ j(z j)

ᵀ N

M

∑
i∈E ′(b)

i = j

ηib

)
. (18)

Here, E ′(b) ⊆ E(b) denotes M edges on which the messages are available towards fb . Substituting the above estimate in
(15), the natural gradient estimate of the free energy evaluates to

∇̃N
η j
F(η j) = η j −

(
η jb + N

M

∑
i∈E ′(b)

i = j

ηib

)
. (19)

For an FFG G = (V, E), Algorithm 1 shows how SVI is executed by applying NGD around equality nodes V= ⊂ V that are
associated with shared variables z̄ such that z̄ ⊂ z.

Algorithm 1 SVI on an FFG.
Require: A graph G = (V, E) for f (z) such that z̄ ⊂ z is a collection of variables shared across sub-graphs {Ga, . . . ,Gn} through equality nodes V= ⊂ V ;
Number of iterations: T
for all z j ∈ z̄ do

Initialize q(z j) ∝ exp(φ j(z j)
ᵀη

(0)
j)

for t = 1, . . . , T do
Choose a subset G′ of sub-graphs to be processed
for all G̃ ∈ G′ do

Inside the sub-graph G̃ , run VMP for one step as in Section 2.2
Calculate VMP messages towards b for all b ∈V=

for all b ∈V= do
Collect all available messages mib(zi) s.t. i ∈ E ′(b)

Calculate ∇̃N
η j
F(η j) using (19) � Given that z j ∈ z̄

Set a step size ρ(t)

Update q(z j) using (11)

3.2. CVI for non-conjugate inference

Next, we consider the factors in V(j) as non-conjugate pairs that yield messages with different sufficient statistics (see
Fig. 2b):
239

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
m jb(z j) ∝ exp(φ j(z j)
ᵀη jb) (20a)

mbj(z j) ∝ exp(φbj(z j)
ᵀηbj) (20b)

Motivated by the message approximation scheme within the exponential family of distributions in [40], we will use CVI to
replace mbj(z j) with an approximate message νbj(z j) that has sufficient statistics φ j(z j). In an ideal scenario, νbj(z j) needs
to satisfy that q(z j) ∝ m jb(z j)νbj(z j) is a stationary point of the free energy. To search a stationary point, we run NGD given
in (11) until convergence, and then find νbj(z j) as described by [17,41],

νbj(z j) = q(z j;η∗
j)

m jb(z j)
∝ exp(φ j(z j)

ᵀ(η∗
j − η jb)). (21)

In the NGD-based optimization of the free energy, we employ an estimate for ∇N
η j
Eq(z j;η j)[logmbj(z j)], which does not

have an analytical solution, since q(z j) and mbj(z j) differ in sufficient statistics. In some cases, such as when q(z j; η j)

is a Gaussian distribution, it is possible to directly estimate the natural gradients without explicitly evaluating the Fisher
information matrix and its inverse, see [22, Appendix B] for details, which follows from [42]. In our implementation, we
stick to their computationally efficient approach for the Gaussian case. In other cases, we compute G(η) with automatic
differentiation [43] and estimate ∇η jEq(z j;η j)[logmbj(z j)] with the REINFORCE algorithm that is also the core algorithm of
BBVI [9]:

∇̃η jEq(z j;η j)[log mbj(z j)] := 1

S

S∑
s=1

∇η j log q
(

z(s)
j ;η j

)
log mbj

(
z(s)

j

)
, where z(s)

j ∼ q(z j;η j) . (22)

In Section 4.4, we will demonstrate that approximate messages νbj(z j) ease hybrid inference procedures in message passing-
based PPLs.

3.3. CVI for generality

Above, we addressed the case that mbj(z j) is available in closed form but differs from m jb(z j) in sufficient statistics.
However, there might be cases that mbj(z j) is not available in the PPL either because calculations do not have analytical
solutions or due to missing message passing rule implementations, as illustrated in Fig. 2c. To address this problem, we
propose a strategy harnessing the existing deterministic message passing rules at the utmost level. Our strategy is based on
a decomposition of the factor fb(zb) as

fb(zb) =
∫

δ(zi − g(zc\i))︸ ︷︷ ︸
fc(zc)

fd(zd)dzi, (23)

where zi is an auxiliary random variable between the factors fc and fd , g(zc\i) is a generic, deterministic function that
maps the variables zc\i to zi and accounts for generality in model specifications. This strategy has been discussed in [29,
Appendix A.3] before. Here, we show how composite factor nodes enable us to take full advantage of the CVI algorithm
by delegating the analytical calculations in CVI to already existing message passing rules in the PPL. fb is illustrated as a
composite node in Fig. 3. We require that fd(zd) is a factor, on which message passing rules, such as VMP, are defined and
arise proportional to the exponential family of distributions, i.e., fd allows the terms zd to be arranged as

fd(zd) ∝ exp
(
φdi(zi)

ᵀλdi(zd\i)
)
, (24)

where λdi(zd\i) is a function of all the arguments zd but zi , which leads to a VMP message

mdi(zi) ∝ exp
(
Eq(zd\i)[log fd(zd)]

)
∝ exp

(
φdi(zi)

ᵀEq(zd\i)[λdi(zd\i))]︸ ︷︷ ︸
ηdi

)
. (25)

We also require q(zb\ j) to be factorized as q(zb\ j) = q(zc\{ j,i})q(zd\i), where q(zc\{ j,i}) and q(zd\i) may contain further
factorizations within themselves, but not given explicitly. Then, the log of VMP message mbj(z j) from the factor fb to z j

evaluates to (Appendix B)

log mbj(z j) ∝Eq(zb\ j)[log fb(zb)] ∝ Eq(zc\{ j,i})[log mdi(g(zc\i))] . (26)

Since g(zc\i) is a custom function defined by the end-user, there will be no rule registered beforehand in the PPL to calculate
the above expectation. Nevertheless, we resort to Monte Carlo summation to estimate it as
240

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 3. A factor node fb(zb), visualized as a composite node, where zb\ j = zc\{ j,i} ∪ zd\i . In case the message mbj(z j) is not defined in closed form for the
factor fb , we require the end-user to define fb(zb) as a composite node such that the components of fb are fc(zc) = δ(zi − g(zc\i)) and fd(zd). g(zc\i) is a
custom deterministic function defined by the end-user. We do not put any restrictions on g(zc\i) and hence allow the end-user to define almost universal
model specifications. We require fd to be a factor registered in the PPL together with the message passing rules on it.

log mbj(z j) = logmcj(z j) ≈ 1

S

S∑
s=1

logmdi

(
g
(

z j, z(s)
c\{ j,i}

))
, where z(s)

c\{ j,i} ∼ q
(
zc\{ j,i}

)
. (27)

Once log mbj(z j) is estimated, we use CVI as in Section 3.2 to find an approximate message νbj(z j) that has sufficient
statistics φ j(z j). Notice that instead of resorting to Monte Carlo estimation at first step in Eq(zb\ j)[log fb(zb)], we harnessed
the message passing rules defined in our message passing-based PPL to reduce the number of variables to be sampled,
which further reduces the variance in log mbj(z j) estimates (see Appendix B for a discussion). Next, we will provide CVI
algorithm around the deterministic node fc .

3.3.1. CVI around deterministic nodes
Given fb(zb) is decomposed as (23), we carry out CVI by defining message passing rules around the deterministic com-

ponent fc(zc) = δ(zi − g(zc\i)) by imposing a mean field assumption on q(zc\i):

q(zc\i) =
∏

j∈E(c)
j =i

q(z j). (28)

We provide a high level summary for CVI around the deterministic node fc(zc) in Algorithm 2.

Algorithm 2 CVI around a deterministic node in an FFG.
Require: A sub-graph G(c) = (c, E(c)) s.t. fc(zc) = δ(zi − g(zc\i)); Number of iterations: T j for all j ∈ E(c), j = i; Number of samples: S
for all j ∈ E(c) do

Collect m jc(z j) ∝ exp
(
φ jc(z j)

ᵀη jc
)

for j ∈ E(c), j = i do
Estimate logmcj(z j) as in (27)

Set η(0)
j ←− η jc

for t = 1 : T j do
Calculate ∇̃N

η j
F(η j) � See Section 3.2

Set a step size ρ(t)

Update η j using (11)

Set q(z j) ∝ exp
(
φ j(z j)

ᵀη
(T j)

j

)
Set νcj(z j) ∝ exp(φ j(z j)

ᵀ(η
(T j)

j − η jc))

Set q(zi) =
{

g
(

z(s)
c\i

) ∣∣∣ for s ∈ {1, . . . , S}
}

where z(s)
c\i ∼ q(zc\i) � q(zc\i) is given in (28)

Algorithm 2 is defined for a generic case with multiple input function g . In case the number of input variables is 1, i.e., ∣∣zc\i
∣∣ = 1, the algorithm simplifies further since log mcj(z j) is available in closed form and no Monte Carlo summation is

needed to estimate it. By setting the deterministic node to an identity function, the end-user of our PPL can run CVI for
non-conjugate inference with known messages as in Section 3.2.

CVI seamlessly interfaces with deterministic message passing procedures. Consider a composite likelihood node accounts
for complex observations through a non-linear deterministic node. Running CVI on this deterministic node, the approximate
messages νcj(z j) are ready to interface with BP and EP procedures. Similarly, the approximate marginals q(z j) and q(zi) that
are estimated in Algorithm 2 allow VMP messages to be computed in neighboring factor nodes. Notice that in the last line
of Algorithm 2, we set q(zi) to a set of samples, which allows expectation quantities in VMP messages to be estimated with
Monte Carlo summation, automatically [29] (Appendix B), similarly to [44].

In Algorithm 2, we make use of the CVI algorithm to allow almost universal model specifications and inference with
non-conjugate factor pairs. For the sake of brevity, we skip the details for scalability and online variational inference related
solutions of CVI that are analogous to the SVI algorithm and implemented in our framework.
241

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 4. Visualization of the marginal posterior and free energy estimations with SVI. These results verify that our SVI implementation in ForneyLab performs
as expected in the theory.

4. Experiments

In this section, we show the effectiveness of the SVI and CVI implementations in the message passing-based PPL Forney-
Lab.jl. Our implementation is readily available.1 The experiments can be also accessed online.2

4.1. Gaussian mixture model

SVI is meant to be beneficial when working with gigantic data sets that can not be processed at once as needed in VMP.
In this experiment, however, we aim at validating that our SVI implementation in ForneyLab is functioning as expected in
theory. Therefore, we use a small data set to run VMP and use its free energy as a performance benchmark. We measure the
performance of the SVI over a Gaussian Mixture Model (GMM) [45, Chapter 20] for the Iris data set [46,47] after reducing
the dimensionality of the data samples from 4 to 2 by Principal Component Analysis [48, Chapter 12]. The Iris data set
comprises 150 data samples, equally distributed among three classes. We define the GMM by

f (y, z,μ, W , s) = f s(s)
3∏

k=1

fμ(μk) f W (Wk)

150∏
n=1

f z(zn, s) f y(yn, zn,μ, W), (29)

f s(s) = Dir(s; [50,50,50])
fμ(μk) = N (μk;02, I 2×2)

f W (Wk) = W2(Wk; I 2×2,2)

f z(zn, s) = Cat(zn; s)

f y(yn, zn,μ, W) =
3∏

k=1

N
(

yn;μk, W −1
k

)I[zn=k]
, (30)

where N , W , Dir, Cat stand for Gaussian, Wishart, Dirichlet and Categorical distributions respectively. 02 is two dimen-
sional vector of zeros and I 2×2 is two by two identity matrix. I[zn = k] is an indicator function that takes the value one if
the equality is satisfied, and zero otherwise. All the factors given above are registered in our PPL including f y(yn, zn, μ, W),
which is called GMM likelihood node. We approximate the true posterior p(z, μ, W , s|y) by a fully factorized q(z, μ, W , s):

q(z,μ, W , s) = q(s)
3∏

k=1

q(μk)q(Wk)

150∏
n=1

q(zn). (31)

For SVI, we randomly split 150 data samples into five mini-batches equal in size to process per iteration. The estimations
with stochastic VMP are visualized in Fig. 4. We use the mean estimates for q(μk) and q(Wk) to set the mean and precision

1 https://github .com /semihakbayrak /ForneyLab .jl /tree /StochasticVMP.
2 https://github .com /biaslab /StochasticVMP.
242

https://github.com/semihakbayrak/ForneyLab.jl/tree/StochasticVMP
https://github.com/biaslab/StochasticVMP

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 5. Coal mining accidents in the United Kingdom from 1851 to 1962. In 1887, new safety regulations are exerted to prevent accidents in mining sites.
We show that it is possible to achieve online BP using SVI with a step size satisfying the Robins-Monro conditions. Violating the Robins-Monro conditions
and keeping the step size fixed over iterations, we are able to track the hidden non-stationary process shown by the red curve.

parameters of the visualized clusters. The cluster assignments for data samples are shown in red, blue, and yellow colors.
To colorize the data samples on the plot, we use the maximum of q(zn). On the right-hand side of Fig. 4, we see that SVI
performs on par with VMP in terms of free energy minimization. Notice that whereas SVI employs 30 data samples per
iteration, VMP uses all 150 of them. Thus, ForneyLab can be run in SVI mode instead of VMP to carry out inference on
models require working with large data sets.

4.2. Tracking a non-stationary process

In this experiment, we demonstrate how stochastic optimization enables us to track a non-stationary process. For this
purpose, we use a coal mining accidents data set [49], visualized with black points in Fig. 5.

We model the number of accidents with a Poisson likelihood, i.e., f y(yt , zt) = Po(yt; zt) and aim at estimating the rate
zt to get the notion of policies regarding the safety regulations in mining sites. At first, we postulate that the safety policies
do not change and the rate is shared among all the likelihoods, i.e., zt = z for all t . We put a shape-rate parameterized
Gamma prior f z(z) = Ga(z; 1, 1) on z. We run BP in an online setting, processing the number of accidents one by one and
updating the prior f z(z) at each time step with the posterior estimated in the previous time step. We visualize the mean
estimations with a blue curve in Fig. 5.

Next, we investigate the behavior of stochastic approximation for variational inference. We set the distribution family of
q(z; η) to the Gamma distribution family, same with f z . Notice that f y and f z are conjugate factor pairs, thus the natural
gradient of the free energy with respect to η is available in closed form and hand-coded in our PPL through SVI. Therefore,
by running SVI in ForneyLab, we can investigate the inference with NGD over the free energy objective. In Section 3, we
discussed that the step size ρ(t) must satisfy Robins-Monro conditions for convergence. Setting it to 1/t for t = 1 : 112, we
satisfy Robins-Monro conditions and the estimations coincide with online BP.

So far, we treated the example as if zt = z for all t . However, countries change their safety regulations over time and
the assumption that zt = z does not reflect the true process well. We may consider enriching our model specification as in
[50]. However, this new model may complicate our automated inference procedure and lead to unsatisfactory estimations.
Instead of inserting the changes in zt explicitly within a new model specification, we retain our simple model as it is and
implicitly treat the problem at hand as a non-stationary process. We achieve this by violating the Robins-Monro conditions
and setting ρ(t) = ρ = 0.1 for all t . This is a widely preferred approach in bandit problems to track non-stationary hidden
rewards [51]. Keeping ρ(t) fixed over time weighs the contributions from recent observations more than earlier observations
in updating η through (11). The mean of q(z) over time is visualized by a red curve in Fig. 5. Note that the mean is around 3
until the 1890s, which steadily declines to around 1 later on. This analysis estimates a policy change just before the 1890s,
which is indeed the case: authorities in the UK exerted new safety regulations in 1887 to prevent accidents in mining
sites. Regarding the mean estimates around 3 and 1, a Gibbs sampling over a change point model gives similar estimations
[52]. This experiment supports the notion that the devised stochastic message passing algorithms enable us to go beyond
conventional inference approaches in message passing-based PPLs.

4.3. Hierarchical probabilistic modeling with a non-conjugate prior

In this experiment, we build a hierarchical probabilistic model with a non-conjugate prior to test the performance of the
CVI implementation in ForneyLab. Inspired by the famous eight school example from [53], we introduce a slightly different
243

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Table 1
Run time (sec.) and free energy comparisons for the hierarchical model and the sensor fusion experiments.

Hierarchical model Sensor fusion

Run time (sec.) Free energy Run time (sec.) Free energy

ForneyLab with CVI 10.961 209.127 6.820 94.784
Turing with ADVI 0.969 208.244 27.238 104.374

hierarchical model to analyze the effects of eight special coaching programs on the SAT score of students. In our experiment,
we assume that we work with students’ data who take the exam second time after attending a special coaching program:

f (y, x, w,α,β,μ, s) = fα(α) fβ(β) fμ(μ) f s(s)
8∏

i=1

fx(xi,μ, s) f w(wi,α,β)

Ni∏
n=1

f y(yin, xi, wi), (32)

fα(α) = Ga(α;0.1,0.1)

fβ(β) = Ga(β;0.1,0.1)

fμ(μ) = N (μ;0,10)

f s(s) = Ga(α;0.1,1)

fx(xi,μ, s) = N (xi;μ,1/s)

f w(wi,α,β) = Ga(wi;α,β)

f y(yin, xi, wi) = N (yin; xi,1/wi).

We change the original problem and model specification in [53] to introduce a non-conjugacy that stems from fα(α) in our
model specification. In this model, we aim at analyzing the effect of special coaching in general by estimating the global
variables α, β , μ and s that are shared among eight schools. We also desire to estimate the effect of the schools individually
by estimating the local variables xi and wi . Our model differs from the original model specification in that we make an
analysis over participants’ SAT scores taken before and after the special coaching. We denote the change in the SAT score of
the nth participant of the ith school with yin . We generate yin values from Normal distributions parameterized with means
and standard errors given in [53, Table 5.2].

For the inference, we make the mean-field factorization assumption in the approximate posterior:

q(x, w,α,β,μ, s) = q(α)q(β)q(μ)q(s)
8∏

i=1

q(xi)q(wi). (33)

In ForneyLab, we run VMP for 10 iterations. We tie α to an identity deterministic function g(α) = α just to execute NGD
variational inference for the non-conjugate section of the factor graph and to estimate q(α) as a member of Gamma distri-
bution family with CVI. At each VMP iteration, the natural parameters of q(α) are updated by NGD with ADAM optimizer
for 10000 iterations.

For the comparison, we use the ADVI inference engine of Turing. We observe that ADVI converges in 5000 iterations
with forward-mode automatic differentiation [54] and the default optimizer set by Turing. The run time and free energy
comparisons are given in Table 1.3 We see that Turing and ForneyLab perform almost equally well in terms of free energy,
while Turing outperforms ForneyLab in run time. Nevertheless, this experiment validates the quality in our estimates with
the CVI implementation and encourages us to test it in a state space model, where we can take full advantage of the
deterministic message passing rules of ForneyLab. The next experiment focuses on a state space model example.

4.4. Sensor fusion

In this experiment, we show how ForneyLab casts stochastic optimization for variational inference as an efficient, dis-
tributed operation. We use a variant of a sensor fusion example given in [52, Example 3]. Assume an object moves in a
two-dimensional environment where three noisy sensors are set in pre-specified locations: ξ1,2,3. At a discrete time t , each
sensor measures the Euclidean distance ||ξi − ht || between the object’s position ht and itself. Our task is to estimate the
position of the moving object over time using noisy sensory measurements.

3 Specs of the computer: Julia v1.5.3, Turing v0.18.0, 7 GHz Quad-Core Intel Core i7 CPU, 6 GB 2133 MHz RAM.
244

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
4.4.1. Smoothing with fixed model parameters
We build a state space model using Newtonian dynamics to model the transitions. At first, we use fixed transition and

measurement noise matrices in our model specification:

f (y, x, z) = f z(z1) fx(x1, z1) f y(y1, x1)

T∏
t=2

f z(zt, zt−1) fx(xt , zt) f y(yt, xt), where (34)

f z(z1) = N (z1;04, I 4×4)

f z(zt, zt−1) = N (zt; Azt−1, I 4×4)

fx(xt , zt) = δ(xt − g(zt)) with g(zt) = [||ξ1 − Bzt ||, ||ξ2 − Bzt ||, ||ξ3 − Bzt ||]ᵀ
f y(yt , xt) = N (yt; xt, I 3×3),

where zt is the vector of hidden position ht and speed values, A =
[

I2×2 I2×2
02×2 I2×2

]
and B = [

I2×2 02×2
]
. In this model,

the non-conjugacy stems from the deterministic function g(zt). We circumvent the non-conjugacy issue by incorporating
the CVI algorithm to our message passing procedure through the factors fx . At a given time step t , we run CVI algorithm
around fx for 100 iterations with a descent optimizer with learning rate 0.1 to find a message towards the equality node
that connects zt to fx(xt , zt) (see Fig. 6 for the visualization of a closely related model). The approximate message combines
with BP messages at the equality node to construct the forward and backward messages towards f z factors. Therefore, in
ForneyLab, the number of parameters to be estimated by stochastic approximation scales linearly with T and the rest of the
computation is carried out with deterministic BP messages.

We generate synthetic data with T = 15 and compare ForneyLab’s performance with ADVI of Turing. We define a fully
structured Gaussian approximate posterior q(z) to be estimated with ADVI as it is in ForneyLab. Whereas ForneyLab es-
timates the structured approximate distribution with distributed operations through message passing, ADVI estimates the
parameters of q(z) solely with stochastic optimization. Therefore the number of parameters to be estimated by stochastic
approximation scales quadratically with T in ADVI due to the Cholesky factor of the covariance matrix in q(z). We use
reverse-mode [55] automatic differentiation background in Turing to speed up the inference. ADVI converges in 6000 iter-
ations with a default optimizer set by Turing. The run time and the free energy comparisons are given in Table 1. We see
that equipped with CVI, ForneyLab attains a slightly lower free energy in a shorter time compared to Turing’s ADVI. This
experiment demonstrates the efficiency of our CVI implementation in ForneyLab.

4.4.2. Bayesian parameter and state estimation with structured variational message passing
In the previous experiment, we worked with fixed noise parameters in transition and measurement components. Let us

relax this assumption and estimate these parameters as well. The model specification in (34) slightly changes as

f (y, x, z, W , S) = f W (W) f S(S) f z(z1) fx(x1, z1) f y(y1, x1, S)

T∏
t=2

f z(zt, zt−1, W) fx(xt , zt) f y(yt , xt, S), where (35)

f z(z1) = N (z1;04, I 4×4)

f W (W) = W4(W ; I 4×4,4)

f S(S) = W3(S; I 3×3,3)

f z(zt, zt−1, W) = N (zt; Azt−1, W −1)

fx(xt, zt) = δ(xt − g(zt)) with g(zt) = [||ξ1 − Bzt ||, ||ξ2 − Bzt ||, ||ξ3 − Bzt ||]ᵀ
f y(yt , xt, S) = N (yt; xt, S−1),

where Wd(V , n) is a Wishart distribution with d × d positive definite matrix V and n degrees of freedom. We generate
a synthetic data with T = 30 and approximate the exact posterior p(z, W , S|y) with a structured mean-field assumption:
q(z, W , S) = q(z)q(W)q(S), where q(z) is not factorized over z. The factor graph and the message passing procedure for
one time slice is depicted in Fig. 6.

Notice that we resort to NGD stochastic approximation only around the factor fx to compute a message visualized with a
red arrow and parameterized with a Normal distribution. At a time step t , CVI computes the approximate message in 1000
NGD iterations with a step size of 0.1. The rest of the computations are carried out with deterministic distributed operations.
We run 30 VMP iterations, which minimizes the free energy as in Fig. 7. For qualitative analysis, we also visualize the final
position estimations with 1000 samples drawn from q(z).
245

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 6. A sub-graph of the model defined in (35). In order to provide the reader with the intuition of the message passing procedures in ForneyLab,
we visualize the messages as well. The arrow shapes indicate the probability distribution families that messages are carrying. The messages are colored
according to the algorithm types that generate them with an additional black color indicating approximate marginal distributions to be employed in
VMP. ForneyLab resorts to stochastic optimization only around the factor fx and carries out the rest of the computations by deterministic distributed
message passing operations. Notice that CVI sends a Gaussian message, visualized with the red arrow, towards the equality node that is incorporated in
the calculation of the forward and backward messages with BP. We also allow VMP to be executed around the node f y by setting q(xt) to a set of samples
over which the expectation quantities are estimated for VMP.

Fig. 7. On the left is the free energy over VMP iterations for the model defined in (35). On the right is the 2-d environment the object moves in. The red
curve shows the true trajectory of the movement with the star being the initial point. Black squares are the sensors measuring the Euclidean distances
with some perturbations. Once the inference is complete, we draw 1000 samples from q(z) and visualize the corresponding position estimates with cyan
curves.

This experiment provides the reader with the intuition behind our CVI implementation in ForneyLab. CVI around a
deterministic node renders NGD locally to circumvent intractable operations due to non-conjugacies and approximates the
problematic messages with approximate messages amenable to analytical calculations.

4.5. Regression with a Bayesian neural network

Many PPLs support integration with deep learning libraries to allow complex probabilistic model specifications with
neural networks, e.g., Pyro [6] and TensorFlow Probability [7] respectively interface with PyTorch [56] and Tensorflow [57];
Turing [4] supports model specifications with Flux.jl [58]. Inspired by Turing, here we show how to use ForneyLab’s CVI to
make inference in a Bayesian Neural Network (BNN) built [59] with Flux deep learning package.

For this experiment, we generated 40 data samples with input xn and output yn values from a sinusoidal function. We
run inference for the following model specification:
246

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Fig. 8. A simple example proves that equipped with CVI, ForneyLab is compatible with Julia language’s deep learning package Flux. We use Flux to build
a neural network architecture and insert it into an FFG through a deterministic node. In these plots, observations are red points. The blue curves are the
outputs of neural networks parameterized with weights sampled from q(w) after the inference with CVI on the left and EVMP on the right. The scale of
y-axes differs as well as the estimations.

f (y, x, s, w) = f w(w)

40∏
n=1

δ(sn − g(w, xn))︸ ︷︷ ︸
Deterministic node

f y(yn, sn), where (36)

f w(w) = N (w;022, I 22×22)

f y(yn, sn) = N (yn; sn,0.1).

In the above model specification, g(w, xn) is a three-layered neural network comprised of 22 weights with a prior f w(w),
where 022 is 22 dimensional vector of zeros and I 22×22 is an identity matrix. Exogenous inputs to the neural network are
xn values. We run CVI to approximate p(w|y, x) with a Gaussian q(w). We use a descent optimizer with a step size 0.01
and run 10000 iterations over the entire data set.

After the inference is completed, we generate 100 neural networks parameterized with weights sampled from q(w) and
run each neural network with xn in the range (−5, 5). The results are visualized in Fig. 8a. We see that the neural network
captures the sinusoidal shape confidently for the interpolation task in the range (−2, 2). Outside of this range, we obtain
flattened extrapolation with higher uncertainty. This simple experiment demonstrates how ForneyLab with CVI seamlessly
interfaces with a deep learning package.

In Section 5, we shall discuss an alternative automatic message passing approach called Extended Variational Message
Passing (EVMP) that is also implemented in ForneyLab [29]. Here, by running EVMP on this BNN model, we show how CVI
extends the inference capabilities of ForneyLab. The EVMP inference engine automatically runs a gradient-based optimization
method for the Laplace approximation [48, Chapter 4.4] in this BNN model. However, EVMP initializes the optimization with
the mean of the prior, which is a vector of zeros in this example, and a stationary point that the mode-seeking gradient-
based optimizer gets stuck at. To avoid this stationary point, we slightly change the prior by randomly drawing the samples
of the mean parameter from N (0, 0.1) and then run EVMP. The results are visualized in Fig. 8b. Although the sinusoidal
shape is captured, the variance is overestimated in the EVMP case. This is due to that the automated Laplace procedure
in EVMP is a mode-seeking approach, and the covariance estimation is realized by local curvature evaluation. In contrast,
covariance parameters are actively adjusted by the NGD optimization procedure of CVI.

5. Discussion and implementation details

SVI and CVI greatly extend the inference capabilities of our message passing-based PPL, equipping it with some favor-
able features over the existing non-message passing-based PPLs. For instance, many of the non-message passing-based PPLs
achieve scalable variational inference by adhering to doubly stochastic variational inference [8], in which the stochasticity is
due to both mini-batch selection process from the data set and sampling from the candidate approximate posterior distri-
bution. This process is same both in conjugate and non-conjugate models for non-message passing-based PPLs. In contrast,
running SVI in a message passing-based PPL for conjugate model specifications obviates the need for sampling from the can-
didate approximate posterior distribution and reduces the source of stochasticity to the mini-batch selection process only.
Reducing the dependency on sampling processes often results in faster and more stable convergence behaviors. Further-
more, as opposed to non-message passing-based PPLs, SVI enables message passing-based PPLs to employ natural gradients
that are available in closed form for conjugate factor pairs. Similar to SVI, CVI is also an efficient inference procedure that
involves analytical calculations in gradient estimations. We show that message passing frameworks provide convenient tools
to take full advantage of CVI algorithm: pre-defined message passing rules carry out the analytical calculations in CVI and
247

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
reduce the number of variables that are to be sampled. For example, the term η jb , appears in the natural gradient (15),
relates to the natural parameters of the message m jb(z j) from a factor V(j) \ b and allows to calculate the contribution
of V(j) \ b to the natural gradient without sampling. Similarly, the estimation of log mbj(z j) ∝ Eq(zb\ j)[log fb(zb)] in (26)
involves some analytical calculations that are automatically addressed by the pre-defined message mdi (zi).

Non-conjugate models make use of natural gradient terms ∇N
η j
Eq(z j;η j)[logmbj(z j)] that are not available in closed form.

The original CVI article [22] proposes an efficient estimation approach that does not necessitate the explicit evaluation of
Fisher information matrix for Gaussian approximate distributions and recommends reparameterization trick [12,13,8] for the
other distributions. We adhere to their efficient approach for the Gaussian case, but use the REINFORCE estimator (22) for
the other distributions, instead. This is mainly because REINFORCE is an easy-to-implement, global estimator for the free
energy gradient. However, it is often considered a high variance estimator requiring additional variance reduction techniques
to be used in practice. [9] shows that Rao-Blackwellization [10] and control variates [11] considerably reduce the variance
in free energy gradient estimations. Fortunately, message passing frameworks inherently support Rao-Blackwellization and
closed-form solutions (Appendix B). Nevertheless, it is still valuable to get the gradient estimations over reparameterization
of random variables to further reduce the variance in estimations. The reparameterization trick is generalized beyond Gaus-
sian distributions in recent works by [60–62]. The most recently introduced approach is the implicit reparameterization trick
[62], which reparameterizes variables using Cumulative Distribution Functions (CDFs). We plan to implement this feature in
a future release of ForneyLab.

Stochastic optimization methods, in general, require hyperparameters such as step size to be set carefully for fast and
stable convergence. The current ForneyLab implementation allows step sizes to be set by optimizer objects defined in Julia
language’s deep learning package Flux [58]. We also implemented the optimizer proposed in [21, Equation 26] satisfying
Robins-Monro conditions. Additionally, we provide an implementation for [63], which adjusts step sizes adaptively using
already calculated natural gradients. Another hyperparameter required in CVI is the number of iterations per message ap-
proximation. To free our PPL’s end-user from specifying the number of iterations, we provide her with two options that
automatically determine when to stop doing iterations: one based on tracking the relative change of the variational objec-
tive; the other based on viewing the optimization algorithm as producing a Markov chain and using Markov Chain Monte
Carlo diagnostic tools to determine the stopping criterion [64]. The former method runs faster but can prematurely end the
optimization algorithm in some cases, whereas the latter method is more robust but has a significantly higher computational
load as it runs several optimization chains in parallel for each iteration.

We present the stochastic approximation for variational inference as if it is an unconstrained optimization task. How-
ever, the domain of the probability distribution functions is often constrained, e.g., shape and rate parameters of a Gamma
distribution are constrained to be in the positive real axis. Unfortunately, NGD steps given in (11) are susceptible to viola-
tions of constraints. In our ForneyLab implementation, we avoid domain violations in Gaussian and Gamma distributions by
discarding the samples that causes violations. In the future, we plan to integrate the recent researches along this line [65]
to our message passing-based PPL.

ForneyLab possesses an alternative automated inference engine for universal approximate inference called Extended Vari-
ational Message Passing (EVMP) [29]. At the core of EVMP is the idea that FFGs partition the high dimensional manifolds,
and message passing algorithms arise as distributed inference operations defined on smaller dimensions. In EVMP, impor-
tance sampling [48, Chapter 11.1.4] locally interfaces with message passing to allow inference in non-conjugate sub-graphs.
This approach works well for many model specifications, it is fast and it requires almost no hyperparameters as one of the
messages on the edge constitutes the proposal distribution for importance sampling. However, the quality of estimations in
EVMP strictly depends on the model specification. In comparison to EVMP, the inference with CVI is more detached from
the model specification thanks to the NGD optimization procedure. However, the CVI algorithm is more hyperparameter
dependent than the EVMP algorithm. Another disadvantage of importance sampling is that it is notorious for being ineffi-
cient in high dimensions [66], and there might be cases that the partitioned manifolds are still high-dimensional. To support
inference in high dimensions, EVMP incorporates the Laplace approximation into message passing with automatic differenti-
ation. The Laplace approximation first finds the mode and then estimates the covariance matrices of approximating Gaussian
distributions with local curvature information. In contrast, CVI implicitly tunes the covariance matrix over the course of the
optimization procedure in Gaussian case. The difference between these two approaches is sketched in Section 4.5. Moreover,
SVI and CVI address scalability issues that EVMP does not deal with.

6. Conclusions

This paper demonstrates how to cast stochastic optimization methods for variational inference as distributed, local op-
erations on FFGs for probabilistic programming. Choosing NGD as the optimizer of the free energy, the resulting method
automates the well-recognized SVI and CVI algorithms in a message passing-based PPL. In SVI, the natural gradients of
the free energy objective are analytically acquired from pre-defined messages in the message passing-based PPL. In CVI,
the natural gradients are partially available in the messages in closed form, and the components that are not amenable to
closed-form calculation can be locally estimated by automatic differentiation tools and Monte Carlo summation. Both SVI
and CVI operate at node level and seamlessly interface with the message passing procedures. The efficiency of SVI and CVI
within a message passing-based PPL has been validated by a number of experiments.
248

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

This research was financially supported by GN Hearing and a PPS grant from the Dutch Ministry of Economic Affairs.

Appendix A. Stationary points of the free energy

Consider the free energy objective given in (4). This objective is a functional of q(zb). We first find the stationary q(z j)

for this functional. Let us rewrite it here:

F[q(z j)] = Eq(z j)[log q(z j)] −Eq(z j)[log m jb(z j)] −Eq(z j)

[
Eq(zb\ j)[log fb(zb)]

] + c,

where c stands for the terms independent of z j . It can be equivalently written as

F[q(z j)] =DKL

[
q(z j)

∣∣∣∣∣
∣∣∣∣∣ m jb(z j)exp(Eq(zb\ j)[log fb(zb)])∫

m jb(z j)exp(Eq(zb\ j)[log fb(zb)])dz j

]

− log
∫

m jb(z j)exp(Eq(zb\ j)[log fb(zb)])dz j + c,

which is a KL divergence summed with a constant. Setting q(z j) equal to the right hand side of the KL divergence minimizes
the free energy w.r.t. q(z j).

Now, consider the other interpretation of the variational objective that casts the free energy as a function of η j as in
(13) given that q(z j; η j) = h j(z j) exp(φ j(z j)

ᵀη j − A j(η j)) with a constant h j(z j). Functional form of the message m jb(z j) is
given in (14). Then the gradient of the free energy w.r.t. η j is

∇η jF(η j) = ∇η j

(
Eq(z j;η)[log q(z j;η j)] −Eq(z j;η j)

[
logm jb(z j)

] −Eq(z j;η j)

[
log mbj(z j)

])
= ∇η j

(
Eq(z j;η j)[φ j(z j)]ᵀ(η j − η jb) − A j(η j) −Eq(z j;η j)

[
logmbj(z j)

])
= ∇η jEq(z j;η j)[φ j(z j)]ᵀ(η j − η jb) +Eq(z j;η j)[φ j(z j)] − ∇η j A j(η j) − ∇η jEq(z j;η j)[log mbj(z j)]
= ∇2

η j
A j(η j)

[
η j − η jb

] − ∇η jEq(z j;η j)[log mbj(z j)].
The last line above follows from ∇η j A(η j) =Eq(z j;η j)[φ j(z j)] [34]. We denote the Hessian of the log-normalizer, ∇2

η j
A j(η j)

with G(η j), which is the Fisher information matrix of q(z j; η j). Following [21], we write the natural gradient of the free
energy as

∇N
η j
F(η j) = G−1(η j)∇η jF(η j) = η j −

(
η jb + G−1(η j)∇η jEq(z j;η j)[log mbj(z j)]

)
.

Appendix B. VMP on composite nodes and Rao-Blackwellization

Consider the composite node fb(zb) =
∫

δ(zi − g(zc\i))︸ ︷︷ ︸
fc(zc)

· fd(zd) dzi visualized in Fig. 3. Given that q(zb\ j) = q(zc\{ j,i})q(zd\i)

and fd is a function amenable to be arranged as fd(zd) ∝ exp
(
φdi(zi)

ᵀλdi(zd\i)
)
, log of the VMP message mbj(z j) evaluates

to

log mbj(z j) ∝Eq(zb\ j)[log fb(zb)]

= Eq(zb\ j)

[
log

∫
δ(zi − g(zc\i)) fd(zd)dzi

]

∝Eq(zb\ j)

[
log

∫
δ(zi − g(zc\i))exp

(
φdi(zi)

ᵀλdi(zd\i)
)

dzi

]
= Eq(zb\ j)

[
φdi(g(zc\i))

ᵀλdi(zd\i)
]
. (B.1)

A trivial approach to estimate the above expectation is to use Monte Carlo summation by drawing samples from q(zb\ j).
However, we aim to reduce the variance in our estimates by avoiding sampling and sticking to analytical solutions as much
249

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
as possible. This strategy relates to Rao-Blackwellization [10] and VMP rules defined in ForneyLab help us to carry out
variance reduction in an automated way:

log mbj(z j) ∝Eq(zc\{ j,i})
[
Eq(zd\i |zc\{ j,i})

[
φdi(g(zc\i))

ᵀλdi(zd\i)
]]

= Eq(zc\{ j,i})
[
Eq(zd\i)

[
φdi(g(zc\i))

ᵀλdi(zd\i)
]]

= Eq(zc\{ j,i})
[
φdi(g(zc\i))

ᵀEq(zd\i)

[
λdi(zd\i)

]]
∝Eq(zc\{ j,i})[log mdi(g(zc\i))], (B.2)

where mdi(·) is the VMP message defined from fd to zi . The second line above follows from q(zb\ j) = q(zc\{ j,i})q(zd\i).
The number of variables to be sampled for the estimation of log mbj(z j) in (B.2) is less than (B.1). The message passing
framework of ForneyLab equips us with the tools to carry out analytical calculations automatically. This feature is missing in
many other PPLs.

For VMP procedure to progress flawlessly, the VMP messages towards zd\i need to be evaluated, as well. Keeping q(zd\i)

structured and arranging zd terms inside fd(zd) as fd(zd) ∝ exp
(
φE(d)\i(zd\i)

ᵀλE(d)\i(zi)
)
, we get the following VMP message

mE(d)\i(zd\i) ∝ exp(Eq(zi)[log fd(zd)])
= exp

(
φE(d)\i(zd\i)

ᵀEq(zi)[λE(d)\i(zi)]
)
, (B.3)

which is a function of the expectation quantity Eq(zi)[λE(d)\i(zi)] with a fixed functional form. In our message passing-based
PPL, message passing rules are locally defined on a factor as functions of expectation quantities related to arguments of the
factor that is zi for the message mE(d)\i(zd\i).

Let us evaluate the same message over the composite factor node fb(zb):

mE(d)\i(zd\i) ∝ exp(Eq(zc\i)[log fb(zb)])
= exp

(
Eq(zc\i)

[
log

∫
δ(zi − g(zc\i)) fd(zd)dzi

])
∝ exp

(
φE(d)\i(zd\i)

ᵀEq(zc\i)

[
λE(d)\i(g(zc\i))

])
. (B.4)

Having estimated q(zc\i) with CVI, the VMP message can be approximated by estimating the expectation
Eq(zc\i)

[
λE(d)\i(g(zc\i))

]
with

Eq(zc\i)

[
λE(d)\i(g(zc\i))

] ≈ 1

S

S∑
s=1

λE(d)\i

(
g
(

z(s)
c\i

))
, where z(s)

c\i ∼ q(zc\i).

This is equivalent to setting q(zi) to a set of samples

q(zi) =
{

z(s)
i = g

(
z(s)

c\i

) ∣∣∣for s ∈ {1, . . . , S}
}

,

where the expectations are calculated as

Eq(zi)[λE(d)\i(zi)] = 1

S

S∑
s=1

z(s)
i ,

and employed in the pre-defined local VMP message function given in (B.3) to approximate the VMP message mE(d)\i(zd\i).

References

[1] J.W. van de Meent, B. Paige, H. Yang, F. Wood, An introduction to probabilistic programming, arXiv:1809 .10756 [cs , stat], 2018.
[2] S. Mohamed, M. Rosca, M. Figurnov, A. Mnih, Monte Carlo gradient estimation in machine learning, arXiv:1906 .10652 [cs , math , stat], 2019.
[3] C. Zhang, J. Butepage, H. Kjellstrom, S. Mandt, Advances in variational inference, arXiv:1711.05597 [cs , stat], 2018.
[4] H. Ge, K. Xu, Z. Ghahramani, Turing: a language for flexible probabilistic inference, in: International Conference on Artificial Intelligence and Statistics,

PMLR, 2018, pp. 1682–1690.
[5] B. Carpenter, A. Gelman, M.D. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. Brubaker, J. Guo, P. Li, A. Riddell, Stan: a probabilistic programming

language, J. Stat. Softw. 76 (1) (2017).
[6] E. Bingham, J.P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos, R. Singh, P. Szerlip, P. Horsfall, N.D. Goodman, Pyro: deep universal

probabilistic programming, J. Mach. Learn. Res. 20 (28) (2019) 1–6.
[7] J.V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi, M. Hoffman, R.A. Saurous, TensorFlow distributions, arXiv:

1711.10604 [cs , stat], 2017.
[8] M. Titsias, M. Lázaro-Gredilla, Doubly stochastic variational Bayes for non-conjugate inference, in: International Conference on Machine Learning, 2014,

pp. 1971–1979.
[9] R. Ranganath, S. Gerrish, D. Blei, Black box variational inference, in: Artificial Intelligence and Statistics, PMLR, 2014, pp. 814–822.
250

http://refhub.elsevier.com/S0888-613X(22)00095-0/bib8A98D2548F979A8B0796CF4C5D646EA1s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib2F35B2DE28A0653FE4BE062ECA29CF76s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib9E76793375F57F1B69D1D02DE7DA3C7As1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7110DFDA6DDB869817473E08CE2FD8CEs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7110DFDA6DDB869817473E08CE2FD8CEs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibEC9D966DD34DF62D95AB79DFFE977D03s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibEC9D966DD34DF62D95AB79DFFE977D03s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibB30E66F0D82A85A9D2A26238E7F6C191s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibB30E66F0D82A85A9D2A26238E7F6C191s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib224387F6A11A9501040512A9DA62768Fs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib224387F6A11A9501040512A9DA62768Fs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7F5F8DF44A139367E0C71536704F6F60s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7F5F8DF44A139367E0C71536704F6F60s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibA3D15C444B602A4DC295C6E04B7DA9E5s1

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
[10] G. Casella, C.P. Robert, Rao-blackwellisation of sampling schemes, Biometrika 83 (1) (1996) 81–94, publisher: [Oxford University Press, Biometrika
Trust] https://www.jstor.org /stable /2337434.

[11] A.B. Owen, Monte Carlo Theory, Methods and Examples, 2013.
[12] D.P. Kingma, M. Welling, Auto-encoding variational Bayes, arXiv:1312 .6114 [cs , stat], 2014.
[13] D.J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, in: Proceedings of the 31st

International Conference on International Conference on Machine Learning - Volume 32, ICML’14, JMLR.org, Beijing, China, 2014, pp. II–1278–II–1286.
[14] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, D.M. Blei, Automatic differentiation variational inference, J. Mach. Learn. Res. 18 (1) (2017) 430–474,

publisher: JMLR.org.
[15] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, 1988.
[16] D.J. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003.
[17] T.P. Minka, Expectation propagation for approximate Bayesian inference, in: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,

2001, pp. 362–369.
[18] A. Vehtari, A. Gelman, T. Sivula, P. Jylänki, D. Tran, S. Sahai, P. Blomstedt, J.P. Cunningham, D. Schiminovich, C.P. Robert, Expectation propagation as a

way of life: a framework for Bayesian inference on partitioned data, J. Mach. Learn. Res. 21 (17) (2020) 1–53.
[19] J. Winn, C.M. Bishop, Variational message passing, J. Mach. Learn. Res. 6 (Apr) (2005) 661–694.
[20] J. Dauwels, On variational message passing on factor graphs, in: IEEE International Symposium on Information Theory, 2007, pp. 2546–2550.
[21] M. Hoffman, D.M. Blei, C. Wang, J. Paisley, Stochastic variational inference, J. Mach. Learn. Res. 14 (1) (2013) 1303–1347, publisher: JMLR.org.
[22] M. Khan, W. Lin, Conjugate-computation variational inference: converting variational inference in non-conjugate models to inferences in conjugate

models, in: Artificial Intelligence and Statistics, PMLR, 2017, pp. 878–887.
[23] S. Amari, Natural gradient works efficiently in learning, Neural Comput. 10 (2) (1998) 251–276.
[24] S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016.
[25] T. Minka, J. Winn, J. Guiver, Y. Zaykov, D. Fabian, J. Bronskill, /Infer.NET 0.3, http://dotnet .github .io /infer, 2018.
[26] J. Bezanson, S. Karpinski, V.B. Shah, A. Edelman, Julia: a fast dynamic language for technical computing, arXiv preprint, arXiv:1209 .5145, 2012.
[27] D. Bagaev, B. de Vries, Reactive message passing for scalable Bayesian inference, Tech. Rep. arXiv:2112 .13251 [cs] type: article (Dec. 2021).
[28] M. Cox, T. van de Laar, B. de Vries, A factor graph approach to automated design of Bayesian signal processing algorithms, Int. J. Approx. Reason. 104

(2019) 185–204.
[29] S. Akbayrak, I. Bocharov, B. de Vries, Extended variational message passing for automated approximate Bayesian inference, Entropy 23 (7) (2021) 815,

https://doi .org /10 .3390 /e23070815, https://www.mdpi .com /1099 -4300 /23 /7 /815.
[30] G. Forney, Codes on graphs: normal realizations, IEEE Trans. Inf. Theory 47 (2) (2001) 520–548, https://doi .org /10 .1109 /18 .910573, conference Name:

IEEE Transactions on Information Theory.
[31] H.A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, F.R. Kschischang, The factor graph approach to model-based signal processing, Proc. IEEE 95 (6) (2007)

1295–1322, publisher: IEEE.
[32] İ. Şenöz, T. van de Laar, D. Bagaev, B. de Vries, Variational message passing and local constraint manipulation in factor graphs, Entropy 23 (2021) 807,

https://doi .org /10 .3390 /e23070807, number: 7 Publisher: Multidisciplinary Digital Publishing Institute https://www.mdpi .com /1099 -4300 /23 /7 /807.
[33] M.J. Beal, Variational algorithms for approximate Bayesian inference, PhD Thesis, UCL (University College London), 2003.
[34] M.J. Wainwright, M.I. Jordan, Graphical models, exponential families, and variational inference, Found. Trends Mach. Learn. 1 (1–2) (2008) 1–305.
[35] U. Paquet, N. Koenigstein, One-class collaborative filtering with random graphs, in: Proceedings of the 22nd International Conference on World Wide

Web - WWW’13, ACM Press, Rio de Janeiro, Brazil, 2013, pp. 999–1008.
[36] A.R. Masegosa, A.M. Martínez, H. Langseth, T.D. Nielsen, A. Salmerón, D. Ramos-López, A.L. Madsen, d-VMP: distributed variational message passing, in:

Proceedings of the Eighth International Conference on Probabilistic Graphical Models, PMLR, 2016, pp. 321–332, ISSN: 1938-7228, https://proceedings .
mlr.press /v52 /masegosa16 .html.

[37] M.E. Khan, H. Rue, The Bayesian learning rule, arXiv:2107.04562 [cs , stat], 2021.
[38] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat. 22 (3) (1951) 400–407, publisher: Institute of Mathematical Statistics,

https://www.jstor.org /stable /2236626.
[39] U. Paquet, On the convergence of stochastic variational inference in Bayesian networks, in: NIPS Workshop on Variational Inference, 2014, arXiv:

1507.04505, http://arxiv.org /abs /1507.04505.
[40] D.A. Knowles, T. Minka, Non-conjugate variational message passing for multinomial and binary regression, in: Advances in Neural Information Process-

ing Systems, 2011, pp. 1701–1709.
[41] M. Cox, B. De Vries, Robust expectation propagation in factor graphs involving both continuous and binary variables, in: 2018 26th European Signal

Processing Conference (EUSIPCO), IEEE, Rome, 2018, pp. 2583–2587, https://ieeexplore .ieee .org /document /8553490/.
[42] M. Opper, C. Archambeau, The variational Gaussian approximation revisited, Neural Comput. 21 (3) (2009) 786–792, https://doi .org /10 .1162 /neco .2008 .

08 -07 -592, https://direct .mit .edu /neco /article /21 /3 /786 -792 /7385.
[43] A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey, J. Mach. Learn. Res. 18 (1) (2017)

5595–5637, publisher: JMLR.org.
[44] L. Ye, A. Beskos, M. De Iorio, J. Hao, Monte Carlo co-ordinate ascent variational inference, Stat. Comput. (2020) 1–19, Publisher: Springer.
[45] D. Barber, Bayesian Reasoning and Machine Learning, Cambridge University Press, 2012.
[46] R.A. Fisher, The use of multiple measurements in taxonomic problems, Annu. Eugen. 7 (2) (1936) 179–188, https://doi .org /10 .1111 /j .1469 -1809 .1936 .

tb02137.x, _eprint: https://onlinelibrary.wiley.com /doi /pdf /10 .1111 /j .1469 -1809 .1936 .tb02137.x.
[47] E. Anderson, The species problem in Iris, Ann. Mo. Bot. Gard. 23 (3) (1936) 457–509, https://doi .org /10 .2307 /2394164, publisher: Missouri Botanical

Garden Press, https://www.jstor.org /stable /2394164.
[48] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.
[49] B.P. Carlin, A.E. Gelfand, A.F.M. Smith, Hierarchical Bayesian analysis of changepoint problems, J. R. Stat. Soc., Ser. C, Appl. Stat. 41 (2) (1992) 389–405,

https://doi .org /10 .2307 /2347570, publisher: [Wiley, Royal Statistical Society], https://www.jstor.org /stable /2347570.
[50] R.P. Adams, D.J.C. MacKay, Bayesian online changepoint detection, arXiv:0710 .3742, 2007.
[51] R.S. Sutton, A.G. Barto, Reinforcement Learning, second edition, An Introduction, MIT Press, 2018, google-Books-ID: uWV0DwAAQBAJ.
[52] A.T. Cemgil, A Tutorial Introduction to Monte Carlo Methods, Markov Chain Monte Carlo and Particle Filtering, Academic Press Library in Signal

Processing, vol. 1, Elsevier, 2014, pp. 1065–1114, https://linkinghub .elsevier.com /retrieve /pii /B978012396502800019X.
[53] A. Gelman, J.B. Carlin, H.S. Stern, D.B. Dunson, A. Vehtari, D.B. Rubin, Bayesian Data Analysis, CRC Press, 2013.
[54] J. Revels, M. Lubin, T. Papamarkou, Forward-mode automatic differentiation in Julia, arXiv:1607.07892 [cs .MS], 2016.
[55] J. Revels, ReverseDiff.jl, https://github .com /JuliaDiff /ReverseDiff .jl, 2017.
[56] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: an imperative style, high-performance deep learning library,
arXiv:1912 .01703 [cs , stat], 2019.
251

https://www.jstor.org/stable/2337434
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibBF482771B2C5169DC9764CA73AC8716Bs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibD6FCD8B3786C570B9FDD699C2016BDC1s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib04649B4A717EE926B8B91CC61272BBFAs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib04649B4A717EE926B8B91CC61272BBFAs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibD01F806EF7D4E83400799169482077F5s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibD01F806EF7D4E83400799169482077F5s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib80148B85E7366AA672E681639A10AB7Fs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibF61EFD476324340DDD27460B5FFD3D1Cs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibD9AC5BB490AB7B9EC19D9A2FF5311202s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibD9AC5BB490AB7B9EC19D9A2FF5311202s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib00339D00B39C80DAA8E85E3460065BB5s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib00339D00B39C80DAA8E85E3460065BB5s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibEDACDBD45D03FADA45F66196BD8C8D92s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibF2C74DDEC6D5B0446F051BCC22B63122s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib9B9EFF47994FD7E3F38B1A7FB81ED7E8s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibBA8593551B108C7B5FEB92E7D80A4480s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibBA8593551B108C7B5FEB92E7D80A4480s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib359C41CD3C057AD4FC3A70C0D4036208s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib820E1945F4B7B2F066BFD9E0494B6F41s1
http://dotnet.github.io/infer
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib44BA602C77928B6A6972824BE61B4FA7s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibCB1124803B8501FBC267047A959DB4E3s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibF95F18806C805E9800769A982BCBF832s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibF95F18806C805E9800769A982BCBF832s1
https://doi.org/10.3390/e23070815
https://www.mdpi.com/1099-4300/23/7/815
https://doi.org/10.1109/18.910573
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib1A6855DB05C867C8C716C923A93EE1F3s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib1A6855DB05C867C8C716C923A93EE1F3s1
https://doi.org/10.3390/e23070807
https://www.mdpi.com/1099-4300/23/7/807
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7E71BFEB766D9BE6D25D90891A2EC1BAs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib85C4D40EAD77994F03CFB953DECE8F40s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibC763F6B942C710A9C12B94E5C3B64C89s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibC763F6B942C710A9C12B94E5C3B64C89s1
https://proceedings.mlr.press/v52/masegosa16.html
https://proceedings.mlr.press/v52/masegosa16.html
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib50E8E066264EF6F4412F4C209301C1E2s1
https://www.jstor.org/stable/2236626
http://arxiv.org/abs/1507.04505
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibF5E650923032F8AA4C72A17B3C3C2FF6s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibF5E650923032F8AA4C72A17B3C3C2FF6s1
https://ieeexplore.ieee.org/document/8553490/
https://doi.org/10.1162/neco.2008.08-07-592
https://doi.org/10.1162/neco.2008.08-07-592
https://direct.mit.edu/neco/article/21/3/786-792/7385
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7BB86CDCD25FB13BF0A683EF3BA0EC9Bs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib7BB86CDCD25FB13BF0A683EF3BA0EC9Bs1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibFCA1E0714D6BAF9FAB01F1B2ADBDFDB5s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibD04D4BA16980BB9F760E69A3D941C5AEs1
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-1809.1936.tb02137.x
https://doi.org/10.2307/2394164
https://www.jstor.org/stable/2394164
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibA1772F3A811EE84FA3DBA017172CB8C9s1
https://doi.org/10.2307/2347570
https://www.jstor.org/stable/2347570
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib5EA56D74733646AB40AA7716E2735589s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibE4EA1D1715D9BB6ED4C1D8FE8504B2FEs1
https://linkinghub.elsevier.com/retrieve/pii/B978012396502800019X
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib6824E74293E673DFD3D897DEBAC1BD36s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bibFDB79CAA43A4464967838FC7069A0C76s1
https://github.com/JuliaDiff/ReverseDiff.jl
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib06637117DF80D6D94D391258B7B7CD47s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib06637117DF80D6D94D391258B7B7CD47s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib06637117DF80D6D94D391258B7B7CD47s1

S. Akbayrak, İ. Şenöz, A. Sarı et al. International Journal of Approximate Reasoning 148 (2022) 235–252
[57] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I.
Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2015, 19.

[58] M. Innes, E. Saba, K. Fischer, D. Gandhi, M.C. Rudilosso, N.M. Joy, T. Karmali, A. Pal, V. Shah, Fashionable modelling with flux, arXiv:1811.01457 [cs],
2018.

[59] L.V. Jospin, W. Buntine, F. Boussaid, H. Laga, M. Bennamoun, Hands-on Bayesian neural networks – a tutorial for deep learning users, arXiv:2007.06823
[cs , stat], 2021.

[60] F.R. Ruiz, M. Titsias, D. Blei, The generalized reparameterization gradient, in: Advances in Neural Information Processing Systems, 2016.
[61] M. Jankowiak, F. Obermeyer, Pathwise derivatives beyond the reparameterization trick, in: Proceedings of the 35th International Conference on Machine

Learning, PMLR, ISSN 2640-3498, 2018, pp. 2235–2244, https://proceedings .mlr.press /v80 /jankowiak18a .html.
[62] M. Figurnov, S. Mohamed, A. Mnih, Implicit reparameterization gradients, in: Advances in Neural Information Processing Systems, 2018, https://

proceedings .neurips .cc /paper /2018 /hash /92c8c96e4c37100777c7190b76d28233 -Abstract .html.
[63] R. Ranganath, C. Wang, B. David, E. Xing, An adaptive learning rate for stochastic variational inference, in: Proceedings of the 30th International

Conference on Machine Learning, PMLR, 2013, pp. 298–306, ISSN: 1938-7228, https://proceedings .mlr.press /v28 /ranganath13 .html.
[64] A.K. Dhaka, A. Catalina, M.R. Andersen, M. Magnusson, J.H. Huggins, A. Vehtari, Robust, accurate stochastic optimization for variational inference, in:

Advances in Neural Information Processing Systems, 2020.
[65] W. Lin, M. Schmidt, M.E. Khan, Handling the positive-definite constraint in the Bayesian learning rule, in: Proceedings of the 37th International

Conference on Machine Learning, PMLR, ISSN 2640-3498, 2020, pp. 6116–6126, https://proceedings .mlr.press /v119 /lin20d .html.
[66] D.J.C. Mackay, Introduction to Monte Carlo Methods, in: Learning in Graphical Models, Springer, 1998, pp. 175–204.
252

http://refhub.elsevier.com/S0888-613X(22)00095-0/bib15D52C8161257A3BDFE243FA64AEE61Ds1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib15D52C8161257A3BDFE243FA64AEE61Ds1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib15D52C8161257A3BDFE243FA64AEE61Ds1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib15D52C8161257A3BDFE243FA64AEE61Ds1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib72E1C3B8C13C2EE00CDB12C0113EA418s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib72E1C3B8C13C2EE00CDB12C0113EA418s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib54A0D1A14731D777E2CC8DDC0DCB846Ds1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib54A0D1A14731D777E2CC8DDC0DCB846Ds1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib13B339E6748E6B8E1D3FA0AD3FD70307s1
https://proceedings.mlr.press/v80/jankowiak18a.html
https://proceedings.neurips.cc/paper/2018/hash/92c8c96e4c37100777c7190b76d28233-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/92c8c96e4c37100777c7190b76d28233-Abstract.html
https://proceedings.mlr.press/v28/ranganath13.html
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib8AFA784D85B219CF4B6F2B13F13BA393s1
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib8AFA784D85B219CF4B6F2B13F13BA393s1
https://proceedings.mlr.press/v119/lin20d.html
http://refhub.elsevier.com/S0888-613X(22)00095-0/bib5017274C3FC6B2BF500E68559CF6112Ds1

	Probabilistic programming with stochastic variational message passing
	1 Introduction
	2 Background
	2.1 Forney-style Factor Graphs (FFGs)
	2.2 Variational message passing
	2.3 Problem specification

	3 Stochastic variational message passing with natural gradient descent
	3.1 SVI for scalable VMP
	3.2 CVI for non-conjugate inference
	3.3 CVI for generality
	3.3.1 CVI around deterministic nodes

	4 Experiments
	4.1 Gaussian mixture model
	4.2 Tracking a non-stationary process
	4.3 Hierarchical probabilistic modeling with a non-conjugate prior
	4.4 Sensor fusion
	4.4.1 Smoothing with fixed model parameters
	4.4.2 Bayesian parameter and state estimation with structured variational message passing

	4.5 Regression with a Bayesian neural network

	5 Discussion and implementation details
	6 Conclusions
	Declaration of competing interest
	Acknowledgement
	Appendix A Stationary points of the free energy
	Appendix B VMP on composite nodes and Rao-Blackwellization
	References

