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ABSTRACT

Probabilistic programming provides a structured approach to sig-

nal processing algorithm design. The design task is formulated

as a generative model, and the algorithm is derived through auto-

matic inference. Efficient inference is a major challenge; e.g., the

Shafer-Shenoy algorithm (SS) performs badly on models with large

treewidth, which arise from various real-world problems. We focus

on reducing the size of discrete models with large treewidth by stor-

ing intermediate factors in compressed form, thereby decoupling the

variables through conditioning on introduced weights.

This work proposes pruning of these weights using Kullback-

Leibler divergence. We adapt a strategy from the Gaussian mixture

reduction literature, leading to Kullback-Leibler Tensor Belief Prop-

agation (KL-TBP), in which we use agglomerative hierarchical clus-

tering to subsequently merge pairs of weights. Experiments using

benchmark problems show KL-TBP consistently achieves lower ap-

proximation error than existing methods with competitive runtime.

Index Terms— Bayes methods, Tensors, Dimensionality reduc-

tion, Approximation algorithms

1. INTRODUCTION

Modern technology relies heavily on signal processing [1]. Devel-

opment of signal processing algorithms is a complex problem. To

reduce the engineering cost a structured approach such as the proba-

bilistic programming paradigm [2] can be used.

It considers all quantities to be random variables. Their asso-

ciations are described with a joint probability distribution function

(PDF) in a so called generative model. Running an inference query

on this model results in a posterior PDF over a relevant subset of

the random variables, conditioned on the observed random variables.

This posterior is derived from the generative model through the ax-

ioms of probability and related identities such as Bayes’ rule. Fi-

nally, the answer to the signal processing task, i.e. an estimate for

the relevant quantities (such as the state in an estimation problem),

follows simply by plugging in the observed values.

Domain-specific languages and tools such as ForneyLab.jl [3] aid

with formulation of the generative model. Once formulated, prob-

abilistic programming promises fully automatable derivation (infer-

ence) of the posterior.

Efficient inference is its main challenge: in general, it is NP-hard

in the number of variables [4]. In fact, even efficient computation of

approximate solutions is often problematic [4]. The reason is that the

language of probability is sufficiently flexible to allow expression of

known-difficult combinatorial problems such as 3SAT [5].

The only way to ameliorate this is to restrict the accepted input

tasks in some way. For example, one can force all random variables
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to be normally distributed. In that case, many tasks related to filter-

ing and smoothing can still be formulated intuitively [6]. However,

expression of non-linear signal processing has now become difficult.

One can also use approximate inference algorithms such as sam-

pling (e.g. Markov chain Monte Carlo [7]) or variational methods

(e.g. mean field [8]). However, these methods are also limited by

the fundamental hardness of inference, i.e. there exist input tasks for

which they will either approximate the posterior badly or require ex-

orbitant resources. Conversely, it is often difficult to find conditions

under which the approximations are guaranteed to be accurate. This

is important because if these conditions do not exist the designer

cannot trust the solutions given by these methods to be correct.

Finally, one can attempt to solve inference exactly using the

Shafer-Shenoy algorithm (SS) [9]. SS is efficient only when the ran-

dom variables in the task exhibit strong conditional independence,

or more precisely, when the model has small treewidth [10].

In this work, we follow the last approach and investigate the per-

formance of SS on models with large treewidth. We focus on mod-

els which are the product of many factors each depending on a small

number of discrete random variables. Examples of such tasks are

the Linkage and Promedus problem sets from the UAI2014 infer-

ence competition [11]. These are based on real-world datasets and

have been used as benchmark problems by other authors [12, 13].

Although the individual factors are small, overall treewidth of these

problems is considerable due to circular dependencies. Hence, SS

performs badly in terms of runtime or memory usage.

We aim to reduce model size by compressing the intermediate

factors of SS, thereby improving performance. We do so through the

naive Bayes assumption, which states that all variables in a factor can

be made independent when conditioned on an introduced auxiliary

variable. By pruning the alphabet of this auxiliary variable, the other

variables are partially decoupled. This allows the factor to be stored

in compressed form. The mathematics are directly related to mixture

models [14, Ch. 9] and tensor decompositions [15].

Wrigley et al.’s Tensor Belief Propagation (TBP) [12] is closely

related to our approach. They enforce sparsity by sampling from the

auxiliary variables. Although this allows for derivation of conditions

under which the method performs well, there exist other compres-

sion strategies that will enable us to apply TBP when sampling fails

or is too computationally expensive. This is important because it al-

lows for a more universal application of probabilistic programming,

thereby reducing cost of signal processing algorithm design.

This paper substantiates that use of the Kullback-Leibler diver-

gence (KL) [16] achieves better compression than sampling. In par-

ticular, we adapt Runnalls’ Gaussian mixture reduction strategy [17],

leading to Kullback-Leibler Tensor Belief Propagation (KL-TBP).

Our approach is as follows. First, we review SS (Sec. 2) and TBP

(Sec. 3). Sec. 4 introduces KL-TBP. Next, performance with TBP is

compared using the Linkage and Promedus problem sets and Ising

grids in Sec. 5. Conclusions are drawn in Sec. 6.
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2. INFERENCE USING SHAFER-SHENOY ALGORITHM

This section summarizes SS through a toy example with joint PDF:

p[x1, · · · , x6]
def
∝ p1[x1, x2]p2[x2, x3, x5]p3[x2, x4]p4[x4, x5]p5[x5, x6],

visualized in Fig. 1a. Each xk is drawn from a discrete, finite alpha-

bet Xk. Our inference query is: p[x6|x1] =?.

x1 x6

p1 p5

x5

x3

x4

x2

(a) Venn diagram. Nodes represent the variables. Colored areas rep-

resent the factors. The gray arrow denotes a circular dependency.

x1 

∢
x4

x3

x6p1 p5
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Bag 1

Bag 2

Bag 3 Bag 4m1→3[x2] m3→4[x5]

m2→3[x2, x5]
p[x6|x1=∢]

x5x2

(b) Junction tree. An overlay of bags is added to the Venn diagram.

Factors always fit inside at least one bag; variables are shared be-

tween bags. Intermediate factors are passed over the connections

(➞) between the bags until the inference query is answered.

Fig. 1: Graphical representation of example generative model.

First, to resolve cyclic dependencies, a junction tree (JT) is built

(Fig. 1b). There are many ways to do so, but it remains unclear which

is best for TBP [12, Sec. 6]. We opt for Tamaki’s heuristic solver

[18], since it performed well in PACE2017 [19]. The JT only needs

to be built once. Next, the query is answered (up to a normalization

constant) for a given observation x1 = ∢ by passing intermediate

factors (sum-product messages) over the JT:

m2�3[x2, x5]
def
= ∑

x3∈X3

p2[x2, x3, x5], m1�3[x2]
def
= p1[x1 = ∢, x2],

m3�4[x5]
def
= ∑

x2∈X2

∑
x4∈X4

m1�3[x2]m2�3[x2, x5]p3[x2, x4]p4[x4, x5],

p[x6|x1 = ∢] ∝ ∑
x5∈X5

m3�4[x5]p5[x5, x6]. (1)

This reveals the two main operations of SS: multiplication of fac-

tors and marginalization of nuisance variables. The latter makes SS

expensive when the bags contain many variables, i.e. large treewidth.

3. TENSOR BELIEF PROPAGATION

Theorem 1 (Naive Bayes assumption). For any factor f[x1, · · · , xK ]
with xk ∈ Xk, there exists a (lossless) compressed form:

f[x1, · · · , xK ] = ∑
w∈W

f[w]
K

∏
k=1

f[xk|w], (2)

where w ∈ W is an introduced auxiliary variable (weight) with al-

phabet of |W | ≤ ∏
K
k=1|Xk| symbols. All f[·] are non-negative.

Proof. Choose w
def
= (w1, · · · , wK) ∈ W

def
= X1×·· ·×XK and:

f[w]
def
= f[x1 = w1, · · · , xK = wK ], f[xk|w]

def
=

{

1 if xk = wk

0 otherwise
. (3)

This is a one-hot encoding and hence equality follows directly.

Remark. To allow interpretation as PDFs, we normalize as:

∑
xk∈Xk

f[xk|w] = 1 ∀k ∈ 1..K, ∑
w∈W

f[w] = 1. (4)

In TBP, all factors (both from the joint PDF and the intermediate

messages) are forced to be in compressed form. This allows for

trivial marginalization:

∑
xk′∈Xk′

f[x1, · · · , xK ] = ∑
w∈W

f[w]
K

∏
k=1
k 6=k′

f[xk|w]. (5)

The form is also closed under multiplication. However, the prod-

uct of two factors with weight alphabets W1 and W2 will have

weight alphabet W1×W2, i.e. alphabet growth is exponential in the

number of multiplications. Thus, TBP trades efficient marginaliza-

tion for the necessity of weight pruning during multiplication.

3.1. Storage requirements

Storage of a full probability table for f[x1, · · · , xK ] requires

∏
K
k=1|Xk| floating point numbers. In compressed form, this becomes

|W |
(

1+∑
K
k=1|Xk|

)

. Then, required storage does not grow exponen-

tially with dimensionality K, as long as growth of |W| is limited.

Indeed, this is the idea of the canonical polyadic tensor decompo-

sition [20], which in 2D reduces to the (truncated) singular value

decomposition. This motivates feasibility of weight pruning.

3.2. Weight pruning by sampling

Wrigley et al. [12] choose a sampling approach: a pruned alpha-

bet Ŵ is constructed by drawing
∣

∣Ŵ
∣

∣ < |W| realizations of w with

probability f[w]. Undrawn symbols of W are discarded. Hence, it

tends to fail when many terms are equally important, i.e. when f[w]
has high entropy. As a corollary, this means the one-hot encoding

strategy (3) combines poorly with the sampling approach. Indeed,

Wrigley et al. use a tensor decomposition [21] to perform the ini-

tial conversion to compressed form. Their results are sensitive to the

settings of this decomposition algorithm (Fig. 2c–d, r = 2 vs. r = 4).

4. PRUNING WITH KULLBACK-LEIBLER DIVERGENCE

KL [22, (2.26)] measures how accurately f̂ approximates factor f :

D
(

f‖ f̂
) def
= ∑

x1∈X1

· · · ∑
xK∈XK

f[x1, · · · , xK ] log2

f[x1, · · · , xK ]

f̂[x1, · · · , xK ]
. (6)

It is not an arbitrary metric and strongly founded in information the-

ory, where it quantifies how much information (in bits) is lost if a

code for f̂ is applied to f [22, Sec. 2.3]. It also follows from a set of

axioms in the context of inductive inference [23].

Ideally we would minimize (6) directly while constraining f̂ to

be of compressed form. Unfortunately, this appears to be a difficult

non-convex optimization problem, unless
∣

∣Ŵ
∣

∣ = 1. For that case,

Th. 2 gives the solution and Th. 3 bounds the corresponding KL.
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Theorem 2 (Principal component). Given a factor f in the com-

pressed form of Th. 1, the best (in KL sense) approximation f̂ ⋆ in

compressed form with associated alphabet Ŵ = {1} is:

f̂⋆[xk|ŵ = 1]
def
∝ ∑

w∈W

f[w]f[xk|w], f̂⋆[ŵ = 1]
def
= 1. (7)

Proof. This follows from application of [24, Th. 2].

Theorem 3 (KL upper bound). Given f and f̂ ⋆ from Th. 2,

D
(

f‖ f̂ ⋆
)

≤ ∑
w∈W

f[w]
K

∑
k=1

∑
xk∈Xk

f[xk|w] log
f[xk|w]

f̂⋆[xk]
. (8)

Proof. This follows from convexity of KL [22, Th. 2.7.2].

In the context of Gaussian mixture reduction, Runnalls gives anal-

ogous results for the normal distribution in [17, Th. 2 & 3]. He

observes (8) can be used as a (symmetric) distance metric between a

pair of terms (corresponding to two weights wi, w j ∈W) from f . By

running a clustering algorithm on the terms and then merging each

cluster into its principal component using Th. 2, the weight alphabet

is pruned while heuristically minimizing (6).

In our proposed method, Kullback-Leibler Tensor Belief Propa-

gation (KL-TBP), we opt for agglomerative hierarchical clustering

(AHC) [25, Sec. 5.1], following Runnalls approach. In AHC, (8) is

evaluated for every pair of terms. The pair with smallest KL upper

bound is greedily merged using Th. 2. This is repeated until the de-

sired amount of terms remains. Note that for the next iteration (8)

only needs to be re-evaluated for pairs involving the new term; all

others can be cached from the previous iterations. Nonetheless, AHC

is computationally expensive because it operates on pairs of terms.

In the context of SS, where factors are the product of other factors,

this means AHC operates on pairs of pairs of terms. However, our

results show that this is offset by excellent clustering performance,

allowing for a relatively small number of terms.

Because AHC prunes by merging instead of discarding, it com-

bines well with the one-hot encoding strategy (3). This allows us

to compute small SS intermediate messages exactly, only convert-

ing on-the-fly to compressed form once message size exceeds the

desired memory limit.

Due to space limitations, we do not provide a full algorithm listing

for KL-TBP. However, our C implementation is available on request.

5. RESULTS

Firstly, in Fig. 2 we compare performance of KL-TBP with TBP

and other methods from the literature. To this end, we adopt the

benchmark problems and error metric from Wrigley et al. [12] and

Zhu and Ermon [13]. Aggregation of their results into one figure

allows for direct comparison with our results.

The benchmark consists of the UAI2014 Promedus (medical di-

agnosis) and Linkage (genetic linkage) problem sets, as well as Ising

grids (ferromagnetism) [26, Sec. 2.5] with attractive and mixed in-

teractions with parameters cf. [12]. For each problem instance, the

marginal posteriors over each random variable are queried. The error

metric is the L1 error over all variables and states:

L1(p‖ p̂)
def
=

1

K

K

∑
k=1

1

|Xk|
∑

x′k∈Xk

∣

∣p
[

xk = x′k| . . .
]

−p̂
[

xk = x′k| . . .
]∣

∣, (9)

where p̂[xk| . . . ] are our solutions, and p[xk| . . . ] are the true posteriors

as provided by UAI2014 or exactly computed using SS (Ising grids).

For KL-TBP and TBP, weight alphabet size
∣

∣Ŵ
∣

∣ is limited for

all intermediate messages in compressed form. Since KL-TBP al-

lows on-the-fly conversion from full factors, we impose the addi-

tional constraint that these do not exceed the storage size of their

compressed equivalent (see Sec. 3.1).

Our method consistently outperforms TBP. It also achieves lower

error than other approximate inference methods (without weight al-

phabet) such as mean field. In terms of runtime, for
∣

∣Ŵ
∣

∣ = 105

Wrigley et al. report an average of about 10 minutes (Linkage) and

3 minutes (Promedus) per instance (Intel Core i5, 1.4 GHz). We

achieve comparable performance for
∣

∣Ŵ
∣

∣= 10, with corresponding

runtimes of 2 minutes (Linkage) and 15 seconds (Promedus) per in-

stance (Intel Core i9-9900K, 3.6 GHz). This confirms that KL-TBP

(with small alphabet) is competitive with TBP (with large alphabet).

Note that our runtimes do not include the construction of the junc-

tion tree, since that task can be carried out without observations

(evidence). We ran Tamaki’s heuristic solver [18] with a limit of

10 minutes per instance (Intel Core i7-7560U, 2.4 GHz). However,

good solutions were already returned within 2 minutes per instance.

Wrigley et al. used a min-fill heuristic for junction tree construction

which we expect to have small computational cost.

Our runtime does become excessive for large alphabets

(i.e.
∣

∣Ŵ
∣

∣ ≥ 100 for the UAI2014 problems) due to AHC. Although

not necessary to solve the representative benchmark problems, this

could be ameliorated by parallelizing the distance computations (our

AHC implementation used a single core), or switching to a cheaper

(but less accurate) clustering algorithm.

Secondly, in Fig. 3 we investigate the relation between model

size and performance of KL-TBP with a fixed storage limit. Fig. 3a

shows model size of each UAI2014 problem instance, both in terms

of the largest factor in the joint PDF and the largest SS intermedi-

ate message (with junction tree constructed as above). When SS is

implemented in a straight-forward way (i.e. without loop transfor-

mations cf. Halide [27]), the latter is indicative of required memory.

Fig. 3b shows performance of KL-TBP with a limit of 1000 float-

ing point numbers per factor. Thus, actual weight alphabet size
∣

∣Ŵ
∣

∣

is variable and follows from the number of variables (Sec. 3.1).

We measure performance using KL (6) for each marginal:

D(p[xk| . . . ]‖p̂[xk| . . . ]), (10)

and report mean and 90th quantiles over all random variables. We

exclude the few ‘random’ variables with |Xk| = 1 for which KL is

zero by definition. Most posterior variables in these problems have

|Xk| ≈ 2 and hence contain at most 1 bit of entropy. Hence, KL

divergences approaching 1 bit are significant. This way of reporting

performance is more fine-grained than mean L1 error.

Instances which fit inside the limit are solved exactly, since no

messages need compression and hence KL-TBP reduces to exact SS.

Linkage problems compress well, resulting in small errors even for

problems with large storage requirement. The Promedus set is more

difficult to compress, resulting in a trend of increasing divergence

with increasing problem size, which was also reflected in mean L1

error, which is larger for Promedus than for Linkage (see Fig. 2).

Average runtime is 1¡ minute (Linkage) and 7 seconds (Promedus).

6. CONCLUSION

We have formulated Tensor Belief Propagation using Kullback-

Leibler divergence for weight pruning. The experiments support our

claim that it outperforms pruning by sampling.

Future work includes formulation of a tractable error bound on

(10) using Th. 3, and extension to continuous random variables.
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(b) Ising grids (10×10; mixed interactions; 100 random models).
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Fig. 2: Comparison of KL-TBP with other methods from the literature. Performance is measured using mean L1 error over all variables and

states. Error bars denote standard error over the problem set. KL-TBP denotes our results. Random projection method results taken from Zhu

and Ermon [13, Tbl. 1]. TBP and other results taken from Wrigley et al. [12, Fig. 1 & 3].
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Fig. 3: Relation between model size and KL-TBP performance.
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