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ABSTRACT
Active Inference is an emerging framework for designing in-
telligent agents. In an Active Inference setting, any task is
formulated as a variational free energy minimisation prob-
lem on a generative probabilistic model. Goal-directed be-
haviour relies on a clear specification of desired future ob-
servations. Learning desired observations would open up the
Active Inference approach to problems where these are dif-
ficult to specify a priori. This paper introduces the BAyesian
Target Modelling for Active iNference (BATMAN) approach,
which augments an Active Inference agent with an additional,
separate model that learns desired future observations from a
separate data source. The main contribution of this paper is
the design of a coupled generative model structure that fa-
cilitates learning desired future observations for Active Infer-
ence agents and supports integration of Active Inference and
classical methods in a joint framework. We provide proof-of-
concept validation for BATMAN through simulations.

Index Terms— Active Inference, variational inference,
Graphical Models, Adaptive Agents, Bayesian

1. INTRODUCTION

Active Inference is emerging as a biologically grounded
framework for designing intelligent agents. Originating in
the field of computational neuroscience, it was conceived as
a Bayesian model of how brains of biological agents perceive
and act [1].

A hallmark feature of Active Inference is that we can cast
any task as a variational free energy minimisation problem on
a probabilistic generative model[1]. Recent work has started
to apply these principles to the design of synthetic agents [2,
3, 4].

To elicit goal-directed behaviour from minimising free en-
ergy, Active Inference relies on encoding desired future obser-
vations. The usual approach to this encoding step [5, 6, 7] is
to employ goal priors specifying desired future observations.
However this may become a bottleneck for applying Active
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Inference in situations where desired future observations are
either unknown or prohibitively difficult to specify. In this
paper we introduce an alternative approach to encoding goals
by extending the notion of what can constitute a goal prior.

The main contribution of this paper is the Bayesian Tar-
get Modelling for Active iNference (BATMAN) architectural
framework for designing Active Inference agents. We show
that the notion of a goal prior can be extended to include a
full probabilistic model. This move allows alternate encod-
ings of attracting states, providing an opportunity to elicit goal
directed behaviour without having to specify future observa-
tions explicitly. An extended view of goal priors may prove
relevant to the design of synthetic Active Inference agents. As
an illustrative example we consider the problem of teaching
an Active Inference agent where to park a cart from perfor-
mance appraisals.

2. ACTIVE INFERENCE

Active Inference is a unifying framework for perception and
action [1, 5]. At its core, Active Inference assumes that an
agent entails a probabilistic model of its environment and is
continually engaged in the task of improving accuracy and
minimising complexity of this model [1]. Formally this is
accomplished through minimising variational free energy be-
tween observed and predicted sensory inputs [1]. The agent
can accomplish this in two ways: Either by updating its gen-
erative model (perception/learning) or performing actions on
the environment to elicit inputs consistent with its model.

At the heart of an Active Inference agent is a generative
model p(x, y, u). This encompasses sequences of observa-
tions y and two sequences of hidden states x and u. Internal
states x model the evolving state of the agent while control
states u affect environmental states through the agents actu-
ators. The generative model takes the form of a dynamical
system since the agent must consider the future in order to
satisfy its goals.

Additionally the agent is equipped with a posterior or
recognition model q(x, yt+1:T , u) that encodes approximate
Bayesian posterior beliefs about the agent’s control states u,
internal states x after having observed data and observations
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Fig. 1. Block diagram showing communication channels be-
tween elements of the experimental setup.

yt+1:T after the current time step t until some horizon T . To
realise actions and receive observations the agent is equipped
with a set of actuators and sensory channels.

To elicit goal directed behaviour the agent is usually en-
dowed with goal priors [1, 5] specifying observations that the
agent expects to encounter in the future. This constrains the
inference problem ensuring the agent plans a sequence of ac-
tions consistent with the goal. The function of goal priors is
thus to constrain the inference problem by introducing attrac-
tors in the agents state space [8]. This formulation is consis-
tent across both discrete and continous time versions of Ac-
tive Inference. For clarity we focus on the discrete time ver-
sion going forward. Applying BATMAN in continous time
constitutes a potential avenue for future research.

3. A CART PARKING TASK

Consider an agent tasked with parking a cart on a rail. The
cart is equipped with an engine allowing it to move back and
forth. In addition we attach a sensory channel that provides
noisy binary appraisals as to whether the cart is moving away
from or towards the target. Finally, the cart is equipped with
a sensor that provides information about its current position.
The simulation consists of running separate models for the
environment (Sec. 3) and the agent (Sec. 4). A schematic rep-
resentation of the entities in our simulation and the quantities
passed between them within a time step is shown in Fig. 1.

Our simulated environmental process defines (1) the equa-
tions of motion governing movement of the cart as well as
the processes for generating (2) the position and (3) appraisal
data. This requires three functions - one for each sub-process.

Using bold font to denote environmental variables, we
define the equations of motion in terms of the current state
xt ∈ R (the position) of the cart at time t and action at ∈ R
(the force) administered by the agent at time t. We define the
update equation

xt = xt−1 + tanh(at) , (1)

where the nonlinearity tanh(·) limits the velocity of the cart
to the interval (−1, 1). This constraint captures the upper
limit on velocity the engine can generate.

To produce sensory input for the agent on its position, we
assume fixed measurement noise and draw measurements yt

by

yt ∼ N (xt, 1) . (2)

Throughout the paper we will use the mean-variance pa-
rameterisation for all Gaussian distributions. Finally, the
environment provides appraisals based on evaluations of the
utility function

U(xt;x
∗, λ) = −

√
λ|xt − x∗| (3)

where x∗ denotes the true target and λ is a precision param-
eter controlling the width of the utility function. In our ex-
periments we work in 1D but scaling to higher dimensions is
possible [9].

To compare two positions xt,xt−1 and generate a perfor-
mance appraisal signal rt, we rely on the difference in respec-
tive utilities as calculated by Eq. 3. This is passed through
a logistic function and the output is used to parameterise a
Bernoulli distribution, from which we sample rt by

rt ∼ Ber (σ(U(xt;x
∗, λ)− U(xt−1;x

∗, λ))) . (4)

The environmental process governing our experiment is thus
fully described by Eqs. 1- 4.

4. THE AGENT

Our proposed agent architecture relies on coupling two mod-
els. The first model, denoted the Physical Model, performs
inference tasks related to trajectories and policies. This part
mirrors an Active Inference setup similar to [10]. The sec-
ond model, denoted the Target Model, replaces the notion of
a goal prior. The task of this model is to infer the correct goal
state from performance appraisals rt.

In order to visualise the two models, we employ the
Forney-style Factor Graph (FFG) formalism. An FFG is a
representation of a factorized probability distribution where
edges represent variables and nodes represent factors. The
edge of an observed variable is terminated by a small black
square. If a section of the FFG repeats over time steps, we
will indicate this by an ellipsis. An edge is connected to
a node iff the variable is an argument of that factor. For a
thorough introduction to FFGs, see [11].

4.1. The Physical Model

The Physical Model follows a common state space factoriza-
tion [12] where we assume that successive states obey the
Markov property. A single time slice of the corresponding
FFG is shown in Fig. 2. Let xt denote the hidden internal
state of the agent, yt an observation and ut a (hidden) control
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Fig. 2. FFG of the Physical Model at time t.

state at time t. At each time step the generative model for the
next T time steps is given by

p(x, y, u|x̂∗) ∝ (5)

p(xt−1) p
′(yt+T |x̂∗)︸ ︷︷ ︸

Goal Prior

t+T∏
k=t

p(yk|xk)p(xk|xk−1, uk)p(uk)︸ ︷︷ ︸
State Space Model

.

We use the notation of [10] to write goal priors. δ(·) denotes
the Dirac delta. x̂∗ is set by the Target Model and detailed in
Sec. 4.2. We specify the factors in Eq. 5 as follows:

p(xk|xk−1, uk) = δ(xk−1 + tanh(uk)− xk) (6a)
p(x0) = N (x0|x0, 1) (6b)

p(yk|xk) = N (yk|xk, 1) (6c)
p(uk) = N (uk|0, 10) (6d)

p′(yk|x̂∗) = δ(yk − x̂∗) . (6e)

In Eq. 6a, we assume the Physical Model has access to an
accurate and deterministic transition model. For the mathe-
matical details of this operation we refer to [11].

4.2. The Target Model

The Target Model induces attracting states for the agent by pa-
rameterising the goal prior. The task of this model is to infer
the true target position x∗ and communicate this to the Phys-
ical Model by fixing the value of x̂∗. To elicit goal directed
behaviour we assume the agent has accurate knowledge of the
functional form of the environmental utility function, Eq. 3.
x∗ estimates the position of the peak of the utility function,
corresponding to x∗. We consider an adaptation of [9] for the
Target Model:

p(rt, bt, bt−1, x
∗, λ|yt, yt−1) =

p(λ)p(x∗)p(bt|yt)p(bt−1|yt−1)p(rt|x∗, bt, bt−1, λ) (7)

N =

∼

=

N =

p (rt|x∗, bt, bt−1, λ)

N N

· · ·

· · ·
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Fig. 3. FFG of a single time slice of the Target Model.

where

p(bt|yt) = N (bt|yt, 1) (8a)
p(bt−1|yt−1) = N (bt−1|yt−1, 1) (8b)

log p(λ) = N (λ|0, 1) (8c)
p(x∗) = N (x∗|x0, 10) (8d)

p(rt|x∗, bt, bt−1, λ) =
Ber(rt|σ(U(bt;x

∗, λ)− U(bt−1;x
∗, λ))) (8e)

x̂∗ ∼ q(x∗) . (8f)

An FFG of a single time slice of the model is shown in Fig 3.
To link the Target and Physical Models we sample the current
goal state x̂∗ ∼ q(x∗). The sample is then used to param-
eterise the goal prior p′(yk|x̂∗) of the Physical Model. Ex-
periments utilizing the full posterior distribution showed de-
creased performance due to compound variance from q(x∗)
and p(yt+T |xt+T ). For an exposition on the role of precision
in controlling action, we refer to [13, 14]

Simulation Loop:
for t = 1, 2, . . . do

Agent
Observe new data (yt, rt)
Infer new Target Model beliefs q(x∗),q(λ)
Sample new goal prior x̂∗ ∼ q(x∗)
Infer new Physical Model beliefs q(ut)
Sample new action at ∼ q(ut+1)

Environment
Update environmental states xt+1

Generate new observations yt+1, rt+1

End

Fig. 4. Experimental Protocol
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Fig. 5. Trajectory of true state xt and mean posterior belief over x∗ during an experimental run. x∗ augmented by error bars of
1 standard deviation.

5. EXPERIMENTS

We validated the BATMAN approach on the problem of learn-
ing to park a cart on rails from binary performance appraisals.
The agent’s goal is to reach a particular point x∗ on the rails,
within a margin of uncertainty. We simulated the environ-
mental processes described by Eqs. 1- 4. We initialise the
environment with x0 = 10, x∗ = 20, λ = 7 and the Phys-
ical Model with parameter T = 2. The Physical Model was
implemented in ForneyLab [15] and the Target Model in
Turing [16]. The steps taken within a single time step is
presented in Fig. 4. The experiment ran for 500 iterations.
Initially we perform inference in the Target Model by Sequen-
tial Monte Carlo [17], drawing 1000 samples at each time
step. The goal is to obtain posterior estimates of q(x∗) from
which to sample an informative goal prior and q(λ) to re-
fine parameter estimates for the next iteration. Subsequently
a sample from the posterior x̂∗ ∼ q(x∗) is passed to the goal
prior of the physical model. Inference in the Physical Model
is performed by sum-product message passing [18] allowing
us to obtain exact marginals and infer posterior beliefs over
control states q(u). As seen in Fig. 5 the agent successfully
learns the true goal x∗ (blue line) and positions the cart (green
line) close. This provides a proof-of-concept validation for
our approach.

6. RELATED WORK

Utilising coupled models in Active Inference has mostly been
studied in the neuroscience community. In [19] the authors
investigated the human visual system using hierarchical cou-
pled models to imitate brain structure. Notably [19] interfaced

two models at the level of observations by attaching them to
the same inputs. This results in an architecture that is close to
BATMAN but differs in two important ways: one, BATMAN
attaches only at the goal prior and two, BATMAN utilizes
a separate feedback channel. These differences define BAT-
MAN as specifically a mechanism for inducing goal-directed
behaviour. In [20] the coupling of models was likened to con-
nections between cortical areas, leading to a formulation of
cortical connectivity as message passing algorithms. While
both of these works are impressive, their focus is mainly the
theoretical and neuroscientific aspects of Active Inference.
Exploring the relation between the BATMAN framework and
the biological plausibility of [19, 20] is a promising direction
for future research.

7. DISCUSSION AND CONCLUSIONS

In this paper we introduced the BATMAN approach to Active
Inference-based agent design. Specifically we showed that
by extending the goal prior to a full probabilistic model, it
is possible to induce attractors in the agents state space that
are consistent with goal directed behaviour without having to
manually specify future observations. We provided proof-of-
concept validation of our approach through simulation. This
approach provides a novel way of eliciting goal directed be-
haviour from synthetic Active Inference agents that may al-
low scaling to domains where goal priors are prohibitively
difficult to specify a priori.
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