e Technische Universiteit Eindhoven University of Technology

Acoustic Scene Classification from Few Examples

Ivan Bocharov, Tjalling Tjalkens and Bert de Vries

Eindhoven University of Technology, the Netherlands

Email: i.a.bocharov@tue.nl

EUSIPCO 2018, 05-09-2018

Where innovation starts

Use case/Problem statement

Design constraints

- Ability to learn a new acoustic environment **from few** (preferably, a single) **examples**.
- An example is approximately **10-15 seconds long**.
- Small computational footprint is preferable.

Approach: probabilistic modeling

We use probabilistic modeling approach.

- Model definition:
 - Define a generative probabilistic model for acoustic scenes that contains classes c as latent variables:

 $p(x, z, c, \theta)$

- Training:
 - Supervised training on a small in-situ recorded set of labeled waveforms

Classification:

Assign future streaming acoustic data to correct (or similar) classes

Approach: probabilistic modeling

Benefits:

- All tasks (learning, classification) can be formulated as inference tasks on generative model.
- Domain knowledge can be incorporated in a principled way via prior specification (parameters usually have explicit semantics).
- Structured approach; less data- and compute-greedy compared to deep learning alternatives.
- Steadily improving toolset (e.g. ForneyLab, Stan, Edward) allows for fast design iterations.

(Mixture of) Hidden Semi-Markov Model

(Mixture of) Hidden Semi-Markov Model

- Hierarchical organization:
 - Classes (~ 10 s)
 - States (~100 ms)
 - Observations (~1 ms)
- Explicit duration modeling allows to incorporate domain knowledge about state evolution.
- Small number of tunable parameters (fast inference).

Dataset

We use DCASE'2017 dataset for evaluation:

- 15 acoustic scenes
- ~65 min. of audio per class
- Wide variety of scenes (public transport, office, etc.)

Preprocessing: extract 20 MFCC (40 ms window, 20 ms hop) + Δ + $\Delta\Delta$

Evaluation protocol

To imitate our use case we use following protocol:

- 1. Randomly select 4 scenes from DCASE dataset.
- 2. Sample **M** training examples for each of scenes from development part of DCASE dataset.
- 3. Evaluation set is constructed by selecting all recordings for selected scenes from evaluation part of DCASE dataset.

We repeat this 20 times for each value of **M** in order to minimize the influence of random selection.

Results

Summary and future work

- We present generative **probabilistic modeling approach** to **insitu learning** of acoustic scene classifiers.
- Use case is **hearing aids personalization**, but applicable to other domains such as urban monitoring and elderly care.
- Specifically, we developed **HSMM-based acoustic scene classifier** that can be trained on very few (a single) recordings.
- **Priors** are not learned from the data and in principle **could** (should) be learned from the whole dataset in an offline unsupervised manner.
- Labels provided by users might not represent separate acoustic scenes.

Acknowledgments

We gratefully acknowledge Matthew Johnson and other developers of **pyhsmm** package:

https://github.com/mattjj/pyhsmm

