
ForneyLab.jl: a Julia Toolbox for Factor

Graph-based Probabilistic Programming ∗

Thijs van de Laar, Marco Cox and Bert de Vries

Eindhoven University of Technology, Eindhoven, NL
Email: t.w.v.d.laar@tue.nl

Abstract

Scientific modeling concerns a continual search for better models for
given data sets. This process can be elegantly captured in a Bayesian
inference framework. ForneyLab enables largely automated scientific de-
sign loops by deriving fast, analytic algorithms for approximate Bayesian
inference.

ForneyLab

Scientific modeling concerns a continual search for better models for given data
sets. This process can be elegantly captured in a Bayesian (probabilistic) in-
ference framework. ForneyLab is an open source probabilistic programming
toolbox that enables largely automated design loops by deriving fast, analytic
algorithms for message passing-based approximate Bayesian inference.

Probabilistic programming extends conventional programming languages with
the facility to compute rationally with random variables through probability cal-
culus. ForneyLab is a Julia package that allows the user to specify a probabilistic
model and pose inference problems on those models. In return, FL automatically
constructs a Julia program that executes a message passing-based approximate
inference procedure. In conjunction with a specification of (possibly stream-
ing) data sources, the inference program can be executed to fit the data to the
model. Additionally, ForneyLab provides a measure of the performance of the
data fit, thus facilitating comparison to alternative models. Typical applications
include the design of dynamic models for (Bayesian) machine learning systems,
statistical signal processing, computational neuroscience, etc.

More specifically, a design cycle in FL consists of three phases. First, in the
build phase, the end user specifies a (probabilistic) model. Through the use of
macros, the model is specified in a domain-specific syntax that strongly resem-
bles notational conventions in alternative probabilistic programming languages.

∗Presented at JuliaCon 2018. Presentation available at https://youtu.be/RS4hJ4oBr9c .

1

Usually, even complex model specifications fit on less than one page of code.
Under the hood, ForneyLab builds a Forney-style factor graph (FFG), which is
a computational network representation of the model. A strong feature of the
FFG formalism includes its extremely modular make-up, which allows re-use of
computational inference primitives. The choice for FFG-based model specifica-
tions (and consequently, message passing-based inference procedures) is where
ForneyLab differs from competing probabilistic programming languages (aside
from our choice for a native Julia realization).

Next, in the schedule phase, the user specifies the inference problem. This
is usually encoded by a few lines of code. ForneyLab then automatically de-
rives a message passing algorithm that, when executed, computes the posterior
marginal probability over the desired variables. The generated message pass-
ing code may contain thousands of code lines, depending on the size of the
model. A clear asset of message passing-based inference algorithms is that they
are comprised of many cheap and analytical updates that can be re-used across
models, and furthermore can potentially be implemented on dedicated (parallel)
hardware configurations. This contrasts to modern sampling-based approaches
to inference, such as Markov chain Monte Carlo and Automatic Differentiation
Variational Inference, which usually require massive computational resources.

In the final infer phase, ForneyLab parses and executes the automatically
generated inference program. For the user, this action is initiated by one state-
ment. Additionally, a separate function can be generated to evaluate the model
fit, which provides insights on model quality and algorithm convergence during
inference.

ForneyLab relies heavily on Julia’s meta-programming functionality. Not
only does it use macros for the model specification, but the main output is also
a Julia program by itself. This flexibility, together with benefits of the modular
FFG approach, makes it a powerful tool for a scientist or engineer who wants
to develop models for a given data set.

Example

Assume that we have time-dependent noisy observations y_t of the position
of a (one-dimensionally moving) car, and that we are interested in inferring
(tracking) the hidden trajectory x_t of the car in real-time.

First, we build a probabilistic model, which expresses our belief for how the
data y_t are generated from the hidden state x_t:

2

placeholders for prior statistics

x_t_prior_m = placeholder(:x_t_prior_m)

x_t_prior_v = placeholder(:x_t_prior_v)

@RV x_t_prev ~ GaussianMeanVariance(x_t_prior_m, x_t_prior_v)

state prior

@RV x_t ~ GaussianMeanVariance(x_t_prev, 0.05) # state transition

@RV y_t ~ GaussianMeanVariance(x_t, 2.0) # observation

placeholder(y_t, :y_t) # placeholder for data

Next, we schedule the algorithm by stating our inference problem (tracking
the hidden state x_t):

algo = sumProductAlgorithm(x_t)

The resulting algorithm is a Julia function that accepts a data dictionary (shown
below). The algorithm computes consecutive messages through tabulated (an-
alytic) update rules. These messages are used as intermediate results, (e.g., the
computation for message two requires message one), and in the end combine to
the marginal posterior result (the marginal for x_t). Explicitly cleaning out the
intermediate results of these message sequences would reveal that the algorithm
evaluates to the well-known Kalman filtering result. However, a big advantage
of the followed procedure is that this result is derived automatically by Forney-
Lab without burdening the end user with algebraic details. The following code
fragment is automatically generated:

function step!(data::Dict, marginals::Dict=Dict(),

messages::Vector{Message}=Array{Message}(3))

messages[1] = ruleSPGaussianMeanVarianceOutVPP(nothing,

Message(Univariate, PointMass, m=data[:x_t_prior_m]),

Message(Univariate, PointMass, m=data[:x_t_prior_v]))

messages[2] = ruleSPGaussianMeanVarianceOutVGP(nothing,

messages[1], Message(Univariate, PointMass, m=0.05))

messages[3] = ruleSPGaussianMeanVarianceMPVP(

Message(Univariate, PointMass, m=data[:y_t]), nothing,

Message(Univariate, PointMass, m=2.0))

marginals[:x_t] = messages[2].dist * messages[3].dist

return marginals

end

3

Finally, we infer the result by recursively applying this algorithm to an
online data stream. After parsing and evaluating the generated program, a
single time-step is evaluated as

eval(parse(algo))

data = Dict(:y_t => y_t, # new datum

:x_t_prior_m => x_t_prior_m, # prior statistics

:x_t_prior_v => x_t_prior_v)

marginals = step!(data) # infer posterior

x_t_post_m = mean(marginals[:x_t])

x_t_post_v = var(marginals[:x_t])

This demo illustrates how ForneyLab uses Julia, and how the toolbox au-
tomatically and flexibly derives complex algorithms through an intuitive user
interface.

4

