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Abstract—Factor graphs provide a convenient framework for
automatically generating (approximate) Bayesian inference al-
gorithms based on message passing. Examples include the sum-
product algorithm (belief propagation), expectation maximization
(EM), expectation propagation (EP) and variational message
passing (VMP). While these message passing algorithms can
be generated automatically, they depend on a library of pre-
computed message update rules. As a result, the applicability of
the factor graph approach depends on the availability of such
rules for all involved nodes. This paper describes the probit
factor node for linking continuous and binary random variables
in a factor graph. We derive (approximate) sum-product message
update rules for this node through constrained moment matching,
which leads to a robust version of the EP algorithm in which all
messages are guaranteed to be proper. This enables automatic
Bayesian inference in probabilistic models that involve both
continuous and discrete latent variables, without the need for
model-specific derivations. The usefulness of the node as a factor
graph building block is demonstrated by applying it to perform
Bayesian inference in a linear classification model with corrupted
class labels.

I. INTRODUCTION

Probabilistic programming has gained a lot of interest
in recent years, leading to the development of a range of
software packages such as Stan [1], Edward [2], ZhuSuan [3]
and others. The idea behind probabilistic programming is to
completely automate the derivation of an inference algorithm:
the user only has to specify the probabilistic model, and the
software will automatically generate an inference algorithm to
calculate the (approximate) posterior distributions of interest.
Historically, such systems have relied on Markov chain Monte
Carlo (MCMC) techniques, which are rather slow and as a
result do not scale well to large models. In recent years, black-
box variational inference (BBVI) algorithms [4], [5] have been
developed that are much more efficient, leading to a renewed
interest in the field.

Another line of work towards automating inference in
probabilistic models has focussed on graphical models, and
in particular on factor graphs. A factor graph is a graphical
representation of any probabilistic model, and it is useful
from an algorithmic point of view because a lot of inference
algorithms can be formulated as message passing on such
graphs [6]. Since these message passing algorithms can be
derived automatically, factor graphs naturally lend themselves
to automatic derivation of inference algorithms. Examples of

such algorithms include the sum-product algorithm (belief
propagation) for exact Bayesian inference and expectation
maximization (EM) [7], variational message passing (VMP)
[8], expectation propagation (EP) [9], and particle filtering
for approximate inference. Factor graphs are particularly well
suited for describing time series models such as state-space
models of dynamical systems and hidden Markov models.
In such models, message passing algorithms may recover
well known algorithms such as the Kalman filter/smoother,
the Viterbi algorithm or the Baum-Welch algorithm without
the need to manually derive them. Loeliger [10] provides an
excellent introduction of factor graphs in the context of signal
processing.

Message passing algorithms, MCMC methods and BBVI
algorithms all share the same goal: providing an automatable
way to derive an inference algorithm. Which method is most
appropriate depends on the model at hand. Message passing
algorithms depend on a library of so-called message update
rules: reusable but manually derived update equations for the
required messages. BBVI on the other hand does not require
any manual derivations, but suffers from other drawbacks. Just
like MCMC, it is generally significantly slower than analytical
message passing algorithms since the black-box approach does
not allow the exploitation of known analytical solutions to the
involved integrals. This is especially a problem in the signal
processing setting, where we generally have models with lots
of variables due to time unrolling. Where message passing
algorithms are often fast enough to be executed in real-time,
this is usually not the case with BBVI. Moreover, BBVI in
its standard form cannot handle models that involve discrete
latent variables.

Our goal in this paper is to extend the applicability of
efficient message passing algorithms to models involving both
continuous and binary (latent) variables, linked through the
probit link function. Towards this end, we derive approximate
sum-product update rules for the probit link factor node
based on moment matching, which leads to the well known
EP message passing algorithm [9], [11]. In case the binary
random variable is observed, the obtained EP algorithm is a
familiar one; it has been derived for example for Bayesian
linear probit regression, Gaussian process classification [12]
and for inference in the TrueSkill model for rating gamers
[13]. However, in this work we consider the more general
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case in which the binary variable is latent. We show that this
can lead to improper messages, and we describe a principled
way to modify the approximation such that all messages are
guaranteed to be proper, yielding a robust version of the EP
algorithm.

The introduced factor node and its corresponding message
update rules can be used as an “off-the-shelf” building block,
removing the need for model-specific derivations. We demon-
strate its use by performing Bayesian learning of a linear
classifier from corrupted class labels through message passing
on the corresponding factor graph.

II. RELATED WORK

Ziniel et al. [14] describe binary linear classification in a
factor graph by generalized approximate message passing, an
approach that closely resembles expectation propagation. Both
the logistic and probit link functions are considered, but the
derived messages are not guaranteed to be proper in case the
binary variable is latent. The TrueSkillTM rating system for
multi-player games described in [13] uses a factor graph model
with a node similar to the one described in this work to link the
continuous skill levels of two players to the binary outcome of
a match. However, the derivation assumes the binary variable
to be observed. Hu et al. [15] consider a different factor node
to link continuous and binary variables. They propose to solve
the problem of improper messages taking an empirically tuned
mixture with a proper message.

III. FORNEY-STYLE FACTOR GRAPHS

To set the stage for the rest of the paper, we briefly introduce
(Forney-style) factor graphs. A factor graph is an undirected
graph that encodes a factorization of a function, for example of
a joint probability density function (PDF). Since a generative
probabilistic model is nothing more than a joint PDF over
all model variables, any generative probabilistic model can
be represented as a factor graph. A Forney-style factor graph
(FFG) is a specific type of factor graph in which nodes
represent factors and edges represents variables. Consider the
following simple example:

p(a, b, c, d) = p(a, b) p(b, c, d) p(b).

This joint PDF consists of three factors, so one might expect
the corresponding FFG to consist of 3 nodes. However, since b
is involved in more than two factors, it cannot be represented
by a single edge. This issue is resolved by introducing aux-
iliary variables b′ and b′′ as well as an “equality constraint
factor” p(b, b′, b′′) = δ(b′ − b) δ(b′′ − b). The equivalent
augmented joint PDF becomes:

p(a, b, c, d, b′, b′′) = p(a, b) p(b′, c, d) p(b′′) p(b, b′, b′′),

in which every variable appears in at most two factors. Figure
1 depicts the resulting FFG. It is always possible to find such
an augmented factorization, so any factorized PDF can be
represented as an FFG.

A factor node implements a known (stochastic or deter-
ministic) relationship among the variables connected to it,

=
a b′′ b

b′

c d

Figure 1: Forney-style factor graph representation of joint PDF
p(a, b, c, d) = p(a, b) p(b, c, d) p(b). Nodes represent factors
and edges correspond to variables.

z Φ y
−→µz
←−µz

−→µy
←−µy

Figure 2: Forney-style factor graph (FFG) representation of
the probit factor node. The symbols over and below the edges
represent inbound and outbound messages, which are generally
(unnormalized) probability distributions.

such as addition: p(a, b, c) = δ(a + b − c). Probabilistic
inference of latent variables in a factor graph is achieved
by “clamping” observed variables to their observed values,
and then propagating sum-product (belief) messages along the
edges of the graph [16]. These messages are calculated from
only local information: incoming messages at the same node
and the node function. We refer to [17] for a more elaborate
introduction to FFGs and (sum-product) message passing for
probabilistic inference.

IV. THE PROBIT LINK FACTOR NODE

The probit factor node links a continuous random variable
z ∈ R to binary random variable y ∈ {−1,+1} through
the cumulative density function of the standard Gaussian
distribution: P (y|z) = Φ(y·z), with Φ(x) ,

∫ x
−∞N (t|0, 1)dt.

We are interested in the (approximate) sum-product messages
corresponding to this factor, as depicted in Figure 2.

A. From real to binary

Let −→µz be an incoming Gaussian sum-product message:

−→µz(z) = N (z|−→mz,
−→vz). (1)

The outbound sum-product message towards y is obtained by
applying the sum-product rule [16]:

−→µy(y) =

∫ ∞
−∞

−→µz(z)Φ(z · y)dz

=

∫ ∞
−∞
N (z|−→mz,

−→vz)Φ(z · y)dz

= Φ

(
y · −→mz√
1 +−→vz

)
,

(2)

where we used the solution to the Gaussian integral as derived
in [12]. Note that the symmetry of Φ ensures that −→µy is a valid
probability mass function on {−1,+1}.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2602



B. From binary to real

In the other direction, incoming sum-product message←−µy is
a probability mass function with “odds” parameter α:

←−µy(y) =

{
(1− α) if y = −1,

α if y = +1.
(3)

If y is observed, α is either 0 or 1, but we consider the general
case α ∈ [0, 1]. The exact sum-product message towards z
follows again from the sum-product rule:

←−µz(z) =
∑

y∈{−1,+1}

←−µy(y)Φ(z · y)

= (1− α)Φ(−z) + αΦ(z)

= (1− α)(1− Φ(z)) + αΦ(z)

= 1− α+ (2α− 1)Φ(z).

(4)

This message is not a valid (unnormalized) probability distri-
bution, which is problematic if it is to be passed along through
the factor graph. Moreover, since the marginal distribution of
z is per definition proportional to the product of sum-product
messages −→µz and ←−µz , it implies a non-Gaussian marginal:

pz(z) ∝ −→µz(z) · ←−µz(z)
= (1− α)N (z|−→mz,

−→vz) + (2α− 1)N (z|−→mz,
−→vz)Φ(z).

(5)

If ←−µy is uninformative (α = 0.5), pz reduces to the incoming
message −→µz , which is to be expected. If ←−µy has zero variance
(α = 0 or α = 1), pz is an asymmetric “tilted” distribution.
In other cases pz might be bimodal.

V. ROBUST EXPECTATION PROPAGATION

To obtain a feasible message passing algorithm, we can
approximate the ‘problematic’ exact sum-product message
←−µz by a Gaussian message ←−νz ≈ ←−µz . There are multiple
ways to calculate the approximate message. In this work we
will calculate ←−νz by first approximating the exact marginal
distribution pz by a Gaussian distribution qz that minimizes
the Kullback-Leibler divergence DKL(pz||qz). Then, ←−νz is
calculated through the implied marginal property from Eqn.
5: qz ∝ −→µz · ←−νz =⇒←−νz ∝ qz/−→µz . Since qz and −→µz are both
Gaussians, ←−νz is also Gaussian and its parameters can be
expressed analytically.

Replacing the exact sum-product message ←−µz with an ap-
proximate message ←−νz and passing the approximate message
along through the factor graph as if it were a regular sum-
product message yields a message passing implementation of
the EP algorithm [9], [11]. Since the approximate message
depends on incoming message −→µz – referred to as the “cavity
distribution” that carries information about z from other parts
of the graph – the resulting message passing schedule contains
circular dependencies and will require multiple passes to
converge.

A. Derivation of the EP message

Because qz is chosen to be in the exponential family,
DKL(pz||qz) is minimized when the moments of qz are equal
to those of pz . For the probit link factor, these moments can
be expressed analytically. From Eqn. 5 we have:

pz(z) = C−1[(1−α)N (z|−→mz,
−→vz)+(2α−1)N (z|−→mz,

−→vz)Φ(z)︸ ︷︷ ︸
g(z)

].

The first and second order moments of g can be derived in a
similar fashion as in Section 3.9 of [12], and we just state the
results here:

µ(1)
g = Φ(γ)−→mz +

−→vzN (γ|0, 1)√
1 +−→vz

,

µ(2)
g = 2−→mzµ

(1)
g + (−→vz −−→mz

2
)Φ(γ) +

−→vz
2
γN (γ|0, 1)

1 +−→vz
,

with γ =
−→mz√
1+−→vz

. Normalization constant C is obtained by

integration:

C = 1− α+ (2α− 1)

∫ ∞
−∞

g(z)dz = 1− α+ (2α− 1)Φ(γ).

Finally, the moments of pz are easily expressed in terms of
the moments of g:

µ(1)
pz ,

∫ ∞
−∞

z · pz(z)dz = C−1
[
(1− α)−→mz + (2α− 1)µ(1)

g

]
,

µ(2)
pz ,

∫ ∞
−∞

z2 · pz(z)dz

= C−1
[
(1− α)(−→mz

2
+−→vz) + (2α− 1)µ(2)

g

]
.

The Gaussian approximation to the exact marginal pz
becomes qz(z) = N (z|m̃z, ṽz) where m̃z = µ

(1)
pz and

ṽz = µ
(2)
pz − (µ

(1)
pz )2. Once qz is known, the approximate

message ←−νz follows by dividing qz by −→µz:

N (z|m̃z, ṽz)︸ ︷︷ ︸
qz(z)

∝ N (z|−→mz,
−→vz)︸ ︷︷ ︸

−→µz(z)

· N (z|←−mz,
←−vz)︸ ︷︷ ︸

←−νz(z)

⇒

{←−vz = (ṽ−1z −−→vz
−1

)−1,
←−mz =←−vz(ṽ−1z m̃z −−→vz

−1−→mz).

(6)

Note that the approximate message depends only on node-local
information: the node function and both incoming sum-product
messages. Figure 3 illustrates the approximation for two values
of α. If α ∈ {0, 1}, the variance of pz is upper bounded by the
variance of −→µz , so the approximate message ←−νz is guaranteed
to be proper. In other cases, pz can become bimodal, and
its variance might exceed that of −→µz . If this happens, the
approximate message would be an improper Gaussian with
‘negative variance’.

B. Handling improper messages

If the variance of marginal distribution pz is larger
than the variance of incoming cavity message −→µz , approx-
imate message ←−νz is not a proper probability distribution
(←−vz < 0⇒

∫∞
−∞
←−νz(z)dz > 1). This can be a problem if the
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z

→
µz

pz

qz
←
νz

(a) α = 0

z

(b) α = 0.1

Figure 3: Illustration of the moment matching approximation
qz ≈ pz and the resulting approximate sum-product message
←−νz . (a): ←−µy(y) = δ(y + 1) (y is observed), resulting in a
proper approximate message. (b): ←−µy(y) = Bernoulli(y|0.1)
(y is a latent variable). The variance of qz is larger than the
variance of −→µz , leading to an improper approximate message
with ‘negative variance’.

message is to be passed along through the factor graph, since
it can lead to improper cavity and marginal distributions.
Previously proposed ways to handle such messages include:
(a) setting the variance of ←−νz to infinity, (b) setting the
variance of ←−νz to its absolute value [18], and (c) replacing
the improper message with an empirically tuned mixture of
itself and another message [15].

We propose a different, principled method to ensure proper-
ness. If properness of all messages is required, we replace the
moment matching Gaussian approximation qz with a Gaussian
approximation that minimizes DKL(pz||qz) under the con-
straint var[qz] ≤ var[−→µz]− ε for some small ε. This leads to
ṽz = min{µ(2)

pz − (µ
(1)
pz )2,−→vz − ε}. Under this approximation,

the approximate message is guaranteed to be proper, leading
to a robust EP algorithm. For numerical stability it is best to
parametrize the approximate Gaussian message by its natural
parameters:

←−νz(z) ∝ exp(− 1
2
←−wzz2 +

←−
ξzz),

←−wz = ṽ−1z −−→vz
−1
,

←−
ξz = ṽ−1z m̃z −−→vz

−1−→mz.

(7)

VI. APPLICATION: LINEAR CLASSIFIER WITH CORRUPTED
LABELS

To demonstrate an application of the described factor node,
we use it to perform automatic Bayesian inference in a
linear classifier with corrupted binary class labels. Assume
the following generative model with feature vector x, weight
vector β, and observed class label y:

β ∼ N (0,Σ),

zi|xi,β ∼ Bernoulli(Φ(xTi β)),

yi|zi, α ∼ Bernoulli(αδ(zi−1) + (1− α)δ(zi+1)).

(8)

Under this model, the ‘true’ class label z is a latent variable,
and the observed label y is a corrupted version of z with
symmetric label flipping probabilities α. If N data points

· · · =

β

· · ·

dot

Φ

p(yi|zi)

→ ←

xi

〈β,xi〉

zi

α

yi

1↑

2 ↓

3 ↓

5↑

6
←

7
→

4↑

Figure 4: A section of the FFG representation of the linear
binary classification model from Eqn. 8. Solid black boxes
indicate clamping of a variable to an observed value. The
circled numbers depict an EP message passing schedule. Ap-
proximate message 4 is calculated from Bernoulli message
1 (information from the i-th data point) and Gaussian “cavity

message” 3 (information from all other data points). 4
is then passed along through the factor graph like a regular
sum-product (belief) message. The algorithm requires multiple
iterations over all sections to converge since 4 depends on
3 , which in turn depends on the approximate messages in

other sections.

D = {(x1, y1), . . . , (xN , yN )} are observed, the FFG repre-
sentation of this model consists of a node for p(β) together
with N identical graph sections as depicted in Figure 4. The
posterior distribution of the weight vector, p(β|D), can be
approximated by a multivariate Gaussian by executing an EP
message passing schedule on the factor graph. The circled
numbers in Figure 4 illustrate such a schedule, which can be
generated automatically and only depends on a library of pre-
computed message update rules. The Gaussian message update
rules for the equality constraint node and dot product node are
given for example in [19] (the dot product node is a special
case of the matrix multiplication node). The update rule for
message 1 is trivial since y and z are both binary variables.

To test the depicted EP algorithm, we performed inference
on a range of synthetic data sets with varying label corruption
probabilities. Figure 5 shows results for a 2-dimensional data
set generated with corruption probability 0.2. If α is set to 0,
our model reduces to the standard probit regression model. To
test the usefulness of modeling label corruption, we performed
inference for both α = 0 and α = 0.2 (the true value). As is
clear from the figures, the corruption-free model struggles to
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(a) Result for α = 0 (corruption-free model) (b) Result for α = 0.2 (correct corruption model)

Figure 5: Inference results on a synthetic data set containing 100 points generated with label corruption probability 0.2. Lines
are sampled from the inferred posterior distribution of the decision boundary.

explain the corrupted data points, leading to a lower model
evidence. Setting the corruption parameter to the value used
to generate the data consistently leads to better results.

VII. CONCLUSIONS

The described probit factor node can be used as a building
block to link continuous and binary variables in a factor
graph. We derived message update rules that enable fast
EP-based inference in probabilistic models where both the
continuous and binary variable are latent, without the need
for model-specific derivations. While convergence of the EP
algorithm is not guaranteed, our experiments show consistent
and fast convergence in practice. Thanks to the modularity
of message passing algorithms, it is easy to combine EP
with other message passing algorithms such as VMP, EM,
or particle filtering. In contrast to pure black box inference
algorithms, such message passing algorithms can exploit local
model structure to obtain faster algorithms, resorting only to
sampling-based methods in parts where no analytical solutions
are available.
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