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Abstract

We present a Forney-style factor graph representation for the class of multivariate autore-
gressive models with exogenous inputs, and we propose an online Bayesian parameter-
identification procedure based on message passing within this graph. We derive message-
update rules for (1) a custom factor node that represents the multivariate autoregressive
likelihood function and (2) the matrix normal Wishart distribution over the parameters.
The flow of messages reveals how parameter uncertainty propagates into predictive un-
certainty over the system outputs and how individual factor nodes and edges contribute
to the overall model evidence. We evaluate the message-passing-based procedure on (i)
a simulated autoregressive system, demonstrating convergence, and (ii) on a benchmark
task, demonstrating strong predictive performance.

Keywords: Bayesian inference; probabilistic graphical models; message passing; system
identification; stochastic systems; autoregressive models

1. Introduction
Autoregressive models provide a simple yet powerful framework for capturing dy-

namical systems [1–5]. Multivariate autoregressive models with exogenous inputs (MARX)
exhibit a complex dependence structure. Each component of the vector signal evolves as a
weighted combination of (i) its own past observations, (ii) other components, and (iii) an
exogenous vector-valued input signal [6,7]. This intricate dependence structure generates
significant uncertainty in parameter estimation.

Bayesian inference offers a principled approach for quantifying and propagating this
uncertainty into predictions for future system outputs [8,9]. Moreover, uncertainty quan-
tification enables the incorporation of information-theoretic quantities into cost functions,
which is useful for optimal experimental design and adaptive control [10,11]. Markov
Chain Monte Carlo techniques are typically employed to approximate posterior distribu-
tions. However their computational cost makes them impractical for large-scale real-time
applications such as online system identification and adaptive control. In contrast, exact
and variational inference methods provide full posterior distributions over parameters,
thereby enabling robust decision-making under uncertainty [12,13]. This capability is
particularly crucial in safety-critical applications, such as robotics, where understanding
uncertainty is as important as making accurate predictions.
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To address this challenge, we introduce an exact recursive Bayesian estimator that
maintains a full posterior distribution and is computationally efficient. Recursive estimators
offer a scalable alternative to batch estimators, but they either lack posterior uncertainty
over parameters or rely on approximations [3,8]. Shaarawy and Ali proposed an exact
recursive Bayesian estimator based on the matrix normal Wishart distribution, demonstrat-
ing its effectiveness for system identification [9]. We extend their approach by casting the
inference procedure as a message-passing algorithm on a factor graph, thereby improving
both computational efficiency and interpretability.

Factor graphs are graphical tools that capture the probabilistic relationships between
random variables [14]. Many algorithms, including inference, can be formulated as message
passing on a factor graph. Thus, message passing on factor graphs provides a structured
and scalable framework for Bayesian inference, offering several key advantages over
conventional inference frameworks [15–17]. We specifically consider Forney-style factor
graphs, for their simplicity and compact visual representation [18]. First, factor graphs
offer an intuitive representation of probabilistic models and data flow by depicting distinct
probabilistic relationships as separate factor nodes that explicitly capture dependencies
between variables [15,17]. This structured representation makes the inference process
more interpretable and supports a more flexible model design, contributing to explainable
artificial intelligence [19,20]. Second, message passing on factor graphs enables distributed
computation by structuring inference into localized update rules at each node [21]. In
particular, casting inference as message passing on a factor graph can enable federated
learning, which accelerates learning in a multi-agent setting where physically separated
agents share likelihood messages for joint parameter estimation [22]. This formulation
significantly reduces the computational complexity compared to traditional recursive
methods, making real-time Bayesian inference more tractable in large-scale settings [23,24].
Localized updates facilitate the efficient propagation of uncertainty throughout the graph,
allowing for the attribution of uncertainty to specific sources, for example, distinguishing
between prediction uncertainty arising from the likelihood model versus uncertainty in the
inferred parameters. This fine-grained decomposition of uncertainties further enables a
novel evaluation of model performance: the negative log-model evidence (surprisal) can
be decomposed into contributions from individual nodes and edges in the factor graph.
By analyzing how these contributions evolve over time, one gains detailed insights into
the learning dynamics during system identification, thus linking model evaluation directly
to the underlying probabilistic structure. Lastly, message passing unifies a broad class
of algorithms, spanning signal filtering, optimal control, and path planning [14,17,24,25],
making it a computationally efficient tool for probabilistic reasoning in large-scale problems.
Overall, by leveraging this structured inference technique, our approach not only enhances
Bayesian inference for dynamical systems but also yields more interpretable, scalable, and
computationally efficient probabilistic machine learning models.

In summary, our key contributions are as follows:

• We derive a message-passing algorithm for exact recursive Bayesian inference in MARX
models, maintaining full posterior distributions while ensuring computational efficiency.

• We extend the inference framework to predict future system outputs that explicitly
account for parameter uncertainty, improving robustness for real-time applications.

• We introduce a novel model evaluation method by decomposing the negative log-
model evidence (surprisal) into contributions from individual nodes and edges in the
factor graph, providing insights into uncertainty and learning dynamics.

• We demonstrate the effectiveness of our approach through empirical evaluations on (i) a
synthetic MARX system with known parameters for verification, and (ii) two synthetic
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dynamical systems with unknown parameters: a double mass-spring-damper system
and a nonlinear double pendulum system.

The remainder of this paper is organized as follows. In Section 2, we formally describe
the class of the discrete-time dynamical system considered. In Section 3, we present
our probabilistic MARX model and its representation using Forney-style factor graphs.
In Section 4, we detail the message-passing algorithm for recursive Bayesian inference,
including both parameter estimation and predictive inference. In Section 5, we introduce
our novel evaluation method based on decomposing surprisal. In Section 6, we demonstrate
the effectiveness of our approach on synthetic system identification tasks. In Section 7,
we discuss the computational benefits, interpretability, and broader implications of our
method. Finally, in Section 8, we conclude this paper.

2. Problem Statement
We consider discrete-time dynamical systems, represented by a state zk ∈ RDz and

driven by a control signal uk ∈ RDu . These systems evolve according to a state transition
function f : RDz × RDu 7→ RDz . At each time step, we observe a noisy measurement
yk ∈ RDy of the state via a measurement function g : RDz 7→ RDy . This can be expressed as
a state–space model of the form:

zk = f (zk−1, uk) , yk = g(zk) + ek ,

where ek ∈ RDy is a stochastic disturbance. Our objective is to predict future observations
yt for t > k, given future inputs ut, without prior knowledge about the system dynamics.

3. Model Specification
To address the problem defined in Section 2, we propose a probabilistic model that

enables recursive learning and prediction of future observations in a partially observed
dynamical system. Specifically, we assume that the unknown system can be approximated
by a multivariate autoregressive model with exogenous inputs of order N, denoted as
MARX(N). Let yk ∈ RDy denote the Dy-dimensional observation at time step k. We collect
the past Ny outputs into the matrix

ȳk−1 ≜


yk−1,1 yk−2,1 . . . yk−Ny ,1

... . . . . . .
...

yk−1,Dy yk−2,Dy . . . yk−Ny ,Dy

 ,

and, similarly, the most recent Nu control inputs into

ūk ≜


uk,1 uk−1,1 . . . uk−Nu+1,1

... . . . . . .
...

uk,Du uk−1,Du . . . uk−Nu+1,Du

 .

We then reshape both matrices ȳk−1 and ūk into a single vector xk ∈ RDx , where
Dx = NyDy + NuDu:

xk ≜

[
vec(ȳk−1)

vec(ūk)

]
, (1)

and vec(·) denotes the column-wise vectorization operator that stacks the columns of a ma-
trix into a single column vector [26]. At the core of our MARX(N) model is a vector autore-
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gressive process with exogenous inputs, characterized by the following likelihood function:

p(yk | Θ, xk) = N (yk | A⊺xk, W−1)

=

√
|W|

(2π)Dy
exp

(
− 1

2
(yk − A⊺xk)

⊺W(yk − A⊺xk)
)

, (2)

where the parameters—jointly denoted as Θ = (A, W)—consist of a regression coefficient
matrix A ∈ RDx×Dy and a noise precision matrix W ∈ RDy×Dy

+ , with R+ denoting the space
of positive semi-definite matrices. Each column A:,j specifies how the full memory vector
xk (comprising past outputs and inputs) linearly predicts the jth component of the current
observation yk,j. In state–space terminology, A captures both the temporal memory and
cross-variable coupling by weighting each lagged signal in xk. The matrix W represents the
inverse covariance (precision) of the Gaussian measurement noise: its diagonal entries set
the inverse variances for each observed dimension while off-diagonals model instantaneous
noise correlations between different components of yk.

For computational convenience (see Section 4.1), we specify our prior distribution
over Θ as a matrix normal Wishart distribution [27]:

p(Θ) = p(A | W)p(W) = MN (A | M0, Λ−1
0 , W−1)W(W | Ω−1

0 , ν0) . (3)

Here, the coefficient matrix A follows a matrix normal distribution with mean
M0 ∈ RDx×Dy , row covariance Λ−1

0 ∈ RDx×Dx , and column covariance W−1 ∈ RDy×Dy ,

p(A | W) = MN (A | M0, Λ−1
0 , W−1) (4)

=

√
|W|Dx |Λ0|Dy

(2π)Dx Dy
exp

(
− 1

2
tr
[
W(A − M0)

⊺Λ0(A − M0)
])

,

where tr(·) denotes the trace of a square matrix, i.e., the sum of its diagonal entries [26].
The precision matrix W follows a Wishart distribution with a scale matrix Ω−1

0 ∈ RDy×Dy

and degrees of freedom ν0 ∈ R

p(W) = W(W | Ω−1
0 , ν0) =

√
|Ω0|ν0

2ν0Dy

√
|W|ν0−Dy−1

ΓDy(ν0/2)
exp

(
− 1

2
tr
[
WΩ0

])
.

Here, ΓDy(·) is the multivariate Gamma function with dimension Dy [28]. Our goal
is to infer the posterior distribution over A and W and subsequently use these parameter
posterior distributions to make predictions for future outputs yt.

The chosen prior and likelihood define the following generative model over the joint
distribution of observations, inputs, and parameters:

p(y1:k, u1:k, Θ) = p(Θ)
k

∏
i=1

p(yi | Θ, xi) .

We consider two inference paradigms for parameter estimation [29]. In batch estimation,
the full dataset is used to compute the posterior:

p(Θ | y1:k, u1:k) ∝ p(Θ)
k

∏
i=1

p(yi | Θ, xi) .
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Alternatively, in recursive estimation, the posterior is updated incrementally as new
data arrives:

p(Θ | y1:k, u1:k) ∝ p(Θ | y1:k−1, u1:k−1)p(yk | Θ, y1:k−1, u1:k) .

In this paper, we focus on the recursive formulation, which enables efficient online
model updates and is well suited for real-time applications and systems where storing and
reprocessing the entire history is infeasible.

Factor Graph

The probabilistic graphical model underlying the recursive formulation is straight-
forward, consisting of a prior distribution and a likelihood function. Figure 1 presents a
Forney-style factor graph in which nodes represent factors, edges denote variables, and
each edge connects exactly two nodes [15]. In the graph, time flows from left to right,
predictions flow from top to bottom, and corrections flow from bottom to top. The factor
node labeled MNW represents the matrix normal Wishart prediction distribution along
with its associated prior parameters. The dashed box represents the composite likelihood
node, which comprises (i) the concatenation operation described in (1), (ii) the dot–product
operation between the regression coefficient matrix A and the memory xk, and (iii) the
stochastic disturbance. The equality node connects the parameters Θ to the likelihood
nodes for each time step k.

[ ] · N
(A⊺xk ,W)xk

ūk

ȳk-1
yk

=· · ·MNW

M0

Λ0

Ω0

ν0

MNW
Θ

· · ·

MARX

ūk+1

ȳk

yk+1

1
→

2↑

3
→

2↑

4 ↓

Figure 1. Forney-style factor graph of the MARX model in recursive form. A matrix normal Wishart
node sends a prior message (1) to an equality node. A likelihood-based message (2) passes upwards
from the MARX likelihood node (dashed box), attached to the observed variables yk, ȳk−1, and ūk.
Combining the prior-based and likelihood-based messages at the equality node yields the posterior
(message 3). Message 4 is the posterior predictive distribution for the system output.

4. Inference
Inference consists of two stages: (i) parameter estimation, where we infer model

parameters from observed outputs yk (Section 4.1), and (ii) output prediction, where we
forecast future outputs yt for t > k, given future system inputs uk+1 (Section 4.2).

4.1. Parameter Estimation

We wish to recursively estimate the posterior distribution over the model parameters:

p(Θ | Dk) =
p(yk | Θ, xk)

p(yk | uk,Dk−1)
p(Θ | Dk−1) ,
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where Dk = {yi, ui}k
i=1 denotes the data up to time k. Note that the memory vector xk is a

subset of Dk−1. The evidence term in the denominator is

p(yk | uk,Dk−1) =
∫

p(yk | Θ, xk) p(Θ | Dk−1)dΘ . (5)

This evidence term will be discussed in detail in Section 5.

Lemma 1. Combining the MARX likelihood (2) with a matrix normal Wishart prior distri-
bution over MARX coefficient matrix A and precision matrix W (3) yields a matrix normal
Wishart distribution:

p(Θ | Dk) = MNW(A, W | Mk, Λ−1
k , Ω−1

k , νk),

with the following parameter updates:

νk = νk−1 + 1

Λk = Λk−1 + xkx⊺k
Mk = (Λk−1 + xkx⊺k )

−1(Λk−1Mk−1 + xky⊺k )

Ωk =Ωk−1+yky⊺k +M⊺
k−1Λk−1Mk−1

−(Λk−1Mk−1+xky⊺k )
⊺(Λk−1+xkx⊺k )

−1(Λk−1Mk−1+xky⊺k ) .

See Appendix A for the proof. This solution can be cast as a message-passing procedure
on a factor graph, allowing distributed computation [15,30].

In Figure 1, circled messages indicate the information flow between the factor nodes
along the edges. Message 1 represents the previous posterior belief over Θ = (A, W):

−→
1 = p(Θ | Dk−1) = MNW(A, W | Mk−1, Λ−1

k−1, Ω−1
k−1, νk−1) . (6)

The sum–product message from the composite MARX likelihood towards its parameters
is the likelihood function itself, re-expressible as a probability distribution over Θ.

Lemma 2. The message from the composite MARX likelihood (2) towards its parameters is matrix
normal Wishart distributed as follows:

↑ 2 = p(yk | Θ, xk) ∝ MNW(A, W | M̄k, Λ̄−1
k , Ω̄−1

k , ν̄k) . (7)

Its parameters are

ν̄k = 2 − Dx + Dy , Λ̄k = xkx⊺k ,

M̄k = (xkx⊺k )
−1xky⊺k , Ω̄k = 0Dy×Dy .

See Appendix B for the proof. Note that the scale matrix is not positive-definite, which
implies that message 2 is an improper distribution. Utilizing improper distributions is
not uncommon when messages are intermediate results. For example, in variational and
particle-based message passing, the messages are unnormalized and therefore also techni-
cally improper distributions [31,32]. However, should one want to visualize message 2 or
convert it to a related distribution, for instance, then the scale matrix can be perturbed with
a machine precision offset (i.e., Ω̄k = 10−8 · IDy×Dy ).

Message 3 results from multiplying messages 1 and 2 at the equality node [15].
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Lemma 3. Let p1 and p2 be two matrix normal Wishart distributions over the same random
variables Θ:

p1(Θ) = MNW(A, W | M1, Λ−1
1 , Ω−1

1 , ν1)

p2(Θ) = MNW(A, W | M2, Λ−1
2 , Ω−1

2 , ν2) .

Their product is proportional to another matrix normal Wishart distribution:

p1(Θ)p2(Θ) ∝ MNW(A, W | M3, Λ−1
3 , Ω−1

3 , ν3),

and its parameters are combinations of p1, p2’s parameters,

ν3 = ν1 + ν2 + Dx − Dy − 1 ,

Λ3 = Λ1 + Λ2 ,

M3 = (Λ1 + Λ2)
−1(Λ1M1 + Λ2M2) ,

Ω3 = Ω1 + Ω2 + M⊺
1 Λ1M1 + M⊺

2 Λ2M2

− (Λ1M1 + Λ2M2)
⊺(Λ1 + Λ2)

−1(Λ1M1 + Λ2M2).

See Appendix C for the proof.

Theorem 1. The outgoing message from the equality node is proportional to the exact recursive
posterior distribution:

−→
3 =

−→
1 · 2 ↑∝ MNW(A, W | Mk, Λ−1

k , Ω−1
k , νk).

Proof. Combining parameters from the messages in (6) and (7) according to the product
operation in Lemma 3 yields

νk = νk−1 + ν̄k + Dx − Dy − 1 = νk−1 + 1 ,

Λk = Λk−1 + Λ̄k = Λk−1 + xkx⊺k ,

Mk = (Λk−1 + Λ̄k)
−1(Λk−1Mk−1 + Λ̄k M̄k) = (Λk−1 + xkx⊺k )

−1(Λk−1Mk−1 + xky⊺k ) ,

Ωk = Ωk−1 + Ω̄k + M⊺
k−1Λk−1Mk−1 + M̄⊺

k Λ̄k M̄k

− (Λk−1Mk−1 + Λ̄k M̄k)
⊺(Λk−1 + Λ̄k)

−1(Λk−1Mk−1 + Λ̄k M̄k)

= Ωk−1 + M⊺
k−1Λk−1Mk−1 + yky⊺k

− (Λk−1Mk−1 + xky⊺k )
⊺(Λk−1 + xkx⊺k )

−1(Λk−1Mk−1 + xky⊺k ).

These match the parameter update rules outlined in Lemma 1.

4.2. Output Prediction

Predicting future system outputs amounts to computing the posterior predictive
distribution, i.e., the marginal distribution of yt for t > k:

↓ 4 = p(yt | ut,Dk) =
∫

p(yt | Θ, xt)p(Θ | Dk) dΘ . (8)

We exploit the factorization of the parameter posterior over (A, W) to split this into a
marginalization over A:

p(yt | W, ut,Dk) =
∫

p(yt | Θ, xt)p(A | W,Dk)dA ,
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and a marginalization over W:

p(yt | ut,Dk) =
∫

p(yt | W, ut,Dk)p(W | Dk)dW .

Theorem 2. Marginalizing the composite MARX likelihood (2) over the matrix normal distribu-
tion (4) for A yields a multivariate normal distribution:∫

N
(
yt | A⊺xt, W−1)MN

(
A | Mk, Λ−1

k , W−1)dA = N
(
yt | M⊺

k xt, (λtW)−1) ,

where λt ≜ (1 + x⊺t Λ−1
k xt)−1.

See Appendix D for the proof.

Theorem 3. Marginalizing a multivariate normal distribution over a Wishart distribution on its
precision parameter yields a multivariate location-scale Student’s t-distribution [27]:∫

N
(
yt | M⊺

k xt, (λtW)−1)W(W | Ω−1
k , νk)dW = T (yt | µt, Ψ−1

t , ηt) , (9)

where µt ≜ M⊺
k xt, ηt ≜ νk − Dy + 1, and Ψt ≜ ηtΩ−1

k λt.

See Appendix E for the proof. The resulting posterior predictive distribution provides
a recursive estimate of output uncertainty, which is valuable for decision-making and
adaptive control.

5. Model Evaluation
A key criterion for probabilistic model evaluation is the negative log-model evidence

(or surprisal) − log p(yk), which quantifies how surprising the observed data yk is under
the model [33,34]. To gain deeper insights into model performance, we analyze surprisal
from the perspective of variational inference on factor graphs. This approach enables us to
decompose the overall model score into contributions from the individual nodes and edges
of the graph.

Variational inference casts Bayesian inference as an optimization problem by approxi-
mating the true posterior p(Θ | Dk) with a computationally tractable variational posterior
q(Θ | Dk), chosen from a variational family Q [33,35]. At time k, the optimal variational
posterior is obtained by minimizing variational free energy (VFE) [36,37]:

q∗(Θ | Dk) = arg min
q∈Q

FVFE

[
q(Θ | Dk), p(yk, Θ)

]
,

where the VFE functional FVFE is defined as

FVFE

[
q(Θ | Dk), p(yk, Θ)

]
= DKL[q(Θ | Dk) || p(Θ | Dk)]︸ ︷︷ ︸

Inference Cost

− log p(yk | uk,Dk−1)︸ ︷︷ ︸
Model Evidence

.

In exact inference, where the true posterior is computed via Bayes’ rule, the infer-
ence cost becomes zero, and the VFE equals the exact surprisal. When exact inference is
intractable, VFE is expressed in a different way. By absorbing the evidence term into the
Kullback–Leibler (KL)-divergence, the product of the posterior and the evidence becomes
the joint distribution of the generative model, which can be decomposed into a likelihood
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times prior distribution. This yields the decomposition of free energy into complexity and
accuracy terms [37]:

DKL[q(Θ | Dk)||p(Θ | Dk)]− log p(yk | uk,Dk−1)

= Eq(Θ | Dk)

[
log

q(Θ | Dk)

p(yk, Θ | Dk)

]
= DKL[q(Θ | Dk) || p(Θ | Dk−1)]︸ ︷︷ ︸

Complexity

+ H[q(Θ | Dk), p(yk | Θ, xk)]︸ ︷︷ ︸
Accuracy

, (10)

where complexity measures how much the variational posterior deviates from the prior,
penalizing unnecessary deviations from prior knowledge and controlling overfitting. Accu-
racy quantifies the model’s ability to explain the observed data, expressed as the expected
negative log-likelihood under the variational posterior. To refine this decomposition further,
we introduce an auxiliary entropy term H(Θ | Dk) and rewrite (10) as

FVFE

[
q(Θ | Dk), p(yk, Θ)

]
=DKL[q(Θ|Dk)∥p(Θ|Dk-1)]+H[q(Θ|Dk), p(yk|Θ, xk))]−H[q(Θ|Dk)]+H[q(Θ|Dk)]

=DKL[q(Θ | Dk) || p(Θ | Dk−1)] + DKL[q(Θ | Dk) || p(yk | Θ, xk))] + H[q(Θ | Dk)] . (11)

For models formulated as Forney-style factor graphs, inference is performed by optimizing
the Bethe Free Energy (BFE), a generalization of VFE, which accounts for the graph’s
structure [13,21,38]:

FBFE[ q(Θ | Dk), p(yk, Θ) ] ≜ ∑
a∈V

DKL[qa||pa] + ∑
i∈E

H[qi] , (12)

where V is the set of factor nodes and E is the set of edges. In this formulation, each qa is
the local variational belief at node a, pa is the corresponding exact local distribution, and
each edge i contributes an entropy term H[qi]. In our recursive MARX model—comprising
a MARX likelihood node, a prior node, and an edge for the joint parameters Θ—the BFE
decomposition in (12) coincides with the VFE decomposition in (11). Thus, factor graphs
enable a fine-grained attribution of surprisal to specific components of the system.

5.1. MARX Model Evidence and Surprisal

To evaluate the model properly, we must compute the model evidence (marginal
likelihood), which is the probability of an observed sample marginalized over parameters,
weighted by their prior probabilities. Equation (5) already detailed the evidence term, but
this still involved an integral. This integral is identical to the integral for the posterior
predictive distribution (8), except that yk and uk are observed and the prior parameters are
those from time step k − 1. Concretely,

p(yk | uk,Dk−1) =
∫

p(yk | Θ, xk)p(Θ | Dk−1)dΘ = T (yk | mk, Ψ−1
k , ηk)

=

√
|Ψk|

(ηkπ)Dy

ΓDy((ηk + Dy)/2)

ΓDy((ηk + Dy − 1)/2)
(
1 +

1
ηk

(yk − mk)
⊺Ψk(yk − mk)

)−(ηk+Dy)/2 ,

where mk = M⊺
k−1xk, ηk = νk−1 − Dy + 1, Ψk = ηkΩ−1

k−1λk, and λk = (1 + x⊺k Λ−1
k−1xk)

−1.
Here T (· | µ, Σ−1, ν) denotes the multivariate Student’s t-distribution with location µ, scale
Σ−1, and degrees of freedom ν. Unlike the posterior predictive distribution, the model
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evidence is a scalar: higher values indicate that the model better explains the observed data.
Hence, the surprisal for our model is

− log p(yk | uk,Dk−1) = −1
2

log |Ψk|+
Dy

2
log(ηkπ)

− log ΓDy(
ηk + Dy

2
) + log ΓDy(

ηk + Dy − 1
2

)

+
ηk + Dy

2
log

(
1 +

1
ηk

(yk − mk)
⊺Ψk(yk − mk)

)
. (13)

5.2. MARX Variational Free Energy

Lemma 4. Let q and p be two matrix normal Wishart distributions over the same random variables
Θ, representing the posterior and prior, respectively:

q(Θ | Dk) = MNW(Θ | Mk, Λ−1
k , Ω−1

k , νk)

p(Θ | Dk−1) = MNW(Θ | Mk−1, Λ−1
k−1, Ω−1

k−1, νk−1) .

The differential cross-entropy H[q(Θ | Dk), p(Θ | Dk−1)] of the posterior relative to the prior is

H[q(Θ | Dk), p(Θ | Dk−1)] = −1
2

Dy log |Λk−1|+
1
2
(νk−1 + Dx − Dy − 1) log |Ωk|

− 1
2

νk−1 log |Ωk−1|+
1
2
(Dy + 1)Dy log 2 +

1
2

DxDy log π

+ log ΓDy(
νk−1

2
)− 1

2
(νk−1 + Dx − Dy − 1)ψDy(

νk
2
)

+
1
2

νktr
(

Ω−1
k (Mk − Mk−1)

⊺Λk−1(Mk − Mk−1)
)

+
1
2

Dytr(Λ−1
k Λ⊺

k−1) + νktr(Ω−1
k Ωk−1) .

See Appendix F for the proof.

Lemma 5. Consider the matrix normal Wishart posterior:

q(Θ | Dk) = MNW(A, W | Mk, Λ−1
k , Ω−1

k , νk) .

Its (differential) entropy is

H[q(Θ | Dk)] = −1
2

Dy log |Λk|+
1
2
(Dx − Dy − 1) log |Ωk|

+
1
2
(Dy + 1)Dy log 2 +

1
2

DxDy log π +
1
2
(Dx + νk)Dy

+ log ΓDy(
νk
2
)− 1

2
(νk + Dx − Dy − 1)ψDy(

νk
2
) . (14)

See Appendix G for the proof.

Lemma 6. Let q and p be two matrix normal Wishart distributions over the same random variables
Θ, representing the posterior and prior, respectively:

q(Θ | Dk) = MNW(Θ | Mk, Λ−1
k , Ω−1

k , νk)

p(Θ | Dk−1) = MNW(Θ | Mk−1, Λ−1
k−1, Ω−1

k−1, νk−1) .
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The KL-divergence DKL[q(Θ | Dk) || p(Θ | Dk−1)] of the posterior from the prior (complexity) is

DKL[q(Θ | Dk) || p(Θ | Dk−1)] =
1
2

Dy log
|Λk|
|Λk−1|

+
1
2

νk−1 log
|Ωk|
|Ωk−1|

− 1
2
(Dx + νk)Dy

− log ΓDy(
νk
2
) + log ΓDy(

νk−1
2

) +
1
2
(νk − νk−1)ψDy(

νk
2
)

+
1
2

νktr
(

Ω−1
k (Mk − Mk−1)

⊺Λk−1(Mk − Mk−1)
)

+
1
2

Dytr(Λ−1
k Λ⊺

k−1) + νktr(Ω−1
k Ωk−1) .

See Appendix H for the proof.

Lemma 7. Consider a matrix normal Wishart distribution q and a multivariate normal distribution
p, representing the posterior and MARX likelihood:

q(Θ | Dk) = MNW(A, W | Mk, Λ−1
k , Ω−1

k , νk)

p(yk | Θ, xk) = N (yk | A⊺xk, W−1) .

The differential cross-entropy H[q(Θ | Dk), p(yk | Θ, xk)] of the posterior relative to the likelihood
(accuracy) is

H[q(Θ | Dk), p(yk | Θ, xk)] = −1
2

ψDy(
νk
2
) +

1
2

log |Ωk|+
1
2

Dy log π

+
1
2

νk(yk − M⊺
k xk)

⊺Ω−1
k (yk − M⊺

k xk) +
1
2

x⊺k Λ−1
k xkDy .

See Appendix I for the proof.

6. Experiments
We conducted three experiments: one verification experiment and two validation

experiments (Code: https://github.com/biaslab/MDPI2025-MARX, accessed on 8 March
2025). In the verification experiment (Section 6.2), we tested whether the MARX estimator
could identify a dynamical system with known parameters. In the validation experiments
(Section 6.3), we assess the estimator’s performance on two complex dynamical systems
with unknown parameters: a linear double mass-spring-damper system and a nonlinear
double pendulum. In all the experiments, we compare the performance of the MARX
estimator to a baseline approach.

6.1. Baseline Estimator

We compare against a recursive least squares (RLS) estimator [3]. Let Âk be a point
estimate of the coefficient matrix based on the previous k data points, and let P0 = IDx be
an initial inverse sample covariance matrix. These matrices are updated at each time step
according to

Pk = Pk−1 − Pk−1xk(1 + x⊺k Pk−1xk)
−1x⊺k Pk−1

Âk = Âk−1 + Pk−1xk(1 + x⊺k Pk−1xk)
−1(yk − Â⊺

k−1xk)
⊺ .

Note that this formulation corresponds to a forgetting factor of 1.0, meaning that older data
points are not down-weighted. The system outputs are predicted with yt = Â⊺

k xt.

https://github.com/biaslab/MDPI2025-MARX
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6.2. Verification

We perform a verification experiment on a MARX system with state zk = xk (1), mem-
ory sizes Ny = 2, Nu = 3, and dimensions Dy = Du = 2. The system has true parameters
Θ̃ = (Ã, W̃). It evolves according to g( f (xk)) = Ã⊺xk, where Ã is the known coefficient
matrix (see Figure 2). For each output dimension i, the lag-dependent coefficients were
generated using a Butterworth low-pass filter (cutoff frequency 20 Hz) applied to that
same dimension, while cross-dimensional coefficients were sampled from N (0, 0.12) [39].
We chose the Butterworth filter because its maximally flat response in the passband en-
sures that signals below the cutoff frequency are transmitted with little distortion while
attenuating higher-frequency components [40]. This makes it suitable for generating stable
linear dynamics and mimicking the low-pass behavior often observed in physical dy-
namical systems—such as mechanical or electrical processes [41,42]—and is common in
applications like audio and biomedical signal processing [41,43]. The disturbance follows

ek ∼ N (0, W̃−1) with precision matrix W̃ =

[
300 100
100 200

]
.

Figure 2. Heatmap of true system parameter Ã⊺. “X” denotes coefficients generated from a Butter-
worth filter.

We evaluated each estimator for training sizes Ttrain ∈ {2l | l ∈ {2, 3, 4, 5, 6}}, using
Monte Carlo experiments with NMC = 100 runs. To learn the parameters, each estimator
uses Ttrain state transitions, starting from state z0 = 0Dz . After training, each estimator is
tested for Ttest = 100 time steps, again starting from z0 but with different control signals.
For the MARX estimator, we compare two priors (see Table 1): uninformative (MARX-UI)
and weakly informative (MARX-WI). The uninformative prior uses small precision values
for Λ0 and Ω0, corresponding to large prior variancesthat reflect minimal prior belief about
the parameters. The weakly informative prior assigns higher precision (lower variance),
introducing a mild preference for more stable parameter values while still letting the data
dominate. In both cases, the degrees of freedom ν0 are kept minimal at Dy + 3, just above
the threshold for the Wishart distribution to be well defined, further reinforcing the limited
informativeness of the prior. The weakly informative prior also encodes approximate prior
knowledge about the observation noise. Specifically, the Wishart component p(W) has a

mode at ν0Ω−1
0 =

[
500 0
0 500

]
, which is of similar magnitude to the true noise precision W̃.

In contrast, the uninformative prior sets Ω0 to much larger, placing its mode far from the
true noise characteristics. Thus, the weakly informative prior softly incorporates domain
knowledge about expected noise levels, improving convergence and stability in the early
stages of recursive estimation. For each training size, we calculate the root mean squared
error (RMSE),

RMSE =

√√√√ 1
Ttest

Ttest

∑
k=1

(ŷk − yk)2 ,

between the predicted output ŷk, i.e., the mean of the posterior predictive p(yk | uk,Dk−1),
and the true output yk for all k ∈ Ttest evaluation steps.
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Table 1. Sets of prior parameters used in the experiments.

M0 Λ0 Ω0 ν0

Uninformative 0Dx×Dy 1 × 10−4 · IDx 1 × 10−5 · IDy Dy + 3
Weakly informative 0Dx×Dy 1 × 10−1 · IDx 1 × 10−2 · IDy Dy + 3

Figure 3 shows the simulation errors for MARX-UI, MARX-WI, and RLS as a function
of the training size. For small sample sizes, MARX-WI consistently outperforms RLS, while
MARX-UI performs slightly worse. All three estimators converge to the same performance
level as the training size increases.

Figure 3. Simulation errors (average RMSE) of all three estimators for the MARX system, with ribbons
indicating standard errors.

Figure 4 focuses on a single Monte Carlo experiment with Ttrain = 26. It plots
log(||Ã − A||F), the log of the Frobenius norm between the true coefficient matrix Ã and
each estimate A. MARX-WI consistently yields better estimates of Ã than MARX-UI and
RLS. Although MARX-UI struggles during the first 25 time steps, it eventually produces a
more accurate estimate of Ã compared to RLS.

Figure 4. Log-scale Frobenius norm of the difference between true coefficient matrix Ã and estimates
A of each estimator in a single Monte Carlo run with Ttrain = 26 for the MARX system, with ribbons
indicating standard errors.

Unlike RLS, the MARX estimator also estimates the noise precision matrix W. Figure 5
shows log(||W̃ −W||F) for both MARX-WI and MARX-UI. MARX-WI consistently achieves
more accurate estimates of W̃ than MARX-UI.

Figure 5. Log-scale Frobenius norm of the difference between true coefficient matrix W̃ and estimates
W of each MARX estimator for the MARX system, with ribbons indicating standard errors.
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Figure 6 plots the negative log posterior probability of the true parameters Θ̃ (lower is
better), showing that the posterior concentrates sharply on the true values. As a probabilistic
estimator, MARX also quantifies uncertainty in its estimates of Ã and W̃ via the posterior
precision (or scale) parameters. Figure 7 illustrates the evolution of MARX-WI’s estimates
of W for a single run with Ttrain = 26. The ribbon represents one standard deviation around
the mean. Initially, MARX-WI exhibits high uncertainty (large variance), which generally
decreases over time. Because W̃ and W are symmetric, only the upper-triangular elements
are shown.

Figure 6. Negative log posterior probability of the true system parameters Θ̃ under each prior choice
for the MARX system (lower is better).

Figure 7. Time series of the estimated noise precision matrix W for the MARX-WI for the MARX
system. Ribbons indicate one standard deviation, and horizontal lines denote the true values of W̃.

Figure 8 (top) shows a heatmap of the difference A − Ã. To save space, we plot only
a subset of the elements of A, marked by “X”. This subset includes the elements with the
largest estimation errors and two randomly selected elements. Figure 8 (bottom) shows
the evolution of these selected elements for the same Monte Carlo experiment run, with
ribbons indicating one standard deviation around each mean estimate.

Figure 8. Top: Heatmap of the final Ã⊺ coefficient matrix parameter estimate by the MARX-WI
model. “X” marks selected elements, and the trajectories are shown below. Bottom: Time series of
the selected elements of Ã estimated by MARX-WI , with ribbons indicating one standard deviation.
Horizontal lines show the true values of the corresponding elements of Ã.



Entropy 2025, 27, 679 15 of 33

Furthermore, we apply the model score decomposition from Section 5 to evaluate our
recursive MARX model. By tracking how surprisal and its constituent terms evolve, we
obtain fine-grained insights into the model’s learning dynamics and uncertainty reduction.
We can recall from (10) that surprisal decomposes into an accuracy term—given by the
cross-entropy of the variational posterior relative to the likelihood, reflecting data fit—and
a complexity term—given by the KL-divergence of the variational posterior from the prior,
quantifying deviation from prior beliefs. Figure 9 illustrates this decomposition. In the
early stages of model training, the complexity term (green) dominates overall surprisal
(dashed blue), indicating substantial updates from the prior as the model learns the system
parameters. As training progresses and the posterior stabilizes, the complexity term
diminishes, and the accuracy term (red) becomes the main source of uncertainty. Spikes
in overall surprisal during later stages align with spikes in the accuracy term, which we
interpret as indicators of measurement outliers that temporarily degrade model fit.

Figure 9. MARX-WI surprisal (dashed blue line) and its decomposition into accuracy (red line) and
complexity (green line) over time for the MARX system.

Figure 10 complements this analysis by plotting the entropy of the variational posterior
q(Θ | Dk) over time. This highlights how quickly the inference procedure narrows the
parameter space, providing insight into convergence speed and residual uncertainty in the
model parameters.

Figure 10. Entropy of the MARX-WI variational posterior q(Θ | Dk) over time for the MARX system.

We also demonstrate model evaluation using model evidence. Figure 11 shows the
evolution of surprisal (lower is better) over time for MARX-WI and MARX-UI. This plot
highlights that the prior choice matters only initially; with sufficient data, MARX-WI and
MARX-UI converge to the same performance.

Figure 11. Surprisal over time for MARX-WI versus MARX-UI for the MARX system.
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6.3. Validation

To evaluate the proposed method, we perform validation experiments on two distinct
mechanical systems: a linear double mass-spring-damper system and a nonlinear double
pendulum system. These testbeds span a range of dynamical complexity and are stan-
dard benchmarks for modeling and control tasks. Despite their differences, both systems
share a common formulation as second-order dynamical systems expressed in first-order
ODE form:

Ik z̈k = F(zk, żk, uk) ,

where zk denotes generalized coordinates, żk and z̈k are the first and second time derivatives
of zk, uk are the control inputs, Ik is a (state-dependent) generalized inertia matrix, and F
encodes the system-specific generalized forces (including passive dynamics and external
control inputs). Time evolution is performed using a forward Euler integrator with a
system-specific time step ∆t:

zk+1 = zk + ∆tżk and żk+1 = żk + ∆tz̈k .

For both validation systems, we choose a disturbance ek ∼ N (0, W̃−1) with a precision

matrix W̃ =

[
2000 1000
1000 2000

]
. The validation experiments follow the same procedure as the

verification experiment: we perform Monte Carlo experiments with NMC = 100 runs with
∆t = 0.05, in which each estimator has Ttrain ∈ {2l | l ∈ {2, 3, 4, 5, 6}} state transitions
to learn the parameters (starting from state z0 = 0Dz ), and we test each estimator with
Ttest = 100 transitions. However, we increase the memory sizes of the MARX model to
Ny = Nu = 5.

In the following, we describe each validation system individually, and then present
the combined validation results.

6.3.1. Linear System: Double Mass-Spring-Damper

The linear system consists of two masses: m1 = 1.0 kg, connected to a fixed base by a
spring and damper with stiffness k1 = 0.99 and damping c1 = 0.4, and m2 = 2.0 kg, con-
nected to m1 via a second spring and damper with k2 = 0.8 and c2 = 0.4. The generalized
coordinates zk ∈ R2 represent the displacements of each mass from the equilibrium, and
the generalized inertia matrix is a constant: Ik = diag(m1, m2), where diag(·) denotes a
diagonal matrix with the given entries [26]. The generalized force function F combines the
internal spring and damping forces with external inputs:

F(zk, żk, uk) = Kzk + Cżk + uk ,

with the stiffness and damping matrices:

K =

[
−(k1 + k2) k2

k2 −k2

]
, C =

[
−(c1 + c2) c2

c2 −c2

]
.

6.3.2. Nonlinear System: Double Pendulum

The nonlinear system is a planar double pendulum (also called an acrobot) with
two links of lengths l1 = 1.0 m and l2 = 1.0 m and masses m1 = 1.0 kg and m2 = 1.0 kg,
respectively. The generalized coordinates zk ∈ R2 represent the joint angles, and the
generalized inertia matrix is captured implicitly through a structured nonlinear force
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formulation. The dynamics are governed by gravity and nonlinear velocity coupling,
yielding

F(zk, żk, uk) = diag
(

g
(

1
2 m1 + m2

)
l1, − 1

2 gm2l2
)

sin(zk) + JxVż2
k + uk ,

where g is gravitational acceleration, Jx ≜ 1
2 m2l1l2, and V is the nonlinear velocity-coupling

matrix:

V =

[
0 − sin(zk,1 − zk,2)

sin(zk,1 − zk,2) 0

]
.

6.3.3. Results

As in the verification experiment, Figure 12 shows the simulation errors for MARX-UI,
MARX-WI, and RLS for both the double mass-spring-damper system Figure 12a) and the
double pendulum system (Figure 12b). Convergence to stable performance is slower in both
systems compared to the verification case. Nevertheless, both MARX variants outperform
RLS and converge to similar levels of predictive performance. This confirms that the MARX
model generalizes to more complex dynamical systems. As expected, the overall RMSE is
higher for the nonlinear double pendulum system. A peak of performance loss is present
for MARX-UI, which is more pronounced in the double mass-spring-damper system.

(a) Double mass-spring-damper system

(b) Double pendulum system

Figure 12. Simulation errors (average RMSE) of all three estimators for each validation system, with
ribbons indicating standard errors.

Figure 13 shows log(||W̃ −W||F) for both MARX-WI and MARX-UI for the validation
systems. Initially, MARX-WI achieves better accuracy and lower variability than MARX-UI.
Unlike in the verification setting, MARX-UI improves significantly over time and ultimately
approaches similar estimation quality.
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(a) Double mass-spring-damper system

(b) Double pendulum system

Figure 13. Log-scale Frobenius norm of the error between the true coefficient matrix W̃ and its esti-
mates W from each MARX estimator for each validation system. Ribbons represent standard errors.

Figure 14 illustrates estimates of W̃ by MARX-WI for a single Monte Carlo experiment
(Ttrain = 26) for both systems. The model struggles with learning and initially shows
high uncertainty, followed by a sharp reduction as learning progresses. This reflects the
challenge of inferring observation noise structure in nonlinear systems from limited data.

(a) Double mass-spring-damper system

(b) Double pendulum system

Figure 14. Time series of W̃ estimates from MARX-WI for each validation system, with ribbons
representing one standard deviation. Horizontal lines mark true parameter values.

Figure 15 displays the evolution of MARX-WI’s surprisal and its decomposition into
accuracy and complexity. The early learning phases show that surprisal reduction is
dominated by decreasing model complexity. This trend is more difficult to sustain in
the nonlinear system, where complexity remains elevated for longer. Later in training,
fluctuations in surprisal are primarily driven by changes in accuracy.
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(a) Double mass-spring-damper system

(b) Double pendulum system

Figure 15. Surprisal (dashed blue) and its decomposition into accuracy (red) and complexity (green)
for MARX-WI over time for each validation system.

Finally, Figure 16 shows the entropy of the variational posterior q(Θ | Dk) for each
validation system. In both systems, MARX-WI rapidly reduces entropy, indicating fast con-
vergence to informative parameter regions despite the different complexities of the systems.

(a) Double mass-spring-damper system

(b) Double pendulum system

Figure 16. Entropy of the MARX-WI model parameters over time for each validation system.

7. Discussion
The modular nature of the factor graph methodology provides substantial practical

advantages. As demonstrated by Loeliger et al. [15], factor graphs facilitate the visual
construction of complex algorithms by incorporating, eliminating, or merging established
computational units. For example, the MARX model’s factor graph (Figure 1) could be
extended to support time-varying parameters by introducing state transition factor nodes
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between the equality nodes over the parameters [24]. In multi-agent robotics, where sensors
and actuators are spread across various platforms, each agent can update its local beliefs
through message passing and share only the most informative summaries [44]. This tar-
geted communication reduces bandwidth demands while enabling swift convergence to an
accurate global model. Recent research highlights the importance of transmitting informa-
tive variational beliefs in multi-agent environments [22,45], facilitating scalable cooperative
learning among heterogeneous agents. The resulting computational decentralization opens
promising opportunities for federated system identification and coordination in multi-robot
systems, especially when subject to privacy or bandwidth constraints [46–48].

7.1. Computational Efficiency

The dominant computational cost in our inference algorithm arises from the matrix
inversion of Λ (4), which scales as O(D3

x) in the worst case. We benchmarked the update
rule computations on a Julia-based implementation running on an Apple Macbook M1, av-
eraging over 1,000,000 runs. For a state dimension of Dx = 10, updating the parameters for
a single time step took approximately 2 nanoseconds (excluding garbage collection). Fur-
ther computational savings are possible by adopting an information filter parameterization,
where Ξk (A3) is stored instead of Mk (3) [49]. This approach defers the matrix inversion
until Mk is explicitly needed, offering an efficiency boost, particularly in high-dimensional
or resource-constrained scenarios.

7.2. Limitations

Despite its efficiency and modularity, our method has several limitations. First, it does
not support fully Bayesian k-step ahead predictions. Computing joint posterior predictives
over a longer horizon is intractable under the current formulation and is challenging
as it requires marginalization over a (deeply) nested set of autoregressive coefficients.
Second, the model is built on a linear multivariate autoregressive likelihood, which—while
computationally efficient—limits its expressiveness. In systems characterized by strong
nonlinearities, this assumption can lead to underfitting and reduced predictive performance.
Lastly, although we explored both uninformative and weakly informative priors, the model
remains sensitive to prior settings, particularly in data-scarce settings or during the early
stages of recursive estimation. In these scenarios, poor prior choices can significantly
degrade both convergence speed and final performance.

7.3. Future Work

Future work may explore extending the MARX framework to accommodate time-
varying parameters by inserting state-transition factors between the equality nodes—
analogous to prior work on univariate autoregressive models [24]. Another extension is to
utilize the posterior distributions over the parameters to formulate a mutual information-
based cost function for input signal design [10].

8. Conclusions
We presented a recursive Bayesian estimation procedure for multivariate autore-

gressive models with exogenous inputs. The method produces matrix-variate posterior
distributions over both the model coefficients and the noise precision, allowing uncertainty
to be explicitly propagated into future output predictions. We also demonstrated how these
uncertainty estimates enable the analysis of individual factor nodes and edges within the
model, making it possible to assess their contributions to the overall model score and to
identify potential outliers. The ability to track sources of uncertainty online and evaluate
their impact on output predictions is especially valuable for applications such as Bayesian
optimal experimental design or information-theoretic adaptive control.
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Appendix A. Parameter Estimation
Proof. The functional form of the likelihood is

p(yk | Θ, xk) ∝
√
|W| exp

(
−1

2
tr
[
WLk

])
,

where Lk ≜ (yk − A⊺xk)(yk − A⊺xk)
⊺. The prior is

p(Θ | Dk−1) ∝
√
|W|νt−1+D̄ exp

(
−1

2
tr
[
W

(
Hk−1 + Ωk−1

)])
,

where Hk−1 ≜ (A − Mk−1)
⊺Λk−1(A − Mk−1) and D̄ ≜ Dx − Dy − 1. The posterior is

proportional to the likelihood times the prior:

p(Θ | Dk) ∝ p(yk | Θ, xk) p(Θ | Dk−1)

∝
√
|W|νk−1+1+D̄ exp

(
−1

2
tr
[
W

(
Lk + Hk−1 + Ωk−1

)])
. (A1)

We expand the first terms in the exponent and group them as follows:

Lk + Hk−1 = yky⊺k − ykx⊺k A − A⊺xky⊺k + A⊺xkx⊺k A

+ A⊺Λk−1 A − A⊺Λk−1Mk−1 − M⊺
k−1Λk−1 A + M⊺

k−1Λk−1Mk−1

= A⊺(Λk−1 + xkx⊺k )A − A⊺(xky⊺k + Λk−1Mk−1) (A2)

− (M⊺
k−1Λk−1 + ykx⊺k )A + yky⊺k + M⊺

k−1Λk−1Mk−1 .

https://github.com/biaslab/MDPI2025-MARX
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Let Λk ≜ Λk−1 + xkx⊺k , Ξk ≜ xky⊺k + Λk−1Mk−1 and Mk ≜ Λ−1
k Ξk. Adding and subtracting

Ξ⊺
k Λ−1

k Ξk to (A2) yields

Lk + Hk−1 = A⊺Λk A − A⊺Ξk − Ξ⊺
k A + Ξ⊺

k Λ−1
k Ξk

− Ξ⊺
k Λ−1

k Ξk + yky⊺k + M⊺
k−1Λk−1Mk−1

= (A − Λ−1
k Ξk)

⊺Λk(A − Λ−1
k Ξk)

− M⊺
k Λk Mk + yky⊺k + M⊺

k-1Λk−1Mk−1 . (A3)

Plugging the above into (A1), we recognize the functional form of the matrix normal
Wishart distribution:√

|W|νk+D̄ exp
(
− 1

2
tr
[
W((A − Mk)

⊺Λk(A − Mk) + Ωk)
])

∝ MNW(A, W | Mk, Λ−1
k , Ω−1

k , νk) ,

which parameters are

νk = νk−1 + 1 ,

Λk = Λk−1 + xkx⊺k ,

Mk = (Λk−1 + xkx⊺k )
−1(Λk−1Mk−1 + xky⊺k ) , and

Ωk = Ωk−1 + yky⊺k + M⊺
k−1Λk−1Mk−1 − M⊺

k Λk Mk .

This concludes the proof.

Appendix B. Backwards Message from Likelihood
Proof. The MARX likelihood function is

p(yk | Θ, xk) ∝
√
|W| exp

(
− 1

2
tr
[
WLk

])
, (A4)

where the completed square is

Lk ≜ (yk − A⊺xk)(yk − A⊺xk)
⊺ = yky⊺k − A⊺xky⊺k − ykx⊺k A + A⊺xkx⊺k A .

Let Λ̄k ≜ xkx⊺k , Ξ̄k ≜ xky⊺k and M̄k = Λ̄−1
k Ξ̄k. Then adding and subtracting Ξ̄⊺

k Λ̄kΞ̄k allows
us to rewrite the square in terms of A:

Lk + Ξ̄⊺
k Λ̄−1

k Ξ̄k − Ξ̄⊺
k Λ̄−1

k Ξ̄k = yky⊺k + (A − M̄k)
⊺Λ̄k(A − M̄k)− Ξ̄⊺

k Λ̄−1
k Ξ̄k .

The two remaining terms cancel:

yky⊺k − Ξ̄⊺
k Λ̄−1

k Ξ̄k = yky⊺k − ykx⊺k (xkx⊺k )
−1xky⊺k

= yky⊺k − yk Iy⊺k
= 0Dy×Dy .

If we define ν̄k ≜ 1 − D̄ for D̄ = Dx + Dy + 1 and Ω̄k ≜ 0Dy×Dy , then we may recognize
the functional form of a matrix normal Wishart in (A4):

p(yk | Θ, xk) ∝
√
|W|ν̄k+D̄ exp

(
− 1

2
tr
[
W((A − M̄k)

⊺Λ̄k(A − M̄k) + Ω̄k)
])

∝ MNW(A, W | M̄k, Λ̄−1
k , Ω̄−1

k , ν̄k) .

This concludes the proof.
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Appendix C. Product of Matrix Normal Wishart Distributions
Proof. Let p1, p2 be two matrix normal Wishart distributions over the same random vari-
ables Θ:

p1(Θ) = MNW(A, W | M1, Λ−1
1 , Ω−1

1 , ν1)

p2(Θ) = MNW(A, W | M2, Λ−1
2 , Ω−1

2 , ν2) .

Their product is proportional to

p1(Θ)p2(Θ) ∝
√
|W|ν1+D̄ exp

(
− 1

2
tr
[
WL1

])√
|W|ν2+D̄ exp

(
− 1

2
tr
[
WL2

])
=

√
|W|ν3+D̄ exp

(
− 1

2
tr
[
W(L1 + L2)

])
for D̄ ≜ Dx − Dy − 1, ν3 ≜ ν1 + ν2 + Dx − Dy − 1 and Li ≜ (A − Mi)

⊺Λi(A − Mi) + Ωi.
The sum of Li is

L1 + L2 = A⊺(Λ1 + Λ2)A − A⊺(Λ1M1 + Λ2M2)− (M⊺
1 Λ1 + M⊺

2 Λ2)A (A5)

+ M⊺
1 Λ1M1 + M⊺

2 Λ2M2 + Ω1 + Ω2 .

Let Λ3 ≜ Λ1 + Λ2 and Θ3 ≜ Λ1M1 + Λ2M2. Then,

(A − Λ−1
3 Θ3)

⊺Λ3(A − Λ−1
3 Θ3) = A⊺Λ3 A − A⊺Θ3 − Θ⊺

3 A + Θ⊺
3 Λ−1

3 Θ3 .

Using M3 ≜ Λ−1
3 Θ3, (A5) can be written as

p1(Θ)p2(Θ) ∝
√
|W|ν3+D̄ exp

(
− 1

2
tr
[
W

(
(A − M3)

⊺Λ3(A − M3) (A6)

− Θ⊺
3 Λ−1

3 Θ3 + M⊺
1 Λ1M1 + M⊺

2 Λ2M2 + Ω1 + Ω2
)])

.

Note that Θ⊺
3 Λ−1

3 Θ3 = Θ⊺
3 Λ−1

3 Λ3Λ−1
3 Θ3 = M⊺

3 Λ3M3. Let

Ω3 ≜ Ω1 + Ω2 + M⊺
1 Λ1M1 + M⊺

2 Λ2M2 − M⊺
3 Λ3M3 .

Then (A6) may be recognized as an unnormalized matrix normal Wishart:√
|W|ν3+D̄ exp

(
− 1

2
tr
[
W

(
(A − M3)

⊺Λ3(A − M3) + Ω3
)])

∝ MNW
(

A, W | M3, Λ−1
3 , Ω−1

3 , ν3
)

. (A7)

As such, the product of two matrix normal Wishart distributions is proportional to another
matrix normal Wishart distribution.
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Appendix D. Marginalization over A
Proof. The marginalization over A is

p(yt | W, ut,Dk) =
∫

p(yt | Θ, xt)p(A | W,Dk)dA

=
∫

N
(
yt | A⊺xt, W−1)MN

(
A | Mk, Λ−1

k , W−1)dA

=

√
(2π)−Dy(1+Dx)|W|Dx+1|Λk|Dy∫
exp

(
− 1

2
tr
[
W(Lt + Hk)

])
dA . (A8)

where the terms inside the trace are

Lt ≜ (yt − A⊺xt)(yt − A⊺xt)
⊺

Hk ≜ (A − Mk)
⊺Λk(A − Mk) .

Expanding Lt and Hk and adding them yields

Lt + Hk = yty
⊺
t − A⊺xty

⊺
t − ytx

⊺
t A + A⊺xtx

⊺
t A

+ A⊺Λk A − A⊺Λk Mk − M⊺
k Λk A + M⊺

k Λk Mk

= yty
⊺
t + M⊺

k Λk Mk + A⊺(Λk + xtx
⊺
t )A

− A⊺(Λk Mk + xty
⊺
t )− (Λk Mk + xty

⊺
t )

⊺A .

Let Λt ≜ Λk + xtx
⊺
t , Θt ≜ Λk Mk + xty

⊺
t and Mt ≜ Λ−1

t Θt. Completing the square gives

Lt + Hk = (A − Mt)
⊺Λt(A − Mt)− M⊺

t Λt Mt + yty
⊺
t + M⊺

k Λk Mk .

Plugging this result into the integral in (A8) gives∫
exp

(
− 1

2
tr
[
W(Lt + Hk)

])
dA = exp

(
− 1

2
tr
[
W(yty

⊺
t + M⊺

k Λk Mk − M⊺
t Λt Mt)

])
∫

exp
(
− 1

2
tr
[
W(A − Mt)

⊺Λt(A − Mt)
])

dA .

We can recognize the integrand as the functional form of a matrix normal distribution.
Thus, the integral evaluates to its inverse normalization factor:

∫
exp

(
−1

2
tr
[
W(A − Mt)

⊺Λt(A − Mt)
])

dA =

√
(2π)DyDx

|W|Dx |Λt|Dy
.

Using this result, the marginalization over A is∫
p(yt | Θ, xt)p(A | W,Dk) dA

=

√
|W|

(2π)Dy

√
|Λk|Dy |Λt|−Dy exp

(
− 1

2
tr
[
W(yty

⊺
t + M⊺

k Λk Mk − M⊺
t Λt Mt)

])
.

Note that, under the matrix determinant lemma,

|Λt| = |Λk + xtx
⊺
t | = |Λk|(1 + x⊺t Λ−1

k xt) ,
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which implies that the product of determinants is

|Λk|Dy |Λt|−Dy =
(
1 + x⊺t Λ−1

k xt
)−Dy .

Let λt ≜ (1 + x⊺t Λ−1
k xt)−1. As W is Dy-dimensional, |W|λDy

t = |Wλt|. Furthermore,
note that

M⊺
t Λt Mt = M⊺

k Λk(xtx
⊺
t + Λk)

−1Λk Mk + ytx
⊺
t (xtx

⊺
t + Λk)

−1Λk Mk

+ M⊺
k Λk(xtx

⊺
t + Λk)

−1xty
⊺
t + ytx

⊺
t (xtx

⊺
t + Λk)

−1xty
⊺
t .

Combining this with the other terms in the trace gives

yty
⊺
t + M⊺

k Λk Mk − M⊺
t Λt Mt

= M⊺
k Λk

(
I − (xtx

⊺
t + Λk)

−1Λk
)

Mk − ytx
⊺
t (xtx

⊺
t + Λk)

−1Λk Mk

− M⊺
k Λk(xtx

⊺
t + Λk)

−1xty
⊺
t + yt

(
1 − x⊺t (xtx

⊺
t + Λk)

−1xt
)
y⊺t .

Using the Sherman–Morrison formula, we have

(
1 − x⊺t (xtx

⊺
t + Λk)

−1xt
)
=

(
1 − x⊺t (Λ

−1
k −

Λ−1
k xtx

⊺
t Λ−1

k

1 + x⊺t Λ−1
k xt

)xt
)

=
(
1 + x⊺t Λ−1

k xt
)−1

= λt .

Another application of Sherman–Morrison yields

I − (xtx
⊺
t + Λk)

−1Λk =
(
Λ−1

k − (Λ−1
k −

Λ−1
k xtx

⊺
t Λ−1

k

1 + x⊺t Λ−1
k xt

)
)
Λk

= λtΛ−1
k xtx

⊺
t Λ−1

k .

A third Sherman–Morrison gives

Λk(xtx
⊺
t + Λk)

−1xt = Λk
(
Λ−1

k −
Λ−1

k xtx
⊺
t Λ−1

k

1 + x⊺t Λ−1
k xt

)
xt

= Ixt − xt
x⊺t Λ−1

k xt

1 + x⊺t Λ−1
k xt

= xtλt .

Using these three simplifications, we have

tr
[
W

(
yty

⊺
t + M⊺

k Λk Mk − M⊺
t Λt Mt

)]
= y⊺t Wλtyt − y⊺t Wλt M⊺

k xt − x⊺t MkWλtyt + x⊺t MkWλt M⊺
k xt

=
(
yt − M⊺

k xt
)⊺Wλt

(
yt − M⊺

k xt
)
. (A9)

Plugging (A9) into (A8) yields

p(yt | W, ut,Dk) =

√
|Wλt|
(2π)Dy

exp
(
− λt

2
(yt − M⊺

k xt)
⊺W(yt − M⊺

k xt)
)

= N
(
yt | M⊺

k xt, (Wλt)
−1) .
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This concludes the proof.

Appendix E. Marginalization over W
Proof. The marginalization over W is∫

N
(
yt | M⊺

k xt,(Wλt)
−1)W(W | Ω−1

k , νk)dW

=
∫ √

|Wλt|
(2π)Dy

exp
(
− λt

2
(yt − M⊺

k xt)
⊺W(yt − M⊺

k xt)
)

1
ΓDy(

νk
2 )

√
|Ωk|νk |W|νk−Dy−1

2νk Dy
exp

(
− 1

2
tr
[
WΩk

])
dW

=
1

ΓDy(
νk
2 )

√√√√ |Ωk|νk λ
Dy
t

(2π)Dy 2νk Dy

∫ √
|W|νk+1−Dy−1

exp
(
− 1

2
tr
[
W(Ωk + λt(yt − M⊺

k xt)(yt − M⊺
k xt)

⊺)
])

dW

=
1

ΓDy(
νk
2 )

√√√√ |Ωk|νk λ
Dy
t

(2π)Dy 2νk Dy
ΓDy(

νk + 1
2

)
√

2(νk+1)Dy (A10)√∣∣Ωk + λt(yt − M⊺
k xt)(yt − M⊺

k xt)⊺
∣∣−(νk+1) ,

where we made use of the normalization factor of a Wishart distribution. Note that√
2(νk+1)Dy

(2π)Dy 2νk Dy
=

√
2Dy

2Dy πDy
=

√
1

πDy
. (A11)

Let ηt ≜ νk − Dy + 1. Then,

ΓDy(
νk+1

2 )

ΓDy(
νk
2 )

=
ΓDy(

ηt+Dy
2 )

ΓDy(
ηt+Dy−1

2 )
. (A12)

The determinants simplify as follows:√
|Ωk|νk |Ωk + λt(yt − M⊺

k xt)(yt − M⊺
k xt)⊺|−(νk+1) (A13)

=
√
|λt(yt − M⊺

k xt)(yt − M⊺
k xt)⊺Ω−1

k + I|−(νk+1)|Ω−1
k | ,

and then, using the matrix determinant lemma, we have

|λt(yt − M⊺
k xt)(yt − M⊺

k xt)
⊺Ω−1

k + I|−(νk+1) (A14)

=
(
(yt − M⊺

k xt)
⊺Ω−1

k λt(yt − M⊺
k xt) + 1

)−(ηt+Dy)/2.
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With Equations (A11)–(A14), we may write (A10) as∫
N

(
yt | Mkxt, (Wλt)

−1)W(W | Ω−1
k , νk)dW

=

√
|Ω−1

k |
πDy

ΓDy(
ηt+Dy

2 )

ΓDy(
ηt+Dy−1

2 )

√
λ

Dy
t

(
1 + (yt − M⊺

k xt)
⊺Ω−1

k λt(yt − M⊺
k xt)

)−(ηt+Dy)/2

=

√
|ηtΩ−1

k λt|
(ηtπ)Dy

ΓDy((ηt + Dy)/2)

ΓDy((ηt + Dy − 1)/2)(
1 +

1
ηt
(yt − M⊺

k xt)
⊺ηtΩ−1

k λt(yt − M⊺
k xt)

)−(ηt+Dy)/2

= T (yt | µt, Ψ−1
t , ηt) ,

where µt ≜ M⊺
k xt, Ψt ≜ ηtΩ−1

k λt.

Appendix F. Cross-Entropy of a Matrix Normal Wishart Relative to a
Matrix Normal Wishart
Proof. The functional form of a matrix normal Wishart with general parameters M, Λ, Ω,
and ν is

p(Θ) = MNW(A, W | M, Λ−1, Ω−1, ν)

=

√
|Λ|Dy |Ω|ν|W|ν+Dx−Dy−1

2(ν+Dx)Dy πDx Dy

1
ΓDy(

ν
2 )

exp
(
− 1

2
tr
[
W

(
(A−M)⊺Λ(A−M)+Ω

)])
.

Consider two matrix normal Wishart distributions over the same parameters Θ:

q(Θ) = MNW(A, W | Mq, Λ−1
q , Ω−1

q , νq)

p(Θ) = MNW(A, W | Mp, Λ−1
p , Ω−1

p , νp) .

The differential cross-entropy H[q, p] of q relative to p is

H[q, p] = Eq(Θ)

[
− log p(Θ)

]
= −1

2
Dy log |Λp| −

1
2

νp log |Ωp| −
1
2
(νp + Dx − Dy − 1)Eq

[
log |W|

]
(A15)

+
1
2
(νp + Dx)Dy log 2 +

1
2

DxDy log π + log ΓDy(
νp

2
)

+
1
2
Eq

[
tr
[
W

(
(A − Mp)

⊺Λp(A − Mp) + Ωp
)] ]

.

The first expectation is the expectation of a Wishart log-determinant [28]:

Eq(Θ)

[
log |W|

]
= Eq(W)

[
Eq(A | W)

[
log |W|

] ]
= ψDy(

νq

2
) + Dy log 2 − log |Ωq| , (A16)
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where ψDy is the multivariate digamma function of dimension Dy. For the second expecta-
tion, we first define the following expectations:

Eq(A | W)

[
A
]
= Mq (A17)

Eq(A | W)

[
A⊺

]
= M⊺

q (A18)

Eq(A | W)

[
A⊺BA

]
= M⊺

q BMq + tr(Λ−1
q B⊺)W−1 (A19)

Eq(W)

[
W

]
= νqΩ−1

q , (A20)

for appropriately dimensioned matrix B. Equation (A19) is a property of matrix normal
distributions [28]. We apply Eq[ tr(·) ] = tr(Eq[ · ]) [27], and make use of the factorization of
a matrix normal Wishart:

Eq(Θ)

[
tr
(

W
(
(A − Mp)

⊺Λp(A − Mp) + Ωp
)) ]

= tr
(
Eq(Θ)

[
W

(
(A − Mp)

⊺Λp(A − Mp) + Ωp
) ])

= tr
(
Eq(W)

[
Eq(A | W)

[
W

(
(A − Mp)

⊺Λp(A − Mp) + Ωp
) ] ])

= tr
(
Eq(W)

[
WEq(A | W)

[
(A − Mp)

⊺Λp(A − Mp)
]
+ WΩp

])
. (A21)

We expand the term in the inner expectation and plug in Equations (A17)–(A19):

Eq(A | W)

[
(A − Mp)

⊺Λp(A − Mp)
]

= Eq(A | W)

[
A⊺Λp A − A⊺Λp Mp − M⊺

pΛp A + M⊺
pΛp Mp

]
= M⊺

q Λp Mq + tr(Λ−1
q Λ⊺

p)W−1 − M⊺
q Λp Mp − M⊺

pΛp Mq + M⊺
pΛp Mp

= (Mq − Mp)
⊺Λp(Mq − Mp) + tr(Λ−1

q Λ⊺
p)W−1 . (A22)

We plug (A22) into (A21), expand, and use (A20) to resolve the remaining expectations:

tr
(
Eq(W)

[
WEq(A | W)

[
(A − Mp)

⊺Λp(A − Mp)
]
+ WΩp

])
= tr

(
Eq(W)

[
W(Mq − Mp)

⊺Λp(Mq − Mp) + tr(Λ−1
q Λ⊺

p)WW−1 + WΩp

])
= tr

(
νqΩ−1

q (Mq − Mp)
⊺Λp(Mq − Mp) + tr(Λ−1

q Λ⊺
p)IDy + νqΩ−1

q Ωp

)
= νqtr

(
Ω−1

q (Mq − Mp)
⊺Λp(Mq − Mp)

)
+ Dytr(Λ−1

q Λ⊺
p) + νqtr(Ω−1

q Ωp) . (A23)
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We plug (A23) and (A16) into (A15) to yield the differential cross-entropy:

H[q, p] = −1
2

Dy log |Λp| −
1
2

νp log |Ωp|

− 1
2
(νp + Dx − Dy − 1)

(
ψDy(

νq

2
) + Dy log 2 − log |Ωq|

)
+

1
2
(νp + Dx)Dy log 2 +

1
2

DxDy log π + log ΓDy(
νp

2
)

+
1
2

νqtr
(

Ω−1
q (Mq − Mp)

⊺Λp(Mq − Mp)
)
+

1
2

Dytr(Λ−1
q Λ⊺

p)

+
1
2

νqtr(Ω−1
q Ωp)

= −1
2

Dy log |Λp|+
1
2
(νp + Dx − Dy − 1) log |Ωq| −

1
2

νp log |Ωp| (A24)

+
1
2
(Dy + 1)Dy log 2 +

1
2

DxDy log π

+ log ΓDy(
νp

2
)− 1

2
(νp + Dx − Dy − 1)ψDy(

νq

2
)

+
1
2

νqtr
(

Ω−1
q (Mq − Mp)

⊺Λp(Mq − Mp)
)

+
1
2

Dytr(Λ−1
q Λ⊺

p) + νqtr(Ω−1
q Ωp) .

This concludes the proof.

Appendix G. Entropy of a Matrix Normal Wishart
Proof. Consider a matrix normal Wishart distribution:

q(Θ) = MNW(A, W | Mq, Λ−1
q , Ω−1

q , νq) .

By definition, a differential entropy H[q] of a distribution q is a special case of a differential
cross-entropy H[q, p] of q from another distribution p, where p = q, i.e., H[q] = H[q, q].
Plugging in (the parameters of) p = q into (A24) from Appendix F, we get the entropy:

H[q] = −1
2

Dy log |Λq|+
1
2
(νq + Dx − Dy − 1) log |Ωq| −

1
2

νq log |Ωq|

+
1
2
(Dy + 1)Dy log 2 +

1
2

DxDy log π

+ log ΓDy(
νq

2
)− 1

2
(νq + Dx − Dy − 1)ψDy(

νq

2
)

+
1
2

νqtr
(

Ω−1
q (Mq − Mq)

⊺Λq(Mq − Mq)
)

︸ ︷︷ ︸
=0

+
1
2

Dy tr(Λ−1
q Λ⊺

q )︸ ︷︷ ︸
=Dx

+
1
2

νq tr(Ω−1
q Ωq)︸ ︷︷ ︸

=Dy

= −1
2

Dy log |Λq|+
1
2
(Dx − Dy − 1) log |Ωq|

+
1
2
(Dy + 1)Dy log 2 +

1
2

DxDy log π +
1
2
(Dx + νq)Dy

+ log ΓDy(
νq

2
)− 1

2
(νq + Dx − Dy − 1)ψDy(

νq

2
) .

This concludes the proof.
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Appendix H. KL-Divergence of a Matrix Normal Wishart from a Matrix
Normal Wishart
Proof. Consider two matrix normal Wishart distributions over the same parameters Θ:

q(Θ) = MNW(A, W | Mq, Λ−1
q , Ω−1

q , νq)

p(Θ) = MNW(A, W | Mp, Λ−1
p , Ω−1

p , νp) .

By definition, a KL-divergence DKL[q||p] of a distribution q from another distribution p
is the difference between the differential cross-entropy H[q, p] of q from p (A24) and the
entropy of q (14) [50]:

DKL[q||p] = −1
2

Dy log |Λp|+
1
2
(νp + Dx − Dy − 1) log |Ωq| −

1
2

νp log |Ωp|

+
1
2
(Dy + 1)Dy log 2 +

1
2

DxDy log π

+ log ΓDy(
νp

2
)− 1

2
(νp + Dx − Dy − 1)ψDy(

νq

2
)

+
1
2

νqtr
(

Ω−1
q (Mq − Mp)

⊺Λp(Mq − Mp)
)
+

1
2

Dytr(Λ−1
q Λ⊺

p) +
1
2

νqtr(Ω−1
q Ωp)

+
1
2

Dy log |Λq| −
1
2
(Dx − Dy − 1) log |Ωq|

− 1
2
(Dy + 1)Dy log 2 − 1

2
DxDy log π − 1

2
(Dx + νq)Dy

− log ΓDy(
νq

2
) +

1
2
(νq + Dx − Dy − 1)ψDy(

νq

2
)

=
1
2

Dy log
|Λq|
|Λp|

+
1
2

νp log
|Ωq|
|Ωp|

− 1
2
(Dx + νq)Dy

− log ΓDy(
νq

2
) + log ΓDy(

νp

2
) +

1
2
(νq − νp)ψDy(

νq

2
)

+
1
2

νqtr
(

Ω−1
q (Mq − Mp)

⊺Λp(Mq − Mp)
)
+

1
2

Dytr(Λ−1
q Λ⊺

p) + νqtr(Ω−1
q Ωp) .

This concludes the proof.

Appendix I. Cross-Entropy of a Matrix Normal Wishart Relative to a
Multivariate Normal
Proof. Consider a matrix normal Wishart distribution q and a multivariate normal distri-
bution p:

q(Θ) = MNW(A, W | Mq, Λ−1
q , Ω−1

q , νq)

p(y | Θ, x) = N (y | A⊺x, W−1) .

The differential cross-entropy H[q, p] of q relative to p is

H[q, p] = Eq(Θ)

[
− log p(y | Θ, x)

]
= −1

2
Eq(Θ)

[
log |W|

]
+

1
2

Dy log 2 +
1
2

Dy log π (A25)

+
1
2
Eq(Θ)

[
(y − A⊺x)⊺W(y − A⊺x)

]
.

The first expectation again is the expectation of a Wishart log-determinant [28] (A16). For
the second expectation, we make use of the factorization of a matrix normal Wishart, bring
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the term (a scalar) in trace form, apply Eq[ tr(·) ] = tr(Eq[ · ]) [27] and the cyclic property of
tr, and rearrange as follows:

Eq(Θ)

[
(y − A⊺x)⊺W(y − A⊺x)

]
= Eq(W)

[
Eq(A | W)

[
(y − A⊺x)⊺W(y − A⊺x)

] ]
= tr

(
Eq(W)

[
Eq(A | W)

[
W(y − A⊺x)(y − A⊺x)⊺

] ])
= tr

(
Eq(W)

[
WEq(A | W)

[
(y − A⊺x)(y − A⊺x)⊺

] ])
. (A26)

We expand the term in the inner expectation and plug in (A17) and (A19) (with B = xx⊺):

Eq(A | W)

[
(y − A⊺x)(y − A⊺x)⊺

]
= yy⊺ −Eq(A | W)

[
yx⊺A

]
−Eq(A | W)

[
A⊺xy⊺

]
+Eq(A | W)

[
A⊺xx⊺A

]
= yy⊺ − yx⊺Eq(A | W)

[
A
]
−Eq(A | W)

[
A⊺

]
xy⊺ +Eq(A | W)

[
A⊺xx⊺A

]
= yy⊺ − yx⊺Mq − M⊺

q xy⊺ + M⊺
q xx⊺Mq + tr(Λ−1

q (xx⊺)⊺)W−1

= (y − M⊺
q x)(y − M⊺

q x)⊺ + tr(Λ−1
q xx⊺)W−1

= (y − M⊺
q x)(y − M⊺

q x)⊺ + x⊺Λ−1
q xW−1 . (A27)

Note that all terms are within a trace, so we can apply the cyclic property of the trace, and
x⊺x is a scalar. We plug in (A27) into (A26) and use (A20) to solve the expectation:

Eq(Θ)

[
(y − A⊺x)⊺W(y − A⊺x)

]
= tr

(
Eq(W)

[
W((y − M⊺

q x)(y − M⊺
q x)⊺ + x⊺Λ−1

q xW−1)
])

= tr
(
Eq(W)

[
W(y − M⊺

q x)(y − M⊺
q x)⊺ + x⊺Λ−1

q x WW−1︸ ︷︷ ︸
=IDy

])
= tr

(
Eq(W)

[
W(y − M⊺

q x)(y − M⊺
q x)⊺

])
+ x⊺Λ−1

q xtr(IDy)

= tr
(

νqΩ−1
q (y − M⊺

q x)(y − M⊺
q x)⊺

)
+ x⊺Λ−1

q xDy

= νq(y − M⊺
q x)⊺Ω−1

q (y − M⊺
q x) + x⊺Λ−1

q xDy . (A28)

We plug (A28) and (A16) into (A25) to yield the differential cross-entropy:

H[q, p] = −1
2

ψDy(
νq

2
) +

1
2

log |Ωq|+
1
2

Dy log π

+
1
2

νq(y − M⊺
q x)⊺Ω−1

q (y − M⊺
q x) +

1
2

x⊺Λ−1
q xDy .

This concludes the proof.
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