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Multiple Variational Kalman-GRU for Ship
Trajectory Prediction with Uncertainty

Chengfeng Jia, Jie Ma, Wouter M. Kouw

Abstract—Accurate prediction of ship trajectories is crucial
for ensuring safe and efficient navigation. However, predicting
ship trajectories in complex and dynamic environments presents
significant challenges. Ships exhibit multi-mode motions, mani-
festing as diverse motion patterns even under similar circum-
stances, influenced by factors such as navigational intentions
and operational tasks. Moreover, trajectory prediction is further
complicated by time-varying ship dynamics, encompassing sailing
conditions, ship maneuvering, and environmental factors. In
this paper, we propose a Bayesian multiple model with an
online model selection strategy to dynamically represent the
latent motion mode from early observations. Each sub-model
integrates a variational Kalman filter and Gated Recurrent
Unit (GRU) neural network, enabling the estimation of time-
varying transition coefficients and the process noise specific to
different motion modalities. This hybrid methodology leverages
the strengths of probabilistic recursive estimation of the Kalman
filter while benefiting from the capacity of a GRU network
to learn complex temporal dependencies from historical data.
The proposed method was evaluated on ship trajectories across
different observation lengths and prediction horizons and outper-
formed the baseline in terms of both accuracy and plausibility.

Index Terms—ship trajectory prediction, ship navigation,
Kalman filter, deep learning, variational inference.

I. INTRODUCTION

THe shipping sector has been the world’s primary facilita-
tor of global trade, with waterway transportation playing

a significant role, encompassing over 90% of total transport.
[1]. The field of waterway transportation is undergoing a
technological revolution, referred to as Shipping 4.0 [2], neces-
sitating the adoption and integration of modern technologies,
including intelligent computational and advanced automation
technology, into existing navigation systems to enhance safety
and efficiency. An essential aspect of Shipping 4.0 is to im-
prove situational awareness, which will enhance the safety of
maritime operations. Situational awareness for ship navigation
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was defined as understanding what is happening now and what
will happen in the near-future [3]. In this context, numerous
recent studies have developed precise models to predict a
ship’s future trajectory, which supports early collision warning
systems, abnormal behavior detection, and collision avoidance
decision-making.

Ship trajectory prediction methods can generally be cat-
egorized into two groups: model-based and data-driven ap-
proaches. The model-based approaches aim to predict future
positions based on dynamical systems that depend on laws of
physics. The Kalman filter is a preferred technique because
it provides a recursive way for ship motion state estimation
and quantifies uncertainties [4]. However, the Kalman filter
requires model specifications, such as the transition matrix,
process noise, and measurement noise, which need to be
calibrated by the user. Ship motion is a time-varying dynamic
system that depends on sailing conditions, control inputs, as
well as environmental factors [5], [6]. Simplification of model
specifications, such as assuming the transition matrix is time-
invariant, may lead to insufficient performance.

On the other hand, data-driven methods exploit the benefits
of large-scale datasets to achieve higher prediction accuracy
without relying on expert knowledge. Deep learning tech-
niques, in particular, are increasingly applied to construct
trajectory prediction models by implicitly determining the re-
lationship between the observations and predictions. However,
this prediction tends to return the average output when given
similar observations [7]. Due to uncertain future destinations,
ships could perform differently under the same circumstances.
The performance of a single model may quickly deteriorate
when the ship trajectories exhibit multi-modality, as is often
the case in intersection waterways [8]. The ships follow
similar trajectories before they sail into the intersection but
their trajectories diverge when they sail into the target branch
or destinations [9]. In such scenarios, averages may not be
optimal solutions. Accurately predicting the trajectories of
target ships as they navigate towards specific destinations is
crucial, especially in collision avoidance applications. This
enables own ship to avoid potential conflicts by steering clear
of the paths of target vessels and taking necessary evasive
actions at the intersection.

To address the challenges posed by the time-varying dy-
namics and multi-mode nature of ship motions, we propose
a Bayesian multiple model (MK-GRU) with Kalman-GRU
(K-GRU) submodels. Each sub-model captures the dynamics
of a specific motion mode. The sub-models bring together
the best of both worlds by augmenting the Kalman filter
with Gated Recurrent Unit (GRU) neural network. GRU, a
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type of recurrent neural network, effectively handles temporal
dependencies in trajectory with fewer parameters, ensuring
computational efficiency. Consequently, GRU is utilized to
track the evolution of transition coefficients in the Kalman
filter over time.

In summary, our contributions are:
• We present a Bayesian multiple model approach to ad-

dress the multi-mode nature of ship motions, incorpo-
rating an online model selection strategy for dynamic
representation of the hidden motion modes.

• A hybrid model, the Kalman-GRU, is proposed for sub-
models, with a focus on simultaneously estimating the
time-varying transition coefficients and process noise
of one specific mode of ship dynamics by variational
inference.

• We investigate the effect of ship trajectory observation
length on accuracy for various prediction horizon lengths.
The results demonstrate that the proposed model sur-
passes the performance of existing deep learning models.
Moreover, we conducted a comparative analysis between
single-model and multi-model. The results revealed that
employing a multi-model approach with a reasonable
number of models can reduce prediction errors.

II. RELATED WORK

An example of the effectiveness of physics-based model-
driven approaches is the trajectory prediction model in Wiig
et al. that considers parameters such as mass, force, damping,
and disturbance [10]. Similarly, Zhang et al. [11] proposed
a maneuvering model, which introduced a velocity potential
to decompose the maneuvering motion and the wave-induced
motion. Perera et al. pointed out that one single model may
not be enough to capture the complexity of ship dynamics,
and developed a multiple model based on extended Kalman
filters corresponding to specific modes of operation [12]. Still,
there remain various sources of uncertainty in real navigation
scenarios, such as environmental disturbances or human error
[13]. To incorporate these uncertainties into the model, Rong
et al. [14] proposed a Gaussian Process model that represents
position as a probability density function decomposed into
lateral and longitudinal directions. The main limitation of these
model-based approaches is that they are sensitive to dynamic
specifications and model parameters. They require an explicit
understanding of real-world ship dynamics and what parameter
regimes are physically reasonable.

Alternatively, data-driven methods do not necessarily face
the difficulties that hinder model-based approaches. Given the
technological advances in the Automatic Identification Sys-
tem (AIS), data-driven approaches are increasingly developed
to construct trajectory prediction models. Zhang et al. [15]
proposed a trajectory prediction model that compressed and
grouped trajectories to abstract the general motion patterns
from the AIS data and use an Ant Colony algorithm to find
the trajectory that conforms to the pattern. Wang et al. [16]
proposed a prediction model that assigns the future trajectory
calculated by a similar dynamic model to the targeting ship.
However, these strategies may result in trajectories with large

differences between clustered sub-trajectories. Forti et al. [17]
utilized the Long Short-Term Memory (LSTM) to predict
the trajectories of the vessels, and the prediction results are
verified with the AIS data in the ports of Italy. Xiao et al.
[18] adopt Bidirectional LSTM to incorporate more features
in trajectory data, and applied attention mechanism to improve
prediction accuracy. To improve computational efficiency and
avoid over-fitting, You et al. [19] proposed a Gated Recurrent
Unit (GRU) network as an extended sequence-to-sequence
model to predict the ship trajectory sequence for the next 5
minutes. Murray et al. [20] used auto-encoder structures to fa-
cilitate trajectory clustering to find the similar motion patterns
of ships, and iteratively predict future states. Capobianco et al.
[21] developed a recurrent encoder-decoder network to predict
the ship trajectory with uncertainty estimation.

However, these pure data-driven models have limited in-
terpretability. That may become a potential issue for real
shipping industrial applications. Hence, model-based deep
Learning [22] has been introduced by incorporating partial in-
formation derived from physics-based models. The unresolved
aspects within the model are addressed through supervised
deep Learning. Gao et al. [23] introduced a procedure for
identifying the physical basis of the learned trajectory model,
achieved by a cubic spline interpolation and an LSTM step.
Xu et al. [24] introduced a physics-informed neural network
(PINN), where they integrated speed and steering models into
the loss function for predicting surge and sway motion of
unmanned surface vehicle. Revach et al. [25] presented a re-
current neural network aided Kalman filter for partially known
dynamics. This method relies on time-invariant calibrated
elements for the Kalman filter, which may not adequately
capture the complex process noise in ship navigation caused
by factors like wind and sea effects. We address this limitation
by simultaneously estimating states, coefficients, and process
noise, enhancing the accuracy of ship navigation. Kanazawa
et al. [26] investigated how much cooperative models, i.e.,
combinations of model-driven and data-driven components,
benefit from the physical structure and observation data, and
found that these were largely complementary, in terms of
improving trajectory prediction accuracy. While the above
model-based machine learning methods are verified by simula-
tion experiments on open water areas, intersection waterways
remain an open question as these areas contain different ship
navigation behavior. Moreover, the Maritime Safety Admin-
istration developed the Ships’ Routing System, which refined
the regulations to restrict navigation behavior when ships sail
to different target channels [27]. This raises complexity to such
a degree that a single model may not be enough to capture
the full range of motion in intersection waterways.

III. MULTIPLE MODEL OF KALMAN-GRU

A. Overview

We develop a Bayesian approach to formulate the ship
trajectory prediction task, wherein the primary goal is to
ascertain the subsequent predictive distribution:

p(sT+1:T+∆T , |, z1:T ). (1)
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Here, z1:T represents the observed trajectory, defined as a
sequence of tuples (xt, yt), t ∈ [1 : T ], where xt and yt
denote the observed longitude and latitude measurements at
time t, respectively. sT+1:T+∆T denotes the predicted future
state over a prediction horizon of ∆T .

Fig. 1. Multi-mode motions in the intersection waterway. The left plot
illustrates the electronic nautical chart of the South Channel in the Yangtze
River Estuary, while the right plot presents the Kernel density estimation of
ship trajectories within this intersection.

Existing approaches tend to utilize end-to-end deep learn-
ing methods to establish the mapping relationship between
observations and predictions, typically leveraging extensive
calibrated datasets. However, for intersection waterways, this
can be problematic.

In this study, we used the South Channel of the Yangtze
River Estuary (as illustrated in Fig. 1) as the study area. This
intersecting waterway serves as a critical maritime gateway
for ships navigating from the inland river in the west to
diverse directional channels in the sea. It can be observed that
before entering the intersection waterway, all ship trajectories
are relatively concentrated, while future ship trajectories will
diverge towards various directions in the waterway. The pres-
ence of such multi-mode motion patterns makes it challenging
for a single end-to-end model to effectively map similar
observations of ship motions to different modes in the future.

To this end, we propose a multiple Kalman-GRU model.
Each Kalman-GRU is developed to capture the dynamics of
a specific motion mode. Fig. 2 show the summary of the
proposed model. The training trajectory data is input into
the corresponding Kalman-GRU based on its calibrated mode,
and the state transition coefficients and process noise are
updated through network parameter learning and variational
inference. Below, we discuss the details of the proposed model
and describe the submodel selection procedure for the final
trajectory predictions.

B. Model specification

From the AIS data, we can obtain the observations of
ship trajectory z1:T . Since the AIS data contains some noise,
these observations are assumed to be generated by a sequence
of hidden states s1:T = {s1, s2, . . . , sT }. This process is
formulated as a state-space model:

st = Ast−1 + ϵst , , zt = Bst + ϵot , , (2)

where A and B are the state transition and measurement
matrices, respectively, and ϵst ∼ N (ϵst | 0,Q) denotes process
noise with covariance matrix Q while ϵot ∼ N (ϵot | 0,R)
denotes measurement noise with covariance matrix R.

The process noise covariance matrix Q describes how, on
average, the state transition deviates from the deterministic
dynamics. Standard Kalman filters require Q to be fixed.
However, ship dynamics are subject to uncertainty arising from
environmental conditions and operational factors. Moreover,
these uncertain dynamics may vary across different modes
within the intersection waterway. As such, we believe that
the quality of a covariance matrix, once calibrated and fixed,
will deteriorate over time [28]. We therefore propose an online
estimator which updates the process noise covariance matrix
after every ship trace measurement. For numerical stability
during inference, we will estimate the inverse of covariance
matrix, the precision matrix: Λ = Q−1. Our prior for Λ thus
becomes:

p(Λ) ∼ W(Λ |V0, d0) (3)

where V0 is the scale matrix and d0 are the degrees of freedom
of the Wishart distribution. Note that the conjugate prior for
a precision matrix in a Gaussian distribution is the Wishart
distribution [29], which motivates the choice in Equation (3).

Traditionally, the state transition matrix A in a Kalman
filter is designed by an expert based on physical knowledge
of a specific ship’s dynamics. However, a fixed transition
matrix ignores changes in ship dynamics over time, such as
maneuvers to turn the ship towards the target channel, and may
lead to poor trajectory prediction performance. We address
this problem by introducing time-varying transition dynamics
driven by a neural network, referred to as a K-GRU model.
Incorporating the Gaussian distribution of the process noise,
the state transition may be specified as:

p(st | st−1,Λ; θ) = N (st |Atst−1,Λ
−1). (4)

In this equation, ”;” is used to separate parameters, indicating
that θ are parameters of the probability model, consistent with
the notation in [29]. The expression N (st, |,Atst−1,Λ

−1)
denotes a multivariate Gaissian distribution with mean Atst−1

and covariance matrix Λ−1. Moreover, At[j, j] = at[j]
represents that the j-th diagonal element of A corresponds
to the j-th element of vector at. These at are driven by
the GRU network Φ with parameters θ: at = Φ(z1:t−1; θ).
Consequently, the transition matrix At approximates the ship
motion dynamics at each time step. This model can be
regarded as a data-driven Extended Kalman Filter, where the
approximation is informed by historical observations.

Due to the Gaussian assumption on the measurement noise,
the likelihood is also Gaussian distributed:

p(zt | st) = N (zt |Bst,R). (5)

The measurement noise covariance matrix R is assumed to
be time-invariant and can be independently determined by the
AIS data collection protocol.

Lastly, we define a prior distribution on the states s0:

p(s0) = N (s0 |m0,P0) . (6)



4

Fig. 2. Training process of multiple models of K-GRU. The training samples are feed to the specific K-GRU corresponding to the modes calibrated by the
target channel. Through learning and inference, the network parameter and process noise are optimized.

Fig. 3. A factor graph for K-GRU in (7). Edges represent the variables
associated with each node function. For example, the node p(zt−1 | st−1) is
associated with two variables: zt−1 and st−1. The red edges are the variables
in Kalman filer, the blue arrows are the variables in GRU. Observation zt−1

are fed into GRU, and generate the transition matrix At for Kalman filter.
The triple dots indicate a graph continuation in temporal directions.

Given the above specifications, we may visualize it as a factor
graph shown in Fig. 3 and write the full model specification
of one K-GRU for a sequence of length T as:

p(z1:T , s0:T ,Λ; θ) =

p(Λ)p(s0)︸ ︷︷ ︸
priors

T∏
t=1

p(st | st-1,Λ; θ)︸ ︷︷ ︸
state transition

p(zt | st)︸ ︷︷ ︸
likelihood

. (7)

C. Learning and inference

Training a K-GRU means learning the optimal GRU net-
work parameters θ and inferring the most likely process
noise precision Λ. Simultaneous learning and inference can
be achieved by maximizing the log-evidence log p(z1:T ).
However, evaluating the log-evidence requires marginalizing
over both s1:T and Λ, which is intractable. To this end, we
define an upper bound F to the log-evidence, referred to as a
free energy functional [30]:

F [q] = Eq

[
log

q(s0:T ,Λ)

p(s0:T ,Λ | z1:T ; θ)
]
− log p(z1:T ) . (8)

It’s worth noting that the negative free energy is also known
as the Evidence Lower Bound (ELBO) [31], which serves as a
key objective function in variational inference. Eq denotes the

expectation operator with respect to the variational distribution
q(s1:T ,Λ). This variational distribution approximates the pos-
terior distribution over the unknown variables in the model.
Evaluating this objective requires the posterior distribution of
interest, which means this form cannot be used. To proceed,
we absorb the model evidence term, yielding

F [q] = Eq

[
log

q(s0:T ,Λ)

p(z1:T , s0:t,Λ; θ)

]
, (9)

which can be evaluated because the joint distribution factor-
izes into known terms, i.e., the priors, state transitions and
likelihoods (7). we introduce a mean-field factorization for
the variational distribution:

q(s0:T ,Λ) = q(s0:T ) · q(Λ). (10)

This factorization separates the joint distribution into inde-
pendent factors, facilitating more tractable optimization. Al-
though the mean-field assumption may neglect certain depen-
dencies within ship dynamics, thereby potentially resulting in
inaccuracies in inference outcomes, in scenarios necessitating
real-time ship trajectory prediction, the trade-off of sacrificing
a modest degree of accuracy for enhanced computational
efficiency may be reasonable. We will occasionally adopt qs
and qΛ as short-hand notation for q(s0:T ) and q(Λ). Inference
corresponds to finding the optimal forms of each of the
variational distributions, i.e., the forms that minimize the free
energy functional specified in (9). These optimal forms can be
derived analytically (see [30] for details on the procedure):

q(s0:T ) ∝ exp(EqΛ [log p(z1:T , s0:T ,Λ; θ̂)]) (11)

q(Λ) ∝ exp(Eqs [log p(z1:T , s0:T ,Λ; θ̂)]) . (12)

Computing the expectation in (11) gives: (see Appendix for
detailed derivation):

exp(EqΛ [log p(z1:T , s0:T ,Λ; θ̂)]) ∝
T∏

t=0

N (st|mt,Pt) . (13)

The parameters of each Gaussian state distribution follow
a typical prediction-correction procedure. For t > 0, the
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predictions for st are given by the Chapman-Kolmogorov
equation:

p(st | z1:t−1) =

∫
p(st | st−1)p(st−1 | z1:t−1)dst−1. (14)

Then the mean m−
t and covariance P−

t of predictions for st
can be calculated:

m−
t = Atmt−1 , P−

t = AtPt−1A
⊤
t + (dV)−1 . (15)

The V and d are parameters of the optimal q(Λ), which will be
explained shortly hereafter. The state predictions are corrected
by information from observations through the Bayes’ rule:

p(st | z1:t) =
1

Zt
p(zt | st)p(st | z1:t−1) (16)

where Zt represents the normalization constant Zt =
p(zt | z1:t−1). Then, the updated result for (13) is given by

mt = m−
t +P−

t B
⊤(BP−

t B
⊤ +R)−1(zt −Bm−

t ) (17)

Pt = P−
t −P−

t B
⊤(BP−

t B
⊤ +R)−1BP−⊤

t . (18)

Since there is no observation for the prior state s0, it is not
updated and thus q(s0) = p(s0).

The optimal form of the process noise precision is propor-
tional to a Wishart distribution, (see the Appendix for details
on the derivation),

exp(Eqs [log p(z1:T , s0:T ,Λ; θ̂)]) ∝ W(Λ |V, d) , (19)

with d = d0 + T degrees of freedom and

V-1 = V-1
0 +

T∑
t=1

(
Pt −APt-1 −Pt-1A

⊤ +Pt-1 (20)

+(mt−Atmt-1)(mt−Atmt-1)
⊤)-1

.

The parameter V above depends on the parameters of the
state posteriors, mt and Pt (Eqs. 17, 18). At the same time,
the state parameters mt and Pt depend on V and d (15). The
simultaneous dependence of the parameters implies the solu-
tion requires iteration. This variational inference procedure is,
in fact, a coordinate descent algorithm, for which convergence
is guaranteed because each update only produces an equal or
smaller value of the objective function (9) [32].

For learning the network parameters θ, we drop terms inside
the logarithm in (9) that do not involve θ and replace the
expectation with respect to q(s1:T ) with a marginalization:

C(θ) = −
∫

EqΛ

[
log p(z1:T , s1:T ,Λ; θ)

]
ds1:T . (21)

It can be seen that there are mutual dependencies between
the network parameters θ and the model parameters s0:T and
Λ. On one hand, appropriate values of θ enhance prediction
accuracy in 15, minimize the disparity between predictions
and observations, and yield more precise inference outcomes
for q(s0:T ) and q(Λ) in Kalman component. On the other
hand, precise inference outcomes for q(s0:T ) and q(Λ) reveal
the hidden ship dynamics with uncertainty, thereby facilitating
the GRU component in capturing state transitions. Fortunately,
these mutual dependencies can be addressed through the same
objective function 9. Specifically, we perform iterative learning

and inference on the entire training data set for a period of 100
epochs. During each epoch, we update the parameters for s0:T
and Λ using 13 and 19, and optimize the network parameters
θ using the gradient of C(θ). This procedure is outlined in
Algorithm 1.

Algorithm 1 Learning and inference for K-GRU
Input: Training date set, initial GRU network parameters θ,

parameters of prior state m0,P0, parameters of prior
precision V0, d0.

1: for n = 1 to N do
2: Sample a trajectory z1:T from training data set
3: Update the state estimates q(s0:T ) by (13)
4: Update the precision estimate q(Λ) by (19)
5: Update the parameters θ by gradient descent on C(θ)
6: end for

Output: q(s0:T ), q(Λ), θ

Compared to the conventional GRU, the integration of
inference and learning in Algorithm 1 enhances trajectory
prediction by incorporating uncertainty. These predictions not
only yield deterministic paths but also provide reachable areas
with confidence levels, crucial for ship collision avoidance.
Additionally, the inference component can regulate network
training and prevent over-fitting. For instance, in the case
of an anomalous trajectory, it is feasible to infer a smaller
precision noise Λ, resulting in a relatively minor impact on
C(θ) compared to the traditional Mean Squared Error (MSE)
loss function.

D. Online model selection

During training, a K-GRU model is fit to each mode of the
ship’s motion. In order to make a single trajectory prediction,
we select the K-GRU that best predicts the ship’s most recent
position measurements and extend that K-GRU to future time
points. Fig. 4 provides an overview of the submodel selection
procedure. Let t0 be the time point of the initial measurement
in our time-series and t2 be the current time point. We split
the observations from t0 to t2 based on a look back time
tb, thereby producing a set of older observations zt0:t1 and a
set of more recent observations zt1+1:t2 , where t1 = t2 − tb.
Using the older observations, each K-GRU submodel makes a
prediction for the newer observations using (7).

Each proposal is evaluated on the recent observations
zt1+1:t2 in terms of a predictive likelihood (PL):

PL
(m)
t2 =

t2∏
t=t1+1

N (zt|µ(m)
t ,Σ

(m)
t ), (22)

where µ
(m)
t , Σ(m)

t are the mean and covariance of predicted
distribution by m-th GRU at time t. Note that this func-
tion evaluates the probability of these observations under
the predictive distribution, which is computed iteratively by
aggregating single-step predictions. Specifically, previous pre-
dictions are leveraged as observations to forecast future states.
In this context, the transition matrix At3 computed by the
GRU model is denoted as At3 = Φ([z1:t−1, µt:t3−1]), where
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Fig. 4. Online model strategy for the MK-GRU model. The observations from t0 to t2 are divided into older observations zt0:t1 and newer observations
zt1:t2 . Each submodel is fit to the older data and makes a prediction for the newer data. The one with the most accurate prediction (22) is selected and used
to create a single trajectory prediction for t2 +△T .

[z1:t−1, µt:t3−1] represents the concatenated vector comprising
the observations and the mean of the predictive distributions.
As such, PL

(m)
t2 represents a score for the m-th K-GRU. The

K-GRU with the maximal score, i.e., the one with the highest
total probability under the prediction, is selected and used to
make a final trajectory prediction for the future, from t2 to
the end of the time horizon te. This procedure is outlined in
Algorithm 2.

Algorithm 2 Online model selection
Input: Current time t2, look back time tb, predict horizon

△T , and end time te
1: repeat
2: t1 = t2 − tb
3: for m = 1 to M do
4: Update PL

(m)
t2 by (22)

5: end for
6: m∗ = argmaxPL

(m)
t2

7: Update p(st2+1:t2+△T ) by (7) with m∗-th GRU
8: until t2 +△T > te

Output: p(st2+1:t2+△T )

In Algorithm 2, a lookback time tb controls the duration
for which observations influence the model selection process.
This differs from the conventional Bayesian multiple model
[33], which recursively uses all observations to estimate hidden
mode probabilities. The flexibility of tb allows captains to
customize the model’s inference results to their needs. A
longer lookback time can produce more robust and consistent
mode inference results but may delay the identification of
hidden modes. Conversely, a shorter tb, such as 1, enables
the model to respond promptly to modes but may increase the
risk of misjudgments.

IV. EXPERIMENTS

We discuss experiments and results in both a quantitative
analysis as well as a qualitative analysis (case studies).

A. Data set

We conducted experiments using both real-world AIS data
and synthetic data. The AIS dataset comprises ship trajectories
within the South Channel of the Yangtze River Estuary,
extending longitudinally from 122◦25′E to 122◦37′E and
latitudinally from 30◦48′N to 31◦6′N. This intersection serves
as a critical gateway for ships traveling from the inland river
to sea channels in various directions.

TABLE I
AIS TRAJECTORY DATA SET WITH MULTI-MODE LABELS.

Mode type Training samples Testing samples
mode 1 (to North) 50 1100
mode 2 (to East) 50 850
mode 3 (to South) 50 339

TABLE II
SYNTHETIC TRAJECTORIES DATA SET WITH VARYING NUMBERS OF

MODES.

Mode numbers Training samples for each mode Testing samples
1 mode 120 200
2 modes 60 200
3 modes 40 200
4 modes 30 200
5 modes 24 200

Note that AIS data inherently manifests asynchronous. Even
in densely trafficked intersection waterways with elevated
broadcast frequencies, the AIS broadcast frequency varies
among different ships, and data gaps may arise for the
same ship due to various factors. Hence, we employed an
interpolation and resampling approach as outlined in [34]
to obtain regularly-sampled trajectories. Firstly, we extract
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trajectory data from various ships using Maritime Mobile
Service Identity (MMSI) and timestamp information. Next,
we employ a sliding window technique to detect trajectory
sparsity. If a trajectory contains a significant amount of missing
data, it is discarded as it may not accurately record the ship’s
movements. For trajectories with a limited amount of missing
data, Hermitian cubic interpolation is applied to fill in the gaps
and generate trajectories sampled at 1 Hz. Subsequently, the
trajectories are resampled to a frequency of 1/18 Hz (one point
recorded at intervals of 18 seconds.).

Following the interpolation and resampling process, the AIS
dataset utilized in this study comprised 2439 ship trajectories.
Each trajectory was assigned a motion modality label based on
its destination (North, East, or South). To construct the training
set, we randomly selected 50 trajectories from each label class.
That left 1100 test samples for the North destination, 850 for
East and 339 samples for South.

Moreover, synthetic data was employed to evaluate the
efficacy of the MK-GRU model, with particular focus on
discussing the impact of varying numbers of modes on its
performance. Following the methodology presented in [35], a
total of 600 trajectories, each lasting 240 seconds, were gen-
erated and resampled at 1/2 Hz, yielding 120 sampling points
per trajectory. Initial coordinates (x and y) were fixed at 0, and
both thruster angle and revolution remained at zero until the
50th second. The initial surge velocity (in meters per second)
followed a Gaussian distribution N (4, 1). Subsequently, after a
random time Tm seconds, thruster revolution (in RPM) was set
to nmax and thruster angle (in degrees) to δmax. Here, Tm was
uniformly sampled from the range [50, 70], nmax was drawn
from N (5, 0.8), and δmax was drawn from [−35, 35]. The
trajectories selected for the synthetic dataset occur after the 50-
second mark. These ship control simulations were conducted
using the Julia package ShipMMG [36].

Unlike the real-world AIS trajectories in the South Channel,
which naturally segregate into three modes based on their
target channels, the synthetic trajectories manifest in a more
continuous space. This characteristic provides the opportunity
to adjust the number of motion modes. Employing the Dy-
namic Time Warping (DTW) method and K-means clustering
[37], the synthetic trajectories are partitioned into K clusters,
with K ranging from 2 to 5 in this study. Fig. 5 illustrates
the cluster results obtained when the number of modes is
set to 2 and 5. The training data are sampled proportionally
according to the number of modes, ensuring a total of 120
training samples. Additionally, 200 trajectories are sampled
for the test data. The details of the training and test data for
synthetic trajectories are provided in Table II.

B. Setup and results
The MK-GRU model is implemented using the Julia pack-

age RxInfer [38]. For comparison, we implemented several
baseline models: a pure GRU network [39], an LSTM-MDN
network [40], and a Seq2Seq model [19]. We also compare
it against a single K-GRU model, allowing us to demonstrate
the usefulness of the multiple model approach.

As performance metrics, we employ the average displace-
ment error (ADE) and the final displacement error (FDE).

(a) (b)
Fig. 5. Multi-modes in the synthetic ship trajectories. (a) Illustrating the
trajectories when the number of modes is set to 2. (b) Illustrating the
trajectories with the number of modes set to 5.

Instead of employing Euclidean distance, we utilize geograph-
ical distance metrics for latitude and longitude, as done in
previous work [41]. Specifically, ADE measures the average
geographical distance between predicted and observed posi-
tions, while FDE quantifies the geographical distance between
the predicted and observed positions at the final time point
within the prediction horizon. Table III compares the ADE and
FDE of various methods, given different observation lengths
and prediction horizons. For instance, ”9-18” represents using
a 9-minute input trajectory to forecast the next 18-minute.
The ADE metric demonstrates that the MK-GRU outperforms
the other methods for all combinations of observation length
and prediction horizon. For the FDE metric, the MK-GRU
achieved the best performance only in the 9-18 setting, while
LSTM-MDN and Seq2seq performed the best in the 13.5-13.5
and 18-9 groups, respectively. The MK-GRU model performed
competitively (underlined values indicating the second best
performance). These results are likely due to the accumu-
lation of prediction errors in the recursive computations in
GRU/K-GRU/MK-GRU models moving forward in time. In
contrast, LSTM-MDN directly outputs the entire future tra-
jectory through the last dense layer, which mitigates error
accumulation. However, this approach sacrifices the temporal
dependency in its predictions, resulting in frequent trajectory
oscillations that are not consistent with the actual movements
of ships.

To assess the plausibility of the predicted trajectories, we
introduced a metric called the Difference-of-Course-Over-
Ground (DCOG), which measures the COG at each time-
step between the predicted trajectory and the ground-truth
trajectory.

A higher DCOG value indicates that the predicted trajectory
is more likely to display frequent changes in COG compared to
the actual trajectory, which is inconsistent with the continuous
movement patterns of ships. Table IV shows the DCOG
values of various methods for different observation lengths
and prediction horizons. It can be seen that the MK-GRU
outperforms the other methods in the 9-18 and 13.5-13.5
groups, while the K-GRU performs better in the 18-9 group.
Notably, the DCOG value for LSTM-MDN ranges between
38 and 52 degree, which is highly unrealistic as it implies a
significant change in course over a period of 18 seconds.
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TABLE III
PREDICTION ERROR (KM) AS A FUNCTION OF OBSERVATION LENGTH AND PREDICTION HORIZON (MINUTES).

Method
Obs-Pre 9-18 13.5-13.5 18-9

Metrics (km) ADE FDE ADE FDE ADE FDE

GRU 1.527 (0.656) 4.767 (2.853) 0.918 (0.847) 3.746 (2.702) 0.933 (0.855) 2.296 (2.246)

LSTM-MDN 1.212 (0.987) 2.847 (0.745) 0.333 (0.229) 0.571 (0.551) 0.443 (0.335) 0.940 (0.454)

Seq2seq 1.172 (0.920) 2.836 (0.594) 0.223 (0.262) 0.754 (0.406) 0.338 (0.230) 0.592 (0.474)

K-GRU 1.209 (1.093) 3.286 (1.307) 0.635 (0.550) 1.125 (1.066) 0.397 (0.348) 0.976 (1.014)

MK-GRU 0.886 (0.875) 2.418 (1.848) 0.217 (0.193) 0.771 (0.670) 0.323 (0.534) 0.678 (0.744)

(a) (b) (c)

(d) (e) (f)
Fig. 6. Prediction in two cases and error heatmap for observation length and prediction horizon. (a) Predict 18-minute in the future by 9-minute observations
for Case 1. (b) Mode selection and error heatmap for MK-GRU in Case 1, (c) error heatmap for K-GRU for Case 1, (d) Predict 18-minute in the future by
9-minute observations for Case 2. (e) Mode selection and error heatmap for MK-GRU in Case 2, (f) error heatmap for K-GRU for Case 2.

TABLE IV
PLAUSIBILITY OF PREDICTED TRAJECTORY (DCOG ◦).

Method
Obs-Pre 9-18 13.5-13.5 18-9

GRU 1.723 (1.242) 1.727 (2.569) 1.318 (2.461)

LSTM-MDN 38.637 (45.933) 62.937 (66.015) 52.210 (76.609)

Seq2seq 49.831 (46.653) 10.049 (11.305) 2.546 (1.786)

K-GRU 0.773 (1.251) 0.985 (0.947) 1.078 (0.965)

MK-GRU 0.603 (0.616) 0.797 (0.685) 1.198 (0.791)

C. Case studies

To visualize the accuracy and plausibility of our model,
we selected a few subsets of the test data and performed
qualitative analyses (code as well as animations are available

online1). Case 1 focuses on a ship traveling from an inland
channel to the South channel, and case 2 depicts a ship
traveling to the North channel. Fig. 6a illustrates the true and
predicted trajectories generated by each model for predicting
18 minutes into the future based on 9-minute observations.
The baseline methods and single K-GRU predict the wrong
direction entirely while the MK-GRU correctly predicts the
path towards the South channel.

Case 2 (Fig. 6d) shows a similar situation as in Case 1,
with the MK-GRU outperforming other methods in terms of
accuracy. From the zoomed-in portion of the figure, it can be
observed that LSTM-MDN predicts erratic trajectories (i.e.,
high DCOG). Note that the color in the zoomed-in portion

1github.com/Chengfeng-Jia/ship-trajectory-prediction-MKGRU.

https://github.com/Chengfeng-Jia/ship-trajectory-prediction-MKGRU
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represents the uncertainty of predicted distribution of MK-
GRU.

It can be seen the multiple model was capable of inferring
the ship’s intended course towards the South Channel at an ear-
lier stage, even before the actual turning maneuver occurred.
On the other hand, the single K-GRU model misjudged the
future direction. In case 2, the single K-GRU predicted the
right direction, but still produced a significant deviation from
the actual trajectory. Capturing ship dynamics with multiple
modalities is challenging for a single model. However, in a
multiple model, each sub-model can be viewed as an expert
specializing in a particular mode, resulting in more accurate
predictions within their respective areas of expertise.

Then, we plot the error heatmaps that illustrate the impact of
varying the observation length and prediction horizon on the
model’s performance. The bars in Fig. 6b and Fig. 6e on the
left represent the model selection results given different obser-
vation lengths. The heatmap in Fig. 6b shows the prediction
error of the MK-GRU model, with the horizontal and vertical
axes representing the prediction horizon and the observation
length, respectively. The darker the color, the smaller the error.
The heatmap reveals a sudden change in the error at around
4.5 minutes of observation, which coincides with the moment
when the multiple model selected the correct direction mode.
On the other hand, the prediction error of the single K-GRU
model in Fig. 6c remains high for longer, indicating the value
of the multiple model approach. The same trend is observed
in Fig. 6e and 6f, with the exception of two changes in model
selection corresponding to two sudden changes in prediction
error.

D. Impact of multiple model

To illustrate the relationships between observations, motion
mode, and real-time predictions, we design a ship navigation
dashboard. This dashboard has the potential to provide cap-
tains with valuable insights into the future movements and
trends of surrounding ships, thereby enhancing their situational
awareness capabilities. Fig. 7 and Fig. 8 showcase the ship
navigation dashboard for the same ship at different time
steps. Fig. 7 (a) displays the initial observation at the 0.6
minutes. Fig. 7 (b) presents the probabilities of different
motion modes based on limited observations, indicating that
mode 1 is dominant. Fig. 7 (c) provides the rationale behind
this, as the prediction from K-GRU 1 closely matches the
ground truth. Subsequently, Fig. 7 (d) illustrates the long-
term prediction generated by K-GRU 1. Fig. 8 (a) displays the
updated observation at the 4.8 minutes. Fig. 7 (b) illustrates the
predominance of mode 3, as evident from Fig. 7 (c), where K-
GRU 3 yields the most accurate prediction. The identification
of the correct mode enhances the precision of the long-term
prediction shown in Fig. 7 (d).

We analyze the relationship between model selection error
(ME) and prediction error (PE) across the AIS test data
set. Fig. 9 shows ME and PE for the three modalities as a
function of observation length. There is a certain correlation
between PE and ME, particularly when the observation length
is sufficient (when the observation length exceeds 9 minutes).

It is observed that both PE and ME decrease simultaneously
given sufficient observations. This suggests that accurately
identifying the ship’s specific direction modality may improve
the accuracy of trajectory prediction.

To investigate the effect of varying the number of modes
on the multi-model, the number was systematically adjusted
from 1 to 5. Fig. 10 illustrates the resultant variation of ADE
corresponding to the mode number. Fig. 10a depicts the ADE
outcomes for a 90-second observation window, forecasting
90 seconds into the future. It is evident that configuring the
number of modes to 2 and 3 yields superior performance
compared to a single-mode setting.However, as the number
of modes increases (4 and 5), the error also escalates, exceed-
ing that of the single-mode configuration. Fig. 10b depicts
the ADE outcomes for a 120-second observation window,
forecasting 60 seconds into the future. It can be seen that
setting the number of modes to 4 and 5 does not yield
significant differences in mean ADE values compared to when
set to 1. Fig. 10 indicates that increasing the number of
modes does not inherently enhance performance; rather, an
excess of modes may lead to decreased predictive accuracy.
Additionally, the computational workload for training and data
calibration substantially increased with a higher number of
modes.

V. DISCUSSION

Our findings suggest that a multiple model can make accu-
rate predictions, but that its performance depends heavily on
accurate and timely model selection. Although our proposed
method predicts turning trends well, in some cases, deviations
from the final point of the prediction horizon were observed.
This may be attributed to our definition of motion modality,
which only relies on target direction and does not consider
acceleration. Furthermore, it is notable that this study employs
spherical coordinates (latitude and longitude) directly in the
Kalman-GRU for the AIS data. This may potentially introduce
additional errors into the ship dynamic model. Nevertheless,
our method remains a technical advancement for ship navi-
gation, as it not only provides predicted trajectories but also
quantifies uncertainty. This can be a crucial reference for
captains to accommodate situational awareness and assist the
decision-making process in ship avoidance scenarios.

VI. CONCLUSION

We proposed a probabilistic ship trajectory prediction
method based on multiple Kalman-GRU models that address
the challenges posed by the time-varying dynamics and the
multi-mode nature of ship motions. Data from both real-world
ship trajectories and simulated trajectories were collected
and utilized for model validation. Quantitative metrics and
case studies. Our method outperformed a set of competitive
baseline models in most metrics. Our findings suggest that
correctly identifying the specific motion mode of a ship is
critical for prediction accuracy. The outcomes of this study
are anticipated to yield precise short-term trajectory predic-
tions, with potential applications in situational awareness and
collision avoidance.
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Fig. 7. Ship navigation dashboard at the 0.6 minutes. (a) Updated trajectory observation, (b) Probability of motion modes (c) Multiple model selection, (d)
Real-time prediction with uncertainty.

The proposed method relies on regularly-sampled observa-
tions, which may limit its accuracy in practice, particularly
for AIS data that exhibit asynchronous characteristics. As a
potential future work, we aim to extend the MK-GRU frame-
work to incorporate real-time reactive learning and prediction
capabilities. This extension will enable the model to adapt to
missing data or asynchronous trajectories commonly observed
in real-world AIS data.

APPENDIX

Here, we treat the derivation of the optimal form the
variational distribution of the states (11) in more detail, starting
with the expectation over q(Λ). Using (7) and the linearity
property of expectations, we get:

EqΛ [log p(z1:T , s0:T ,Λ; θ̂)]=EqΛ [log p(Λ)] + EqΛ [log p(s0)]

+

T∑
t=1

EqΛ [log p(st | st-1,Λ; θ̂)] + EqΛ [log p(zt | st)] . (23)

The expectations over terms that don’t involve Λ drop out:

EqΛ [log p(s0)] = log p(s0) (24)
EqΛ [log p(zt | st)] = log p(zt | st) . (25)

Furthermore, the variational distribution q(s0:T ) is a function
over states, which means any term not involving the states
acts only as a normalization. Specifically, EqΛ [log p(Λ)] does

not involve any st and may be ignored here. That leaves the
expectation over the state transition:

EqΛ

[
log p(st|st-1,Λ; θ̂)] = − log(2π) + EqΛ [

1

2
log |Λ|

]
− EqΛ [

1

2
(st −Atst-1)

⊤Λ(st −Atst-1)] . (26)

The second term on the right-hand side above does not depend
on states, so it may be ignored. The precision matrix Λ only
appears linearly in the quadratic term and we may thus use
the linearity property to replace it with the mean of q(Λ):

EqΛ [
1

2
(st −Atst-1)

⊤Λ(st −Atst-1)] =

1

2
(st −Atst-1)

⊤(dV)(st −Atst-1) . (27)

Putting it all back together, we have:

EqΛ [logp(z1:T , s0:T ,Λ; θ̂)] =

− 1

2
(s0 −m0)

⊤P−1
0 (s0 −m0)

−
T∑

t=1

1

2
(st −Atst-1)

⊤(dV)(st −Atst-1)

− 1

2
(zt −Bst)

⊤R-1(zt −Bst) + C , (28)

where C represents constant terms, i.e., terms that do not
depend on any st. Exponentiating the above equation yields a
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Fig. 8. Ship navigation dashboard at the 4.8 minutes. (a) Updated trajectory observation, (b) Probability of motion modes (c) Multiple model selection, (d)
Real-time prediction with uncertainty.

(a) (b) (c)
Fig. 9. Prediction error and model selection error for different observation length. (a) mode 1, (b) mode 2, (c) mode 3.

set of factors that are proportional to Gaussian distributions:

q(s0:T ) ∝ exp(EqΛ [log p(z1:T , s0:T ,Λ; θ̂)]) (29)

∝ N (s0|m0,P0)︸ ︷︷ ︸
q(s0)

T∏
t=1

N (st|Atst-1, (dV)-1)N (zt|Bst,R)︸ ︷︷ ︸
q(st | st-1)

.

In trajectory prediction, we are interested in the distributions of
each individual state, i.e., the marginal distributions q(st). We
obtain these using a filtering procedure, starting with q(s0) =
p(s0) and then recursively marginalizing out the previous state,
i.e., q(st) =

∫
q(st |st-1)q(st-1)dst-1. (15), 17 and 18 are based

on the standard predict and update steps for Bayesian filtering
with Gaussian distributions [42, Theorem 4.2], but use (dV)−1

as process noise covariance matrix (as derived in (29) above).
In Equation (19), we claim the optimal variational distribu-

tion of the process noise precision matrix Λ is proportional to a

Wishart distribution. This derivation follows the same steps as
those for the states. We start with the expectation over q(s0:T ):

Eqs [log p(z1:T , s0:T ,Λ; θ̂)]=Eqs [log p(Λ)] + Eqs [log p(s0)]

+

T∑
t=1

Eqs [log p(st | st-1,Λ; θ̂)] + Eqs [log p(zt | st)] . (30)

Terms not involving Λ, i.e., Eqs [log p(s0)] and
Eqs [log p(zt | st)], become part of the normalization
constant and may be ignored for now. In the term involving
the prior distribution, the expectation over the states drops
out: Eqs [log p(Λ)] = log p(Λ). The expectation over the state
transition is:

Eqs [log p(st | st-1,Λ; θ̂)] = (31)
1

2
log |Λ| − 1

2
Est,st-1 [(st −Ast-1)

TΛ(st −Ast-1)] + C .
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(a) (b)
Fig. 10. Variation of ADE with different numbers of modes: (a) Predicting future 90 seconds based on observing a 90-second trajectory. (b) Predicting future
60 seconds based on observing a 120-second trajectory.

Completing the square and distributing the expectation leads
to terms with products of states:

Eqs [s
⊤
t Λst] = tr

(
Λ(mtm

⊤
t +Pt)

)
(32)

Eqs [s
⊤
t ΛAst-1] = tr

(
ΛA(mt-1mt +Pt-1)

)
(33)

Eqs [s
⊤
t-1A

⊤ΛAst-1] = tr
(
ΛA(mt-1mt-1 +Pt-1)A

⊤) . (34)

where tr() represents the trace of the matrix. we have made
use of the Gaussian joint distribution between two states

q(st-1, st) = N (

[
st-1
st

]
|
[
mt-1
mt

]
,

[
Pt-1 Pt-1A

⊤

APt-1 Pt

]
) . (35)

Putting it all back together gives:

Eqs [log p(st | st-1,Λ; θ̂)] =

1

2
log |Λ| − 1

2
(mt −Amt-1)

⊤Λ(mt −Amt-1)

− 1

2
tr
(
Λ(Pt −APt-1 −Pt-1A

⊤ +Pt-1
)
+ C . (36)

Exponentiating the above gives a density function that is
proportional to a Wishart distribution, W(Λ | dt,Vt) where

dt = l + 2 (37)

Vt =
(
Pt −APt-1 −Pt-1A

⊤ +Pt-1

+ (mt −Amt-1)(mt −Amt-1)
⊤)-1

. (38)

where l is the dimensionality of the Wishart distribution. The
product of two l-dimensional Wishart distributions is itself
Wishart distributed:

W(Λ |V1, d1) · W(Λ |V2, d2)

∝ W(Λ | (V−1
1 +V−1

2 )−1, d1 + d2 − l − 1). (39)

In our case, the product of the Wishart prior and the Wishart
distributed terms based on the state transitions in (30) is
W(Λ | d,V) where

d = d0 +

T∑
t=1

[ dt − l − 1 ] (40)

V =
(
V−1

0 +

T∑
t=1

V−1
t

)−1
. (41)

These are the parameters described after Equation (19).
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