
ForneyLab.jl: Fast and flexible automated inference
through message passing in Julia ∗

Marco Cox
m.g.h.cox@tue.nl

Eindhoven University of Technology
Eindhoven, the Netherlands

Thijs van de Laar
t.w.v.d.laar@tue.nl

Eindhoven University of Technology
Eindhoven, the Netherlands

Bert de Vries
bdevries@ieee.org

Eindhoven University of Technology &
GN Hearing, Eindhoven (NL)

1 INTRODUCTION

To accommodate automatic (Bayesian) inference in a large class
of models, probabilistic programming systems usually rely on in-
ference methods that require no manual derivations. Most of these
methods can be categorized into two families: (i) MCMC methods,
which generate samples from the exact posterior distribution, and
(ii) variational methods, which aim to optimize the parameters of
a tractable approximation to the true posterior. To avoid model-
specific derivations, variational methods in this setting are often
based on stochastic optimization, yielding algorithms such as black-
box variational inference (BBVI) [8] and automatic differentiation
variational inference (ADVI) [4].

While these ‘derivation-free’ algorithms can perform inference
in a wide range of models, their generality comes at the price of
significant computational load. In some cases, this price is inherent
to the model at hand: we might simply not be able to construct an
algorithm that can perform inference at a significantly lower com-
putational cost. However, there is also a large family of practical
models (like the random walk model we will discuss in this paper)
for which more efficient inference algorithms can be devised by
exploiting model-specific structures and properties. For example,
an efficient algorithm might leverage closed-form solutions to inte-
grals or local approximations to speed up inference. Ideally, such
an efficient algorithm would also be generated automatically by a
probabilistic programming framework, yielding a faster algorithm
without additional manual work.

While fully automatic generation of inference algorithms that ex-
ploit model-specific properties might not be possible, the message
passing paradigm provides a convenient way to generate such algo-
rithms semi-automatically. By representing the probabilistic model
as a factor graph, inference tasks on the model can be decomposed
into a collection of local inference tasks. These local inferences
can be interpreted as messages flowing over the graph. Importantly,
each message involves only node-local computations. Thus, it is
possible to build a library of pre-derived solutions to local compu-
tations (message updates) for a collection of factor nodes. These
pre-derived messages can then be reused across models. Since
the process of combining local messages into a global inference
algorithm can be automated, it is possible to automatically gener-
ate inference algorithms for models composed of nodes that are
covered by the library. Examples of inference methods that fit this
paradigm include: (loopy) belief propagation for exact inference,
mean-field and structured variational message passing (VMP) [10],
and expectation propagation (EP) [7] for approximate inference.

In this paper we present ForneyLab.jl1, an open-source message
passing-based probabilistic programming toolbox written in Julia
[1].

∗To be presented at ProbProg 2018.
1ForneyLab.jl is available at

https://github.com/biaslab/ForneyLab.jl

2 FORNEYLAB.JL: A JULIA TOOLBOX FOR MESSAGE
PASSING-BASED INFERENCE

We developed ForneyLab.jl to automatically generate code that
implements (approximate) Bayesian inference in a given model
through message passing. It consists of the following elements:

• A convenient syntax for specifying probabilistic models.

• A library of common factor nodes and corresponding message
computations, and a convenient system to define custom nodes
and message updates.

• Automatic message passing algorithm generators (currently:
belief propagation, VMP and EP).

• A code generator that converts constructed algorithms into
executable Julia code (that can be modified and debugged).

ForneyLab was designed with a focus on flexibility: it provides
convenient ways to add custom factor nodes, message update rules
and entire message passing algorithms. Moreover, the user is free
to inspect and modify intermediate results in the code generation
pipeline, for example by customizing part of the message passing
schedule. Internally, ForneyLab represents the model as a Forney-
style factor graph [5], which is a conducive framework when work-
ing with time series models such as dynamical state-space models.

Automated inference through message passing and a library
of efficient message computations is already available through
Infer.NET [6]. However, in contrast to Infer.NET, ForneyLab pro-
vides an fully open and extensible (Julia) code base for algorithm
generation. Rather than generating a binary that performs inference,
ForneyLab explicitly generates source code that can be inspected
and modified. The Julia language, with its MATLAB-like syntax
and meta-programming functionalities, marries the productivity of
a high-level language with high run-time performance.

3 EXAMPLE: FITTING A RANDOM WALK MODEL

As an example, we use ForneyLab to perform full Bayesian infer-
ence in a random walk model with noisy observations:

xt |xt−1,d,w ∼ N (xt−1 +d,w−1),

yt |xt ,u ∼ N (xt ,u−1).

Our goal is to approximate the posterior distribution of the hidden
state sequence [x1, . . . ,xT] and model parameters {d,w,u} from
observations [y1, . . . ,yT] under appropriate priors (see Fig. 1 for
details). A condensed version of the code required to specify this
model, build a variational Bayesian inference algorithm, and per-
form the actual inference with ForneyLab is listed in Fig. 1. A
snippet of the algorithm code generated by ForneyLab is listed in
Fig. 2.

We test the algorithm by applying it on an observation sequence
(T = 50) obtained by sampling the generative model under fixed
parameters. To evaluate the quality of the inference result, we cal-
culate the average log-likelihood of a test set under the posterior

Specify the generative model

@RV x_0 ˜ GaussianMeanVariance(0.0, 100.0) # State prior

@RV d ˜ GaussianMeanVariance(0.0, 100.0) # Drift prior

@RV w ˜ Gamma(0.01, 0.01) # State transition precision prior

@RV u ˜ Gamma(0.01, 0.01) # Observation precision prior

x_t_min = x_0

for t = 1:T

@RV z[t] ˜ GaussianMeanPrecision(d, w)

@RV x[t] = x_t_min + z[t] # State transition

@RV y[t] ˜ GaussianMeanPrecision(x[t], u) # Observation

placeholder(y[t], :y, index=t) # Data placeholder

x_t_min = x[t] # Ref to previous state

end

Generate a VMP schedule and compile to Julia code

q = RecognitionFactorization([x_0; x; z], d, w, u,

ids=[:X, :D, :W, :U]) # Specify a q-factorization

algo = variationalAlgorithm(q) # Yields string containing code

eval(parse(algo)) # Load algorithm in local scope

Execute the inference algorithm

data = Dict(:y => y_data)

marginals = Dict{Symbol, ProbabilityDistribution}(...)

for i = 1:n_its

stepX!(data, marginals)

stepW!(data, marginals)

stepU!(data, marginals)

stepD!(data, marginals)

end

Figure 1: Code snippet to specify a random walk model, generate a
(structured variational Bayes) inference algorithm and execute it. @RV
is a macro for conveniently defining random variables.

predictive distribution. The test set contains 1000 random contin-
uations of the training sequence for 20 time steps. Fig 3 shows
the results (“fl-svb”) as a function of the algorithm iteration count,
and places ForneyLab within the speed-performance landscape rel-
ative to a variety of more generic (black-box) inference algorithms.
Since the algorithm generated by ForneyLab leverages pre-derived
message computations, execution is faster than black-box inference
algorithms based on sampling or stochastic optimization. However,
since these message computations are not model-specific, generat-
ing the algorithm with ForneyLab does not require any additional
work from the user compared to more generic probabilistic pro-
gramming systems. We argue that this is an interesting proposition
in many practical settings, such as real-time probabilistic signal
processing, learning from streaming data, and probabilistic data
processing on embedded devices.

An elaborate discussion and evaluation of ForneyLab is forth-
coming [3].

REFERENCES

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. Shah. Julia: A Fresh
Approach to Numerical Computing. SIAM Review, 59(1):65–98, Jan.
2017.

[2] B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich,
M. Betancourt, M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A
Probabilistic Programming Language. Journal of Statistical Software,
76(1), 2017.

[3] M. Cox, T. van de Laar, and B. de Vries. A Factor Graph Approach to
Automated Design of Bayesian Signal Processing Algorithms. Under
review.

[4] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. M. Blei.
Automatic differentiation variational inference. Journal of Machine

function stepX!(data::Dict, marginals::Dict=Dict(),

messages::Vector{Message}=Array{Message}(349))

...

messages[4] = ruleSPAdditionOutVGG(nothing, messages[3],

messages[2])

messages[5] = ruleVBGaussianMeanPrecisionM(

ProbabilityDistribution(Univariate, PointMass,

m=data[:y][1]), nothing, marginals[:u])

...

marginals[:x_0] = messages[3].dist * messages[349].dist

marginals[:x_1] = messages[4].dist * messages[346].dist

...

return marginals

end

Figure 2: Snippet of the algorithm code generated by ForneyLab to
update the approximate posterior on the hidden state variables. Every
recognition factor in the variational approximation has its own “step”
function. Moreover, if the variational free energy can be evaluated
analytically, ForneyLab can also generate a function for that.

10-2 10-1 100 101

Wall-clock time [s]

45

40

35

30

25

20

15

10

5

P
re

d
ic

ti
v
e
 p

e
rf

o
rm

a
n
ce

true model
fl-svb
ed-map
ed-mfvb
stan-nuts
stan-mfvb
stan-svb

Figure 3: Average posterior log-likelihood of the test set as a func-
tion of running time for multiple inference methods and toolboxes.
Markers correspond to different iteration counts or posterior sam-
ples under the respective implementations. Methods ed-map and
ed-mfvb correspond to MAP and mean-field variational Bayes imple-
mented in Edward [9] (without GPU acceleration). The stan-* labels
correspond to probabilistic programming framework Stan [2].

Learning Research, 18(1):430–474, 2017.
[5] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschis-

chang. The Factor Graph Approach to Model-Based Signal Processing.
Proceedings of the IEEE, 95(6):1295–1322, June 2007.

[6] T. Minka, J. Winn, J. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill.
Infer.NET 2.7, 2018. Microsoft Research Cambridge.

[7] T. P. Minka. Expectation Propagation for Approximate Bayesian In-
ference. In Proceedings of the Seventeenth Conference on Uncertainty
in Artificial Intelligence, UAI’01, pages 362–369, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

[8] R. Ranganath, S. Gerrish, and D. Blei. Black Box Variational Infer-
ence. In PMLR, pages 814–822, Apr. 2014.

[9] D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M.
Blei. Edward: A library for probabilistic modeling, inference, and
criticism. arXiv preprint arXiv:1610.09787, 2016.

[10] J. Winn and C. M. Bishop. Variational message passing. Journal of
Machine Learning Research, 6(Apr):661–694, 2005.

