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Abstract—In this paper we consider efficient message passing
based inference in a factor graph representation of a probabilistic
model. Current message passing methods, such as belief propa-
gation, variational message passing or expectation propagation,
rely on analytically pre-computed message update rules. In
practical models, it is often not feasible to analytically derive
all update rules for all factors in the graph and as a result,
efficient message passing-based inference cannot proceed. In
related research on (non-message passing-based) inference, a
“reparameterization trick” has lead to a considerable extension of
the class of models for which automated inference is possible. In
this paper, we introduce Reparameterization Gradient Message
Passing (RGMP), which is a new message passing method based
on the reparameterization gradient. In most models, the large
majority of messages can be analytically derived and we resort
to RGMP only when necessary. We will argue that this kind of
hybrid message passing leads naturally to low-variance gradients.

I. INTRODUCTION

In this paper, we focus on automating inference for proba-
bilistic models. In particular, we extend the range of message
passing-based inference methods for factor graph representa-
tions of probabilistic models [1]. In order to allow computa-
tionally efficient inference by message passing, factor graphs
take advantage of factorization and independence relations in
probabilistic models. For linear Gaussian models, analytically
computable message update rules exist (called: belief propaga-
tion (BP)) that lead to exact Bayesian inference if the graph is a
tree. For an even larger class of models, approximate Bayesian
inference may be implemented by variational message passing
(VMP) [2]. VMP is based on approximating the posterior for
latent variable Z by an instrumental (variational) distribution
q(Z) and minimizing the Free Energy functional:

F [q] = Eq(Z)

[
log

q(Z)

p(Y ,Z)

]
= − log p(Y ) +KL(q(Z) || p(Z|Y )) , (1)

where p(Y ,Z) is the generative model over latent variables
Z and observed variables Y , q(Z) is a variational distri-
bution and KL(.||.) is the Kullback-Leibler divergence [3].
Alternatively, Expectation Propagation (EP) [4] is a popular
third message passing technique that relies on the inclusive
KL divergence KL(p(Z|Y ) || q(Z)) . For all of the above
message passing methods, it is necessary to derive analytically
computable message update rules for all factors in the model.
For many models, this is not possible for all factors and in that
case, efficient inference by message passing cannot proceed.

In other (non-message passing-based) research develop-
ments on automating variational inference, a considerable
amount of progress has been achieved with the so-called
reparameterization trick. If the latent random variables Z are
considered outputs of differentiable, injective functions, then
a “reparameterization trick” facilitates computation of noisy
free energy gradients, which can be used to minimize the free
energy by a stochastic optimization method, [5]–[7].

In the current paper, we formulate reparameterization gra-
dient variational inference as message passing in (Forney-
style) factor graphs [1]. In a practical setting, we use standard
analytical message passing rules when available and resort to
reparameterization gradient-based message passing (RGMP)
only when necessary. In this way, the variance of the free
energy gradient, which is due to the sampling process that
accompanies RGMP, can be reduced in comparison to the sce-
nario where all messages were based on RGMP. In summary,
the contributions of this paper include the following:
• We introduce a new method to approximate posterior

distributions in factor graphs by RGMP.
• RGMP can be combined easily with standard update rules

such as BP, VMP and EP and extends the class of models
for which inference by message passing can be achieved.

• We present hybrid message passing in factor graphs
as a natural framework to reduce the variance of the
reparameterization gradient estimators.

II. FORNEY-STYLE FACTOR GRAPHS

In this section, we shortly rehearse the Forney-style factor
graph framework. Consider the following factorized proba-
bilistic model:

p(y,z, x, s, v, w) =

p(y|z) · p(z|x) · p(x|s) · p(x|v, w) · p(s) · p(v) · p(w) . (2)

This model can be graphically represented by the Forney-
style factor graph (FGG) in Fig. 1. In an FFG, each node
corresponds to a factor and each edge to a variable. An
edge connects to a node if the edge variable is an argument
of that node’s factor. In Fig. 1, we have associated factors
fA(v) = p(v), fB(w) = p(w), fC(x, v, w) = p(x|v, w)
etc. with the probability distributions. Since an edge maxi-
mally connects to two nodes, most FFGs feature “equality
nodes” that can be interpreted as branching nodes. With this
accommodation, every factorized probability distribution can
be visually represented by an FFG.
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Now assume that variable y is observed (at value ŷ) and
we are interested in inferring the marginal posterior f(z) ,
p(z|y = ŷ). Through marginalization over the latent variables
x, s, v, w, we can obtain an expression for the “unnormalized”
marginal f̃(z):

f̃(z) = fH(ŷ, z)︸ ︷︷ ︸
mfH→z(z)

·

{∫
fG(z, x)

{∫
fE(s)fD(x, s) ds

}
︸ ︷︷ ︸

mfD→x(x)︸ ︷︷ ︸
mfG→z(z)

·

︷ ︸︸ ︷{∫∫
fC(x, v, w)fA(v)fB(w) dvdw

}
︸ ︷︷ ︸

mfC→x(x)

dx

}
(3)

with exact marginal posterior

p(z|y = ŷ) = f(z) =
f̃(z)∫
f̃(z) dz

. (4)

Since each factor only depends on a subset of variables,
it is possible to re-distribute the integrands in Eq. 3 such
that the entire marginalization process can be interpreted as
a message passing algorithm (known as “belief propagation”,
(BP)), where the calculation of each message only uses locally
available information. Also, note that the unnormalized poste-
rior for a variable in BP is obtained by multiplying colliding
messages on an edge, i.e., f̃(z) = mfH→z(z) ·mfG→z(z).

The computation of belief propagation messages and the
exact marginal posterior in Eq. 3 and Eq. 4 may not be
analytically tractable. For intractable messages, an approxi-
mate inference procedure based on variational inference may
be applicable. For probabilistic models that are composed of
distributions from the exponential family, a message passing
procedure known as “variational message passing” (VMP)
may lead to analytically tractable message update rules. In
particular, in the above example, for the so-called mean-field
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Fig. 1. A Forney-style factor graph representation of the factorization of
model Eq. 2. Nodes represent factors and edges correspond to variables. By
convention, edges of observed variables are terminated by a small black node.
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Fig. 2. A generic node-edge-node section in a Forney-style factor graph.

assumption q(z, x, s, v, w) = qz(z)qx(x)qs(s)qv(v)qw(w), the
update rule [8] for variable z is given by

qz(z) ∝ exp(Eqx(x)[log fG(z, x) + log fH(ŷ, z)]) .

BP and VMP (and other message update rules such as EP)
may be combined to perform approximate inference in factor
graphs. We refer to [1] and [2] for a more elaborate treatment
of message passing-based inference.

III. PROBLEM FORMULATION

Continuing with the model of Fig. 1, let us assume the
following factor specifications:

fG(z, x) = N (z; αx, ν) (5a)
fH(y, z) = Po(y; exp(z)) , (5b)

where N and Po refer to the normal and Poisson distributions.
Suppose that y = ŷ is observed and in order to proceed with
inference, we need to pass messages from variable y up the
graph through nodes fH and fG. It turns out that for model
assumption Eq. 5, the calculations of both the marginal f(z)
(per Eq. 4) and the message mfG→x(x) have no closed-form
solutions in BP and VMP.

In this paper, we develop an alternative variational inference
technique for FFGs based on the reparameterization gradient
variational inference (RGVI) method [5]–[7]. This technique
can be implemented to a large class of continuous distributions
and in principle, discrete-valued distribution families are also
included if we replace the discrete random variables with their
continuous relaxations [9].

IV. MESSAGE PASSING WITH THE REPARAMETERIZATION
GRADIENT

In this section, the RGVI method is adapted to message
passing in factor graphs. We also discuss how message passing
in factor graphs leads to a natural framework for low variance
gradient estimators. Finally, we illustrate the reparameteriza-
tion gradient message passing technique with an example.

A. Approximating the Posterior

Consider a generic node-edge-node section of a FFG in
Fig. 2. The edge represents the (vector) random variable z,
for which we desire to infer the posterior distribution.

Assume that the messages from nodes fA and fB to z
are computed via BP or VMP, but a difficulty arises in the
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normalization of f̃(z) (per Eq. 4). In this case, one can
approximate the posterior f(z) by a variational distribution
q(z;φ), with variational parameters φ, through minimizing
a divergence metric between f and q. Taking the reverse
Kullback-Leibler (KL) divergence as the metric, the criterion
to be minimized is also known as the variational free energy
given in Eq. 1. Choosing the variational distribution family in
advance, the task turns into estimating the optimal variational
parameters φ∗ that minimizes the free energy function:

F (φ) , Eq
[
log

q(z;φ)

f̃(z)

]
=

∫
q(z;φ) log

q(z;φ)

f̃(z)
dz (6)

where f̃(z) = mfA→z(z) ·mfB→z(z).

For a broad range of models, the optimal φ∗ can not be
found analytically. Even the gradient ∇φF (φ) may be hard
to evaluate, which hinders iterative optimization. Alternatively,
the gradient could be estimated by a Monte Carlo approxi-

mation ∇̂φF (φ) = 1
S

S∑
s=1
∇φ log[q(z(s);φ)/f̃(z(s))] where

{z(s)}Ss=1 is a set of samples from q(z;φ). Unfortunately,
the noisy measurements from log[q(z;φ)/f̃(z)] can not be
taken without loosing some information about the variational
parameters φ. In other words, once z(s) sampled, the term
log f̃(z(s)) is not a function of φ any more and its gradient
∇φ log f̃(z(s)) becomes zero. RGVI deals with this problem
by generating the z(s) samples from a differentiable process
of dummy random variables ε(s). Consider a sampling process
from a multivariate normal distribution N (a, BBT ) with
mean a and covariance matrix BBT . In theory, there is
no difference between directly sampling from N (a, BBT )
and generating the samples with the function g(ε;a, B) =
a+B · ε(s) where ε(s) is a sample from N (0, I). In practice,
however, it allows stochastic optimization by tying the samples
to the variational parameters. This is a reparameterization
example for a normally distributed random variable. More
generally, a random variable can be reparameterized as

ε(s) ∼ pε(·) (7a)

z(s) = g(ε(s);φ) (7b)

q(z;φ) =

∣∣∣∣∂g−1(z;φ)∂z

∣∣∣∣ pε(g−1(z;φ)), (7c)

where g(ε;φ) is an injective, differentiable function of a ran-
dom variable ε, g−1(·;φ) is its inverse, pε(·) is the probability
distribution over ε and

∣∣∣∂g−1(z;φ)
∂z

∣∣∣ is the determinant of the
Jacobian for multidimensional ε and z, [5]–[7], [10].

The gradient of the free energy can now be estimated by
Monte Carlo approximation because it can be expressed as an
expectation of the gradient:

∇φF (φ) = Epε(ε)

[
∇φ log

pε(ε)
∣∣ ∂ε
∂z

∣∣
f̃(g(ε;φ))

]
. (8)

The above expression is further simplified by discarding the
terms that do not include the variational parameters [6], and

the result is called the reparameterization gradient [5], [7]:

∇φF (φ) = −∇φ log
∣∣∣∣∂z∂ε

∣∣∣∣− Epε(ε)
[
∇φ log f̃(g(ε;φ))

]
= −∇φ log

∣∣∣∣∂z∂ε
∣∣∣∣− Epε(ε)

[
∇φ logmfA→z (g(ε;φ))

+∇φ logmfB→z (g(ε;φ))
]
. (9)

The variational parameters can now be iteratively updated
by employing the gradient estimators ∇̂φF (φ) within a
stochastic optimization process such as gradient descent,

φnew = φold − ρi∇̂φF (φ)|φ=φold
, (10)

for varying learning rates ρi over the iterations such that the

conditions
∞∑
i=1

ρi =∞,
∞∑
i=1

ρ2i <∞ are satisfied [11].

In summary, when closed-form inference is not possible
at an edge, we can use a sampling procedure to estimate
the “reparameterization gradient” locally at the edge, and use
this gradient to minimize the local free energy. In the next
section, we use the estimated posterior q(z) further to compute
outgoing VMP messages.

B. Reparameterization Gradient Message Passing

Continuing with the model of Fig. 1 and specification Eq. 5,
the BP message mfG→x(x) evaluates to

mfG→x(x) =

∫ {
1√
2πν

exp

(
− (z − αx)2

2ν

)}
·{

exp(z)ŷ exp(− exp(z))

ŷ!

}
dz . (11)

This update rule has no closed-form solution. Fortunately,
once the posterior q(z) has been approximated via RGVI,
inference can be maintained by variational message passing
[2]. We call this procedure Reparameterization Gradient Mes-
sage Passing (RGMP). In our example, we first assume that
f(z) is approximated by a Gaussian variational distribution
q(z) = N(z;µ, σ2). Then, unlike for BP and VMP, RGMP
allows message passing from fG to x:

mfG→x(x) ∝ exp
(
Eq(z) [log fG(z, x)]

)
∝ exp

(
Eq(z)

[
− (z − αx)2

2ν

])
∝ N (x;µ/α, ν/α2) (12)

This message may be part of an iterative variational inference
process. In practice, it is very common that we can use BP
and VMP for all but a few messages in a graph. For those
messages, RGMP may then be considered as an alternative
method to pass the messages. As discussed, different message
passing methods, like BP, VMP and RGMP, may be combined
in a factor graph. As a result, RGMP extends the set of models
for which we can perform (approximate) inference through
message passing.

C. Reducing the Variance of the Gradient Estimators

RGMP makes message passing-based inference possible for
a broad range of models. Due to the need for sampling,
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Fig. 3. The example model of Sec. IV-D where y is observed and we are
interested in posterior of latent variables x, v, z, w.

reparameterization gradient-based variational inference tech-
niques may suffer from high variance gradients. As a variance
reduction technique, sampling processes can be replaced by
analytical computations wherever possible. In a factor graph,
we can use BP and VMP (with analytical marginalization)
at all locations where possible and resort to sampling-based
RGMP only when needed. In this way, nuisance variables
are analytically marginalized away and these variables do not
contribute to the variance in the gradient estimates.

D. Illustrative Example

In Fig. 3, we provide an example for a hybrid message
passing-based inference procedure. In this model, assume that
y is observed and we are interested in the posteriors of random
variables x, z, v, w. Algorithm 1 lists pseudo-code to execute
a message passing-based inference algorithm. We assume that
the update rules for (m1,m2,m3,m4) and (m5,m8) can be
computed analytically by BP and VMP, respectively. However,
analytical update rules are not available for m6 and m7, so in
order to perform inference in this model, we resort to RGMP
for those messages. A fully factorized variational posterior
qx(x)qz(z)qv(v) can be computed by iterating over a sequence
of messages (m5,m6,m7), as indicated in the figure. In this
example, the posterior distribution of x is approximated by
a stochastic variational procedure as described by [6]. The
variational distribution family of qz(z) is chosen as a Gaussian
N (z;µ, σ2) with mean parameter µ and variance parameter σ2

to be estimated. Once the convergence condition is satisfied
for the posterior over x, z and v, the marginal posterior of w
can be evaluated in one step (see Algorithm 1 for details).

V. EXPERIMENTAL VALIDATION

As an experimental validation of RGMP, we simulated1 a
Poisson Linear Dynamical System (PLDS) [12]. The genera-
tive model for this example is given by

p(y, x, z) = p(z0)
T∏
t=1

p(zt | zt−1)p(xt | zt)p(yt |xt) (13)

1Details can be found at https://github.com/biaslab/Semih-EUSIPCO-2019.

Algorithm 1 Pseudo-code for hybrid message passing-based
inference in the model of Fig. 3.

Compute m1 = mfA→w(w), m2 = mfB→z(z),
m3 = mfC→v(v), m4 = logmfE→x(x) (BP)

Initialize qz(z), qv(v), qx(x;µnew, σ
2
new)

repeat
m5 ∝ Eqz(z)qv(v)[log fD(x, z, v)] (VMP)
repeat

Set learning rates ρµ, ρσ for new iteration
µold, σold = µnew, σnew
ε(s) ∼ N (0, 1)
x(s) = µold + σold · ε(s)
∇(s)
µ F = −∇x (m5(x) +m4(x)) |x=x(s)

∇(s)
σ F = −ε(s)∇x (m5(x) +m4(x)) |x=x(s) − 1/σold

µnew = µold − ρµ∇(s)
µ F

σnew = σold − ρσ∇(s)
σ F

until Convergence
qx(x) = qx(x;µnew, σ

2
new)

m6 ∝ exp
(
Eqx(x)qz(z)[log fD(x, z, v)]

)
(RGMP)

qv(v) ∝ m6 ·m3

m7 ∝ exp
(
Eqx(x)qv(v)[log fD(x, z, v)]

)
(RGMP)

qz(z) ∝ m7 ·m2

until Convergence
m8 ∝ exp

(
Eqz(z)[log fB(z, w)]

)
(VMP)

qw(w) ∝ m8 ·m1

=fA

fB

fC

xt
m5(xt)

x
m4(xt)

y

m1 → m2 →

m3↓

m6↑

m7 →

yt

· · · · · ·

zt

Fig. 4. The factor graph at time slice t of the PLDS model of Sec. V.

where

p(z0) = N (z0;µ
z0 , νz0) (14a)

p(zt | zt−1) = N (zt;αzt−1, ν
z) (14b)

p(xt | zt) = N (xt;βzt, ν
x) (14c)

p(yt |xt) = Po(yt; exp (xt)) . (14d)

One time slice of the factor graph of this model with fac-
tors fA(zt−1, zt) = p(zt|zt−1), fB(xt, zt) = p(xt|zt) and
fC(yt, xt) = p(yt|xt) is provided in Fig. 4.
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Fig. 5. A synthetic data set of nonnegative integer observations, generated
by running model Eq. 14 forward in time.

The PLDS is useful to analyze the trend behind non-negative
integer sequences, such as the number of clicks to a video over
days. A synthetic dataset, visualized in Fig. 5, is generated
for experimental purposes by running model Eq. 14 forward
in time with parameter values α = 0.95, β = 0.25, νz = 0.2,
νx = 0.1, µz0 = 12, νz0 = 0.

In our simulation, we use a recognition model given by
Eq. 14 to model the synthetic time series. In the recognition
model, we used a prior p(z1) = N (z1; 10, 10) and noise
process parameters νz = 0.4 and νx = 0.5. The other
parameters are the same as for the data generating process.
We are interested in recursively updating the posterior for the
hidden state zt from past observations y1:t.

Assume that message m1 carries the variational belief
q(zt−1|y1:t−1). We are interested in updating to the belief
q(zt|y1:t) after a new observation xt becomes available. This
inference task can be executed by message passing schedule
(m1,m2, . . . ,m7). However, due to the Poisson likelihood
function in PLDS, it is not possible to get a closed-form update
rule for inference of xt, which also blocks computation of later
messages such as m6. To remedy the inference process, we
infer a posterior for xt by applying reparameterization gradient
VI to the m4(xt) and m5(xt) messages. We chose a Gaussian
variational distribution q(xt) ∝ m4(xt) ·m5(x5) with

m4(xt) = N (xt;βµ3, β
2σ2

3 + νx)

m5(xt) = Po(yt; exp (xt)) .

We can use posterior q(xt) to update message m6 by

m6(zt) ∝ exp
(
Eq(xt)[log fB(xt, zt)]

)
∝ N (zt; 〈xt〉q(xt)

/β, νx/β2) .

Message m6 can then be used within a standard message
passing method for Linear Gaussian Dynamical Systems [1].

The mean and standard deviation for the estimated posterior
over zt is visualized in Fig. 6. The “true” value for zt lies
almost everywhere within the one-standard-deviation range.

VI. CONCLUSIONS

In this paper, we introduced reparameterization gradient
message passing, which is an adaptation of the reparameteri-

Fig. 6. Estimated mean and standard deviation over time for the state
dynamics zt of model Eq. 14.

zation gradient variational inference method to factor graphs.
Since RGMP can easily be combined with BP and VMP,
the proposed method extends the reach of message passing-
based inference methods beyond existing techniques. While
definitive performance results are scheduled for future work,
we presented promising results on a dynamic state estimation
task with a Poisson likelihood function.
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