
Citation: Nuijten, W.W.L.; Bagaev, D.;

de Vries, B. GraphPPL.jl: A

Probabilistic Programming Language

for Graphical Models. Entropy 2024,

26, 890. https://doi.org/10.3390/

e26110890

Received: 19 September 2024

Revised: 10 October 2024

Accepted: 12 October 2024

Published: 22 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

GraphPPL.jl: A Probabilistic Programming Language for
Graphical Models
Wouter W. L. Nuijten 1,* , Dmitry Bagaev 1 and Bert de Vries 1,2

1 Department of Electrical Engineering, Eindhoven University of Technology,
5612 AE Eindhoven, The Netherlands

2 GN Hearing, 5612 AB Eindhoven, The Netherlands
* Correspondence: w.w.l.nuijten@tue.nl

Abstract: This paper presents GraphPPL.jl, a novel probabilistic programming language designed
for graphical models. GraphPPL.jl uniquely represents probabilistic models as factor graphs. A
notable feature of GraphPPL.jl is its model nesting capability, which facilitates the creation of modular
graphical models and significantly simplifies the development of large (hierarchical) graphical models.
Furthermore, GraphPPL.jl offers a plugin system to incorporate inference-specific information into
the graph, allowing integration with various well-known inference engines. To demonstrate this,
GraphPPL.jl includes a flexible plugin to define a Constrained Bethe Free Energy minimization
process, also known as variational inference. In particular, the Constrained Bethe Free Energy defined
by GraphPPL.jl serves as a potential inference framework for numerous well-known inference
backends, making it a versatile tool for diverse applications. This paper details the design and
implementation of GraphPPL.jl, highlighting its power, expressiveness, and user-friendliness. It also
emphasizes the clear separation between model definition and inference while providing developers
with extensibility and customization options. This establishes GraphPPL.jl as a high-level user
interface language that allows users to create complex graphical models without being burdened
with the complexity of inference while allowing backend developers to easily adopt GraphPPL.jl as
their frontend language.

Keywords: Bayesian inference; factor graphs; nested models; probabilistic programming

1. Introduction

Probabilistic programming languages (PPLs) are designed to simplify the complexities
of probabilistic inference. They offer a high-level modeling language and an inference en-
gine that automates various inference algorithms, including Bayesian methods. While PPLs
often facilitate Bayesian inference, they can also support a broader range of probabilistic
models and inference algorithms. Effective use of these PPLs usually requires extensive
knowledge of the underlying principles, but recent advances in PPLs, such as NumPyro [1]
and Turing.jl [2], aim to reduce this burden on the user. These languages have significantly
advanced the field of probabilistic reasoning, enabling applications across diverse domains
such as toxicology [3], geophysics [4], and cognitive sciences [5]. They provide users with
powerful inference results without the need to customize inference software, allowing
researchers without deep knowledge of probabilistic information processing to effortlessly
analyze observed data. With the help of PPLs, users only need to interact with a high-level
interface and define the generative models that govern data generation.

Once the model has been defined, the extra difficulty lies in achieving feasible in-
ference within limited computational resources. Numerous methods to automate the
inference process have been suggested, such as sampling-based methods [2,6,7] or varia-
tional optimization-based methods [8–10]. However, most automated inference solutions
are intertwined with their model specification component. This makes it challenging to use

Entropy 2024, 26, 890. https://doi.org/10.3390/e26110890 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26110890
https://doi.org/10.3390/e26110890
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0009-0007-0689-9300
https://orcid.org/0000-0001-9655-7986
https://orcid.org/0000-0003-0839-174X
https://doi.org/10.3390/e26110890
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26110890?type=check_update&version=2

Entropy 2024, 26, 890 2 of 20

the same probabilistic model with different inference methods and necessitates redefining
the model for each specific inference method.

This paper addresses this issue by introducing GraphPPL.jl, a PPL that enables users
to define a probabilistic model without making assumptions about a specific inference
process. The frontend can generate a model as a graph and provides a plugin system to add
inference-specific information if needed. To illustrate this capability, GraphPPL.jl includes a
variational inference plugin, which injects additional information into the standard model
structure and enables support for variational inference methods, such as the Constrained
Bethe Free Energy (CBFE) optimization process in RxInfer [10].

The selection of CBFE minimization to demonstrate the capabilities of GraphPPL.jl
is deliberate. It has been demonstrated that numerous traditional inference approxima-
tion methods can be expressed as the minimization of a CBFE functional. Nonetheless,
GraphPPL.jl does not impose any particular assumptions regarding the inference process
and can potentially act as a frontend for various other inference techniques, including
HMC [11], NUTS [12], and more. GraphPPL.jl outputs a data structure representing the
generative model without relying on any inference backend. As far as we know, no other
PPL currently provides this feature.

Furthermore, GraphPPL.jl facilitates the definition of nested models, allowing large
and complex models to be built from smaller, simpler ones. This is crucial because the
exponential increase in computing power has made Bayesian inference, once extremely
costly, feasible on standard computer chips. This advancement has broadened the range of
generative models, with recent techniques scaling to thousands of variables [2,13], making
the specification of such large models even more challenging. When dealing with complex
systems, dividing them into separate independent modules (e.g., functions or classes in
programming languages) is common practice. However, a concept similar to modularity
in probabilistic programming is still underdeveloped, and GraphPPL.jl aims to bridge
this gap.

The structure of this paper is outlined as follows:

• Section 2 reviews factor graphs, variational Bayesian inference, and CBFE minimiza-
tion. Additionally, we discuss why CBFE minimization on a factor graph is considered
a general, customizable inference method.

• Section 3 discusses related works.
• Section 4.2 delves into the core design philosophy of GraphPPL.jl and explains the ra-

tionale for implementing the CBFE minimization plugin as the default in GraphPPL.jl.
• Section 4.3 introduces the @model macro and syntax, which serves as the primary

entry point for creating any GraphPPL.jl model.
• Section 4.4 showcases how models defined with the @model macro can be reused in

larger models, thereby adding modularity to the language.
• Section 4.7 presents the @constraints macro, which specifies factorization and

functional-form constraints on the variational posterior for the inference engine. We
define a clear and intuitive constraint language. Both @model and @constraints

exemplify the integration of models specified within GraphPPL.jl with a particular
inference backend.

• Section 5 demonstrates the integration of GraphPPL.jl in the RxInfer.jl inference ecosys-
tem with an inference example.

2. Background

This section aims to provide an overview of Bayesian inference, variational inference,
factor graphs, and CBFE minimization. We regard understanding these concepts as essential
to appreciating the language design of GraphPPL.jl. However, this is not meant to review
the topics fully. Instead, we refer interested readers to [14] where these concepts are
discussed in more detail.

Entropy 2024, 26, 890 3 of 20

2.1. Bayesian Inference

Consider a factorized generative model p(x, z) = p(x | z)p(z) with observations x and
unobserved latent states z. Note that the factorization of the model p(x, z) can be reversed
by Bayes’ rule as

p(x, z) = p(x | z)︸ ︷︷ ︸
likelihood

p(z)︸︷︷︸
prior

= p(z | x)︸ ︷︷ ︸
posterior

p(x)︸︷︷︸
evidence

, (1)

where the evidence can be computed by

p(x) =
∫

p(x, z)dz. (2)

In a probabilistic modeling context, the first factorization postulates the model as a product
of likelihood and prior. Bayesian inference aims to derive the second factorization as the
product of posterior and evidence. Both the Bayesian posterior and the model evidence are
very interesting quantities, as the posterior describes the distribution over latent states z
after observing data x, and the model evidence quantifies the model’s performance in ex-
plaining the observed data. Unfortunately, the integration over latent states in Equation (1)
quickly becomes intractable, as the computational complexity of the integration is expo-
nential in the dimensionality of z. Therefore, much effort has been devoted to finding
a manageable and accurate approximation of Bayesian inference when computing the
model evidence, which is computationally not feasible with available resources. One of the
solutions involves further factorizing the likelihood and prior distributions, a concept that
we will explore next.

2.2. Factor Graphs

In this section, we explore factor graphs and their application in expressing gener-
ative models. For simplicity, we write our generative model as p(s) without explicitly
decomposing the variables s into z and x. Assume that we can further factorize our model
as follows:

p(s) =
m

∏
i

fi(si), (3)

meaning p adheres to a factorization into m factor functions { fa, fb, · · · fN}, where each of
the factor functions is a function over a subset of the variables s. For example, we could
factorize a distribution over four variables as follows:

p(s1, s2, s3, s4) = fa(s1) fb(s1, s2, s3) fc(s2, s4) fd(s3) fe(s4). (4)

If the generative model adheres to a similar factorization, we can draw a computation graph
of the generative model, where the vertices represent the factor functions and the edges
represent the variables. This visual representation of a factorized generative model is called
a Forney-style factor graph (FFG) [15]. An FFG is mathematically represented as a graph
G = (V , E), where V is a set of vertices, and E is a set of edges. We use (a, b, c . . .) as indices
for vertices and (i, j, k . . .) as indices for edges. An example of the FFG corresponding to
Equation (4) can be seen in Figure 1.

fa fb fc

fd fe

s1 s2

s3 s4

Figure 1. Forney-style factor graph corresponding to the factorization in Equation (4).

Entropy 2024, 26, 890 4 of 20

Computing the Bayesian posterior and marginal distributions in a factorized distribu-
tion is computationally easier than the integration problem in Equation (1). This is because
we can use the factorization in Equation (4) to reduce the dimensionality of the integration
as follows:

p(s2) =
∫

p(s1, s2, s3, s4)ds1ds3ds4

=
∫

fa(s1) fb(s1, s2, s3) fc(s2, s4) fd(s3) fe(s4)ds1ds3ds4

=
∫

fa(s1)
∫

fb(s1, s3, s3) fd(s3)ds3ds1︸ ︷︷ ︸
−→µ (s2)

·
∫

fc(s2, s4) fe(s4)ds4︸ ︷︷ ︸
←−µ (s2)

.
(5)

Here, we can see that the integral to compute p(s2) can be split into two separate inte-
gration operations. We can also visually represent this separation in an FFG, as illustrated
in Figure 2. Here, we see that −→µ (s2) corresponds to computing the marginal distribution
of s2 in the subgraph enclosed by the left dotted box. Similarly, ←−µ (s2) corresponds to
marginalizing over s4 in the subgraph enclosed by the right dotted box. This simple exam-
ple illustrates that we can group individual factor nodes together. After marginalization
over the internal variables in this group, we obtain the marginal distributions over the
variables that connect to nodes outside of this group. We call these “boundary-crossing”
edges the Markov blanket of a group of factors. Visually, we can represent this by drawing a
box around a group of factor nodes, as shown in Figure 2. This process is called “closing the
box” [15] and allows us to represent any FFG as a hierarchy of nested models. By iteratively
defining FFGs and their corresponding Markov blankets, we can use previously defined
FFGs as nodes in new factor graphs, giving us a modular composition of the final FFG.

fa fb fc

fd fe

s1 s2

s3 s4

Figure 2. FFG representation of the computation of the marginal distribution over s2 by computing
and multiplying the marginal distributions of two submodels.

2.3. Variational Inference

In Bayesian inference, we are interested in determining posterior distributions over un-
observed latent states given observations, adhering to some generative model. Variational
inference is concerned with approximating p(z | x) by introducing a candidate distribution
q(z) and minimizing the variational free energy (VFE):

F[q] ≜
∫

q(z) log
q(z)

p(x, z)
dz

=
∫

q(z) log
q(z)

p(z|x)dz︸ ︷︷ ︸
DKL [q(z) | | p(z | x)]

− log p(x)︸ ︷︷ ︸
log evidence

. (6)

Here, DKL is the Kullback–Leibler divergence [16], which is a measure of how one probabil-
ity distribution q is different from a reference probability distribution p. In other words,
it measures how much information is lost when q is used to approximate p, making it a

Entropy 2024, 26, 890 5 of 20

suitable measure for approximate inference. By choosing a variational family of tractable
distributions Q, we can define the variational posterior distribution as follows:

q∗ = arg min
q∈Q

F[q] (7)

From the VFE in Equation (6), we can see that q∗ will approximate p(z | x), and F[q∗] will
approximate log p(x). In this way, variational inference transforms the integration problem
in Equation (1) into an optimization problem in Equation (7). We can then apply traditional
(un)constrained optimization methods to Q to find an approximate posterior distribution.
We refer readers to [17] for an extensive review of variational inference.

2.4. Constrained Bethe Free Energy

The factorization of Equation (3) also has consequences for the VFE since the denom-
inator in Equation (6) now becomes a factorized distribution. It is common practice to
factorize the candidate distribution q(s) similarly to the generative model. This means that
when we draw the FFG representation of the generative model, we assign candidate func-
tions, which we call beliefs, to the nodes and edges of the graph, which, when multiplied,
correspond to our candidate distribution. Therefore, we define the family QG as follows:

q(s) ∈ QG =⇒ q(s) = ∏
a∈V(G)

qa(sa)

 ∏
i∈E(G)

qi(si)

−1

. (8)

Here, qa(sa) are the node-wise marginal beliefs defined for every node a, and qi(si) are
the edge-wise marginal beliefs defined for every edge i. The division of all edge beliefs
is an artifact of the fact that we always count every edge twice in the first multiplication;
hence, we need a correcting term [18]. Suppose both the generative model and variational
distribution follow these factorizations. In that case, it can be shown that the VFE can be
rewritten as the Bethe Free Energy (BFE) [19], which is defined as

F[q] ≜ ∑
a∈V(G)

∫
qa(sa) log

qa(sa)

fa(sa)
dsa︸ ︷︷ ︸

F[qa]

+ ∑
i∈E(G)

∫
qi(si) log

1
qi(si)

dsi︸ ︷︷ ︸
H[qi]

.
(9)

The BFE calculates a local VFE term for each node in the FFG, allowing us to minimize
the VFE at each node individually. However, because the BFE divides the global opti-
mization problem into multiple local optimization problems, it is necessary to impose
constraints on the variational posterior q(s) to ensure that, after optimizing the BFE, the
result is still a valid probability distribution. The required constraints are normalization
and marginalization constraints:∫

qa(sa)dsa = 1, for all a ∈ V(G)∫
qa(sa)dsa\i = qi(si), for all a ∈ V(G), i ∈ E(G).

(10)

Minimization of the BFE over a constrained variational family is called Constrained Bethe
Free Energy (CBFE) minimization, and it can be shown that the stationary points of the BFE
correspond to the local minima of the belief propagation algorithm [20,21]. By introducing
additional constraints on the variational posterior, many popular inference algorithms are
recognized as instances of CBFE minimization [14]. For example, we obtain the mean-field
algorithm by further constraining the node beliefs qa(sa) to be fully factorized. Therefore, a
PPL that allows users to specify a CBFE of their generative model gives the user a powerful
language to define generative models and influence the inference results.

Entropy 2024, 26, 890 6 of 20

3. Related Works

Probabilistic programming languages aim to provide users with an intuitive way
to create probabilistic models for inference. In general, existing PPLs are designed with
the models on which we can perform efficient inference in mind. Although this places
constraints on the expressiveness of the modeling language, this approach has resulted
in successful languages such as BUGS [6,22], STAN [7,23], and CHURCH [24]. In some
languages, such as IBAL [25], inference details are part of the model specification, further
intertwining model definition and inference implementation. Over time, numerous proba-
bilistic programming libraries have emerged, each contributing unique perspectives to the
field [24–28]. In recent years, the increasing popularity of Python and its rich deep learning
community have paved the way for PPLs in Python, using a deep learning engine as a
backend, such as Pyro [27] and TensorFlow Probability [29]. For a more comprehensive
review of probabilistic programming languages, we refer readers to [30].

An effort was made to construct a universal PPL that does not depend on inference
details through Turing.jl [2], a PPL in the Julia [31] language aimed at providing universal
inference through sampling. With the implementation of DynamicPPL.jl language, consid-
erable effort was made to ensure the separation between the modeling language and the
inference process. The increasing popularity of Turing.jl suggests the need for a universal
modeling language that is not restricted by the details of inference. Turing.jl also makes an
effort toward modularity; with the @submodelmacro, existing Turing.jl models can be called
within larger models. However, we can only fit the submodel in the forward generative
direction, so this is not a general solution for modular probabilistic programming.

The utility of functions in traditional programming languages is well recognized,
primarily due to their ability to facilitate code reuse, reduce errors in program definitions,
and minimize the number of code lines. This concept parallels the realm of nested prob-
abilistic models within PPLs. The necessity for nested PPLs arises from their potential
to conserve lines of code, decrease errors in model definitions, and enhance reusability,
mirroring the benefits offered by functions in conventional programming languages. This
notion of modularity and reusability in programming is not just a matter of convenience or
good software engineering practice; it also resonates with our understanding of intelligent
systems, both biological and artificial.

4. The GraphPPL.jl Engine

In this section, we elaborate on the philosophy and details of the GraphPPL.jl
(https://github.com/ReactiveBayes/GraphPPL.jl (accessed on 18 September 2024), doc-
umentation available at https://reactivebayes.github.io/GraphPPL.jl/stable/(accessed
on 18 September 2024)) package, explaining the design choices and highlighting its distin-
guishing features. We also explain the rationale behind focusing specifically on the CBFE
for the inference backend integration.

We implemented GraphPPL.jl in the Julia [31] programming language. The selection
of Julia as the programming language is primarily due to two key factors. First, Julia offers
high performance tailored for scientific computing. Given the computational demands of
Bayesian inference, a performance-centric language is essential. While the PPL itself may
not be heavily impacted by this computational load, having both the user language and
the inference backend in the same language provides considerable benefits. Second, Julia’s
meta-programming capabilities enable us to create a custom syntax that is converted into
standard Julia code. This allows us to enhance the Julia language with the specific features
and operators required for probabilistic programming.

4.1. Representing Graphical Models

GraphPPL.jl offers a frontend for defining probabilistic models, providing the flexibil-
ity to accommodate various inference backends. These probabilistic models are represented
as graphs, enabling visualization and inspection of their properties without committing
to a particular inference method. Models can be stored in memory or transmitted over

https://github.com/ReactiveBayes/GraphPPL.jl
https://reactivebayes.github.io/GraphPPL.jl/stable/

Entropy 2024, 26, 890 7 of 20

the internet to a standalone device for later use. The graph-based representation allows
models to be broken down into smaller components, or submodels, which can be reused in
more complex hierarchical probabilistic models. The choice of a factor graph representa-
tion allows for an analysis of the created generative model, and inference backends can
match subgraphs against known models to employ faster and more tractable inference
procedures [14].

Nonetheless, GraphPPL.jl recognizes that the main objective is to perform inference
on the specified model. To facilitate the integration of inference methods, GraphPPL.jl
employs a plugin system that allows for the addition of extra information to the graph re-
quired by specific inference backends. For instance, this information might include specific
hyperparameters for sampling-based approaches like HMC or constraints for variational in-
ference methods. As an example of such seamless integration, GraphPPL.jl integrates with
a particular inference method called the Constrained Bethe Free Energy (CBFE) framework.
In Section 4.7, we will showcase the integration of variational constraints in GraphPPL.jl,
allowing CBFE definition.

4.2. Language Philosophy

In designing GraphPPL.jl, we adopted a usability-centric approach that focuses pri-
marily on providing high-level model specification capabilities that integrate with various
inference operations without depending on a specific inference backend. With this usability-
centric approach, we aim to balance expressiveness, ease of use, and learnability, ensuring
that novice and experienced users can leverage the language effectively without being
burdened by a steep learning curve during their initial acquaintance.

The philosophy of GraphPPL.jl rests on a few requirements:

• Creating probabilistic models with GraphPPL.jl should resemble drafting a mathe-
matical description of a generative model. Similar to Turing.jl [2] and BUGS [22],
the core language of a GraphPPL.jl model should closely match the mathematical
representation of the generative model.

• GraphPPL.jl models should be as readable as Julia programs. Drawing inspiration
from PyTorch [32] and their approach of treating ’deep learning models as Python
programs’, we want GraphPPL.jl models to have the same readability and feel as
Julia programs. As a result, any GraphPPL.jl model should be usable as a component
within a larger GraphPPL.jl model.

• A materialized GraphPPL.jl model should be compatible with various inference back-
ends; for example, CBFE minimization. The model should be extendable to inject all
required information for any inference backend to perform Bayesian inference.

4.3. The Model Specification Language

To specify a model in a language that is as close as possible to the mathematical repre-
sentation of a model, we employ Julia’s [31] powerful meta-programming functionality to
create our own syntax. By creating our own syntax using the @model macro, we encapsulate
all the necessary logic for constructing a GraphPPL.jl model. A consequence of using Julia’s
macro functionality is that we extend the syntax of Julia, meaning our language accepts
any regular Julia code while extending the Julia syntax to allow probabilistic modeling. We
begin by constructing a model that characterizes a sequence of coin tosses to introduce the
model syntax. The model for n coin tosses is defined in Equation (11).

θ ∼ Beta(1, 1)

yi ∼ Bernoulli(θ), for all i ∈ [1 . . n]
(11)

The @model syntax accepts a Julia function. The function’s arguments are all data
structures external to the model, such as the data, but we could also include priors or
hyperparameters. These arguments are called interfaces because they connect the model’s

Entropy 2024, 26, 890 8 of 20

exterior with its interior. Since our model receives data y, we begin our model definition by
creating a function: @model function coin_toss(y).

The @model macro exposes a GraphPPL.jl-specific operator: the ~. This operator
creates a new factor node and a variable in the factor graph. For example, the statement
θ~ Beta(1, 1) creates a Beta factor node and a θ variable, along with two variables
representing the constant 1. It connects these to the Beta node. The subgraph created by
this statement can be seen in Figure 3.

β

θ
1

1

Figure 3. Subgraph created by the statement θ~ Beta(1, 1) in the @model macro.

The ~ operator in GraphPPL.jl checks whether the factor being created is stochastic
or deterministic. If it is deterministic and the arguments are known at model construction
time, GraphPPL.jl will not create a factor node but will execute the function and return the
result. For example, calling a ~ norm([1, 2, 3]) in GraphPPL.jl will transform to a =

norm([1, 2, 3]), making the constant a available for the rest of the model specification.
As the model macro accepts Julia syntax, we can combine the ~ operator with regular

Julia syntax to write the rest of the model. The complete model for the coin tosses defined
in Equation (11) can be found in Code Block 1.� �
@model function coin_toss(y)

θ ~ Beta(1, 1)
for i in eachindex(y)

y[i] ~ Bernoulli(θ)
end

end� �
Code Block 1. GraphPPL.jl code for the coin toss model defined in Equation (11).

The ~ operator is not the only way to create factor nodes and variables in the underly-
ing factor graph; we can use the := operator, which is an alias of the ~ operator, to denote
deterministic relations. Furthermore, GraphPPL.jl supports compound statements and will
unroll any statement on the right-hand side of the ~ operator to create all factor nodes. To
illustrate this, we implement the Gaussian-with-Controlled-Variance (GCV) [33] model, a
fundamental building block of the widely used hierarchical Gaussian filter [34]. The GCV
model, with inputs x, ω, κ, and z, is defined as

y ∼ N (x, exp(κ ∗ z + ω)) . (12)

Two GraphPPL.jl model definitions, both defining the same model, can be seen in
Code Blocks 2 and 3. The model definition in Code Block 2 uses a compound state-
ment to create Normal, exp, +, and * factor nodes in the same line. The model definition
in Code Block 3 uses the := as an alias for the ~ operator to denote deterministic relations.
Both model definitions create the same factor graph, as shown in Figure 4. For both models,
x, ω, κ, and z are inputs to the model, and y is the output. We use these five variables as
interfaces, which are the arguments of the model function.� �
@model function gcv(y, x, ω, κ, z)

y ~ Normal(x, exp(κ * z + ω))
end� �

Code Block 2. The GCV model from Equation (12) implemented with compound statements.

Entropy 2024, 26, 890 9 of 20

� �
@model function gcv(y, x, ω, κ, z)

log_σ := κ * z + ω
σ := exp(log_σ)
y ~ Normal(x, σ)

end� �
Code Block 3. The GCV model from Equation (12) implemented with deterministic statements.

×

=

+

=

exp

N

z

k k

w w

x y

Figure 4. A Forney-style factor graph representation of the Gaussian-with-Controlled-Variance (GCV)
model created by the model definitions in Code Blocks 2 and 3.

4.4. Modular Definition and Usage of Models

Generative models for real-world processes can become unwieldy and large. An
example can be seen in Figure 5, where we visualize a hierarchical Gaussian filter of depth 3,
and the factor graph representation of the generative model for the first three data points
is depicted. While we only visualize three data points, we usually want to incorporate
hundreds to thousands of data points [14,35]. The three-level HGF is most often used in
the literature [34,35]; however, the model is not limited to three layers. Recreating this
model in previously discussed PPLs involves manually creating all nodes, a cumbersome
and error-prone process that results in unnecessarily long model specifications. In contrast,
in GraphPPL.jl, we can define models and use them as submodels of other GraphPPL.jl
models. An example of this can be seen in Code Block 4, which uses the gcv submodel
to chain a Gaussian-with-Controlled-Variance state transition with a Gaussian likelihood
model. Note that when invoking gcv, we supply all but one interface through named
keyword arguments. GraphPPL.jl can recognize which interface to the gcv submodel is
missing and will attach this interface to the x_next variable that is on the left-hand side of
the ~ operator. The factor graph representation of this model can be seen in Figure 6. For
visual clarity, we have grouped k, w, and xt as the state variable st. Although this model
describes a complex state transition and a likelihood model, the FFG is remarkably easy
to read.

� �
@model function gcv_lm(y, x_prev, x_next, z, ω, κ)

x_next ~ gcv(x = x_prev, z = z, ω = ω, κ = κ)
y ~ Normal(x_next, 1)

end� �
Code Block 4. Model chaining a gcv submodel with a Gaussian likelihood.

Entropy 2024, 26, 890 10 of 20

p(ξ)

p
(

x(3)0

)
p
(

k(2)
)

p
(

ω(2)
)

p
(

x(2)0

)
p
(

k(1)
)

p
(

ω(1)
)

p
(

x(1)0

)

=

N =

=

=

×

+

exp

N =

=

=

×

+

exp

N =

p
(

y1 | x(1)1

)

y1

=

N =

=

=

×

+

exp

N =

=

=

×

+

exp

N =

p
(

y2 | x(1)2

)

y2

=

N =

=

=

×

+

exp

N =

=

=

×

+

exp

N =

p
(

y3 | x(1)3

)

y3

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 5. A 3-layer hierarchical Gaussian filter drawn as a Forney-style factor graph. The first 3 time
steps are depicted.

GCV =

p(y | x)

z

st

y

st+1

Figure 6. The Gaussian-with-Controlled-Variance Likelihood Model (GCV-LM) submodel.

With the gcv and gcv_lm models defined, we can now simplify the HGF model shown
in Figure 5 to use these submodels. The GraphPPL.jl code for creating the HGF model can
be seen in Code Block 5. For each data point in y, we compute state transitions using the
gcv and gcv_lm submodels to fully specify the likelihood model. Note that the number of
lines of GraphPPL.jl code we have written so far is still fewer than 20. In this definition of
hgf, we can pass constants or distributions as arguments ξ , ω, and κ, which will serve as

Entropy 2024, 26, 890 11 of 20

either parameters or priors to these parameters. Note that in Code Block 5, we have used
the new syntax, which creates a new variable in a vector of random variables if it does not
exist. With this syntax, we can specify an observation through a state transition and create
both variables on the same line.

The FFG of the HGF model using our defined submodels can be viewed in Figure 7. In
this graph, we obtain a clearer picture of the computation flow and can better communicate
to readers the intentions of the model and the modeling decisions made. More importantly,
if we wanted to use a different likelihood model instead of the Gaussian likelihood specified
in Code Block 4, we would only have to change this submodel, and every instance of gcv_lm
in the hgf model would change accordingly. This contrasts with widely used PPLs, where
the likelihood model for every timestep must be changed individually.

p(ξ)

p
(

x(3)0

)
p
(

s(2)0

)
p
(

s(1)0

)

=

N =

GCV =

GCV-LM

y1

=

N =

GCV =

GCV-LM

y2

=

N =

GCV =

GCV-LM

y3

· · ·

· · ·

· · ·

· · ·

Figure 7. The hierarchical Gaussian filter shown in Figure 5 drawn as a composite model using the
GCV and GCV-LM submodels.

The nested model specification in GraphPPL.jl enables researchers to easily build
intricate models, facilitating the exploration and creation of sophisticated probabilistic
models without sacrificing readability or maintainability. This hierarchical model definition
and composition stand out as defining features, representing a significant leap in usability
and model organization, aligning with established programming design principles such as
the Single Responsibility Principle [36].� �
@model function hgf(y, ξ, ω, κ)

Specify priors

x_1[1] ~ Normal(0, 1)
x_2[1] ~ Normal(0, 1)
x_3[1] ~ Normal(0, 1)

Specify generative model

for i in eachindex(y)
x_3[i+1] ~ Normal(x_3[i], ξ)
x_2[i+1] ~ gcv(x = x_2[i], z = x_3[i], ω = ω[2], κ = κ[2])
y[i] ~ gcv_lm(x_prev = x_1[i], x_next = new(x_1[i+1]), z = x_2[i],

ω = ω[1], κ = κ[1])
end

end� �
Code Block 5. The hierarchical Gaussian filter defined in GraphPPL.jl using the gcv and gcv_lm

submodels.

4.5. Example: Bayesian Neural Network

Now that we have introduced the core functionality of the language, we can demon-
strate an advanced example. Although GraphPPL.jl is not a language specifically designed
for neural networks, it is expressive enough to define Bayesian neural networks in a few
lines of code. As in the previous section, we build a larger model starting with smaller
submodels. First, we start by defining a neural_dot submodel that takes a vector input

Entropy 2024, 26, 890 12 of 20

and a vector of weights w, returning the dot product between input and w while applying
an activation function, as shown in Code Block 6. This, together with the definition of a
weight vector, defines an artificial neuron, as seen in Code Block 7.� �
@model function neural_dot(out, input, w)

c[1] := input[1] * w[1]
for i in 2:length(input)

c[i] := c[i - 1] + input[i] * w[i]
end
out := relu(c[end])

end� �
Code Block 6. Dot product with nonlinearity applied as the basic building block of a neural network.

� �
@model function neuron(input, out)

local w
for i in 1:length(input)

w[i] ~ Normal(0.0, 1.0)
end
out ~ neural_dot(input = input, w = w)

end� �
Code Block 7. Artificial neuron.

We can now define a single fully connected layer consisting of neurons that share the
same input and produce a single output element (Code Block 8). With this defined, we
can create a multilayer perceptron or fully connected neural network. The code to create
a four-layer Bayesian neural network can be seen in Code Block 9. This example again
highlights how GraphPPL.jl can construct intricate probabilistic models by combining
smaller, simpler ones.� �
@model function neural_network_layer(input, out, n)

for i in 1:n
out[i] ~ neuron(input = input)

end
end� �

Code Block 8. Fully connected neural network layer defined as a composition of neurons.� �
@model function neural_net(input, out)

h1 ~ neural_network_layer(input = input, n = 10)
h2 ~ neural_network_layer(input = h1, n = 16)
h3 ~ neural_network_layer(input = h2, n = 32)
out ~ neural_network_layer(input = h3, n = 2)

end� �
Code Block 9. Example of a multilayer perceptron.

4.6. Extensibility

GraphPPL.jl does not operate only with a predetermined set of factor nodes. Instead,
it contains an extensible architecture that relies on Julia’s multiple dispatch functionality
to determine when to materialize a factor node for a function and when to evaluate a
function with the supplied arguments deterministically. By specifying whether a function
is deterministic or stochastic, developers of inference backends can introduce new nodes to
be integrated into probabilistic modeling.

The power of this design becomes evident when considering the Normal distribution
used in Code Block 2. Rather than being part of the native GraphPPL.jl, the Normal

distribution is part of an extension that becomes available upon loading the Distributions.jl
package. This extension defines the essential functionality required to create a node for
each distribution in Distributions.jl, expanding the range of distributions accessible for
probabilistic modeling without explicitly relying on Distributions.jl out of the box.

Entropy 2024, 26, 890 13 of 20

Some inference backends (such as ReactiveMP.jl [37]) might expose different imple-
mentations of well-known distributions for computational efficiency. For example, Reac-
tiveMP.jl exposes four implementations of the Normal distribution: NormalMeanVariance,
NormalWeightedMeanVariance, NormalMeanPrecision, and NormalWeightedMeanPreci

sion. Following the mechanism described above, developers of inference backends could
create specific factor nodes for each of these implementations. However, this introduces
two problems. First, it exposes an implementation detail (the user should not have to
care about the parameterization used for the normal distribution), and it breaks the con-
venient syntax of Code Block 2, where we could call Normal(x, σ). To address these
issues, GraphPPL.jl contains an elaborate aliasing system based on keyword arguments
that developers can customize to their needs. With this aliasing system, developers can
transform Normal(ν = 1, τ = 1) to NormalWeightedMeanPrecision(1, 1). With this
aliasing system, developers can hide implementation details from users and maintain a
high-level intuitive interface.

GraphPPL.jl is a backend-agnostic modeling language; therefore, a GraphPPL.jl model
does not contain any information concerning the inference process by default. However,
some inference backends, like ReactiveMP.jl, require additional information along with the
structure of the model to conduct inference. To accommodate these needs, GraphPPL.jl
exposes an elaborate plugin system. This system allows inference backend developers to
include custom code and information, effectively enabling GraphPPL.jl to gather all neces-
sary information for inference. The plugin required to run inference using the ReactiveMP.jl
backend is the variational constraints plugin, which we elaborate on below.

4.7. Constraint Specification

In Section 2, we explored the utility of CBFE minimization as an effective method
for Bayesian inference. Utilizing the CBFE framework necessitates the user to supply a
series of constraints on the variational posterior. These constraints can be seen as additional
information embedded within the model’s graph structure. The variational constraints
plugin in GraphPPL.jl is specifically designed to handle such scenarios, providing support
for the ReactiveMP.jl backend.

GraphPPL.jl features a constraint specification language that integrates seamlessly
with the @model macro. This language supports two constraints that can be applied to the
variational posterior: Factorization Constraints (FCs) and Functional Form Constraints
(FFCs). FCs separate the dependencies among specified variables in the variational pos-
terior [38,39]. For instance, consider a generative model with variables x, y, and z, where
we aim to impose a mean-field assumption on these variables in the variational posterior
q(x, y, z). The FC q(x, y, z) = q(x)q(y)q(z) would represent this assumption and
inject this information into the graph, which can later be utilized by an inference backend.
FFCs, on the other hand, restrict the marginal distribution of a specified variable in the
variational posterior to a particular functional form. For example, if we want the marginal
distribution for x to follow a Beta distribution, we can include the constraint q(x) :: Beta

in our constraint specification. This syntax is implemented in the @constraints macro,
offering an advanced language for specifying constraints on the generated factor graph for
a model.

The constraint language implemented in GraphPPL.jl has one additional feature that
harmonizes with the rest of the PPL: By opening for code blocks, one can access the
constraints for variables in submodels in the factor graph. For example, a mean-field
constraint on the ω, κ, and u variables in every gcv instance in the hgf model of Code
Block 5 can be imposed using the constraint specification seen in Code Block 10.

Entropy 2024, 26, 890 14 of 20

� �
@constraints begin

for q in gcv
q(ω, κ, z) = q(ω)q(κ)q(z)

end
for q in gcv_lm

for q in gcv
q(ω, κ, z) = q(ω)q(κ)q(z)

end
end

end� �
Code Block 10. Example constraint specification for an HGF model.

With this syntax, we supply a concise constraint language that still offers significant
flexibility and control over the family of variational posterior distributions to consider.

5. Inference Example with the ReactiveMP.jl Backend

In this example, we create a model using GraphPPL.jl with the variational constraints
plugin enabled and then perform inference using the ReactiveMP.jl backend. This combina-
tion of frontend and backend is accessible in the RxInfer.jl package. We are working with
a simple hierarchical state-space model. The FFG of this model is shown in Figure 8. In
the FFG diagram, we have omitted constant hyperparameters for distributions to avoid
visual clutter. This model describes a random walk with drift, where the random walk
also determines the drift. Inside the dotted box is a repeated pattern: two Gaussian dis-
tributions are summed, followed by applying another Gaussian distribution, resulting in
an observation with a Gaussian likelihood and a Gamma-distributed precision parameter.
This model can be used as a nested model in GraphPPL.jl. As seen in Code Block 11, we
use the ssm submodel twice, which invokes the ssm_step submodel on every data point.
In this way, we can create a complex factor graph in under 20 lines.

N N

N

Γ

N

N

. . .

. . .

N N

N

N

N

N

N

Γ

. . .

. . .

Figure 8. Model used in inference. The dashed box denotes a subgraph that is reused over the
entire graph.

Our model assumes a joint dependency between the hidden state drift and the noise
in this hidden state drift. However, in our variational posterior distribution, we would
like to see these two variables as independent of each other. That is why we impose
the factorization constraint q(x_next, y, precision) = q(x_next, y)q(precision)

in every copy of the ssm submodel. Code Block 12 shows how to apply this constraint to
all copies of the ssm submodel.

Entropy 2024, 26, 890 15 of 20

� �
@model function ssm_step(x_prev, x_next, y, drift, precision)

x_next_mean := x_prev + drift
x_next ~ Normal(mean=x_next_mean, variance=10)
y ~ Normal(mean=x_next, precision=precision)

end

@model function ssm(drift, y)
observation_precision ~ Gamma(2, 1)
x[1] ~ Normal(mean=1.0, variance=10.0)
for i in eachindex(drift)

y[i] ~ ssm_step(x_prev=x[i], x_next=new(x[i+1]), drift=drift[i],
precision=observation_precision)

end
end

@model function hierarchical_ssm(y)
local upper_drift
for i in eachindex(y)

upper_drift[i] ~ Normal(mean=0, variance=1)
end
hidden_state_drift ~ ssm(drift=upper_drift)
y ~ ssm(drift=hidden_state_drift)

end� �
Code Block 11. Simple hierarchical state-space model in GraphPPL.jl.� �
constraints = @constraints begin

for q in ssm
for q in ssm_step

q(x_next, y, o_var) = q(x_next, y)q(o_var)
end

end
end� �

Code Block 12. Inference constraints for the hierarchical state-space model.

To run inference on this model, we first have to generate data. We generated 100 data
points, as shown in Figure 9a. We then ran inference using RxInfer.jl by calling the infer
function, as seen in Code Block 13. After running inference with RxInfer.jl, we recovered
the hidden state hidden_state_drift that drives the change between the hidden states
that generate the observations. In Figure 9b, we can see the inference result, showing
that we can use GraphPPL.jl with the ReactiveMP.jl backend to automate a sophisticated
Bayesian inference process. The code used to generate these images can be found at
Github (https://github.com/wouterwln/GraphPPL-demo) (accessed on 18 September
2024). Additional examples can be found in the code blocks in Appendix A or in the
RxInfer Examples.

0 25 50 75 100

−40

−20

0

20

Observations

(a)

0 25 50 75 100

−10

−5

0

5

10

Drift Hidden State
Estimated drift

Actual Drift

(b)
Figure 9. Generated observations and inference result. (a) Generated observations. (b) Hidden state
drift and recovered estimated drift.

https://github.com/wouterwln/GraphPPL-demo
https://reactivebayes.github.io/RxInfer.jl/stable/examples/overview/

Entropy 2024, 26, 890 16 of 20

� �
result = infer(

model = hierarchical_ssm(),
iterations = 10,
data = (y = data,),
initialization = init,
constraints = constraints

)� �
Code Block 13. Running inference in the hierarchical_ssm model with generated data.

6. Discussion

In this paper, our objective was to design and implement a PPL with the following
desiderata/design principles:

• It should be possible to use any GraphPPL.jl model as a submodel in any subse-
quent model.

• A materialized GraphPPL.jl model should contain all information necessary to perform
Bayesian inference. The model should be extendable by backend developers to include
additional information.

• A GraphPPL.jl model should look, as much as possible, like the mathematical repre-
sentation of the generative model, exposing as few implementation details as possible.

In Section 4.4, we introduced modularity, showing how we can use any existing
GraphPPL.jl model as a submodel in larger models. This modularity in graphical model
construction is versatile and allows for a rich class of models. As seen in Section 5, we
can create complex graphical models with readable and interpretable code. The Bayesian
Brain Hypothesis [40] suggests that intelligent biological agents are Bayesian reasoning
machines, continuously reducing uncertainty about their environments by processing sen-
sory observations. This hypothesis is further supported by the Free-Energy Principle [41],
which theorizes that intelligent agents possess a generative model of their environment in
their brains. Furthermore, it has been suggested that the main prerequisite for intelligent
behavior in biological agents is the hierarchical composition of the agent’s generative model
into smaller submodels, each aiming to minimize Bayesian surprise independently [42,43].
This hierarchical structure allows for modularity and scalability in cognitive processes,
enabling more efficient and flexible adaptation to new information and environments. With
the introduction of GraphPPL.jl, we have introduced a language where the nesting of
probabilistic models is at the core of its design philosophy, allowing the design of agents
inspired by the Free-Energy Principle.

With the variational constraints plugin, GraphPPL.jl can be enabled to fully specify
a CBFE. We have seen that many popular inference algorithms can be written as a mini-
mization of a CBFE [14]. In GraphPPL.jl, we realize this by supplying a generative model
with a set of inference constraints (Factorization Constraints and Functional Form Con-
straints) that together fully define a CBFE to be minimized. However, while Factorization
Constraints and Functional Form Constraints allow for an expressive constraint language,
these are not the only constraints one could apply to the variational posterior. Examples of
constraints that are not covered by GraphPPL.jl are Chance Constraints [44] or joint Func-
tional Form Constraints (Functional Form Constraints that constrain the functional form of
joint posterior distributions over certain variables instead of constraining the functional
form of a single random variable). While an advantage can be gained by supporting a
wider class of constraints, we are unaware of any inference backend that supports these
constraints, so no effort has been made to expose these constraints in GraphPPL.jl.

One might be interested in performance issues and analysis with GraphPPL.jl, as well
as the availability of model statistics such as model comparison with Bayes factors. We
point out that GraphPPL.jl is a language for specifying a model with inference constraints
but does not execute the inference procedure. In the existing integration with the RxInfer.jl
inference engine, we can analyze the performance of the inference procedure, and since

Entropy 2024, 26, 890 17 of 20

RxInfer.jl approximates the variational free energy, we also have an approximation of the
model evidence, which could be used for model comparison.

Future improvements to this work might extend the functionality of the GraphPPL.jl
engine, such as having an extended class of constraints available or having an extensive
visualization tool with which users can inspect their graphical models.

7. Conclusions

In this paper, we have introduced GraphPPL.jl, a probabilistic programming language
for graphical models. GraphPPL.jl represents a probabilistic model as a factor graph and
uses a custom syntax to efficiently generate factor graphs from high-level user code. With
the plugin system, GraphPPL.jl becomes highly extensible. We have shown the extensibility
of GraphPPL.jl by implementing the variational constraints plugin, which allows users to
define a Constrained Bethe Free Energy instead of only defining a generative model. With
this plugin, we have integrated GraphPPL.jl as the frontend of the ReactiveMP.jl inference
backend, which minimizes the Constrained Bethe Free Energy using message-passing. This
shows the versatility of GraphPPL.jl and the importance of a backend-agnostic, extensible
probabilistic programming language.

GraphPPL.jl introduces a mechanism for model nesting, allowing for modular graphi-
cal models and, therefore, greatly reducing the cognitive complexity a user is burdened
with when creating large graphical models. In short, GraphPPL.jl is an intuitive, powerful,
expressive probabilistic programming language that ensures separation between model def-
inition and inference while still providing extensibility and customizability to developers.

Author Contributions: Conceptualization: W.W.L.N. & D.B., Methodology: W.W.L.N., Software:
W.W.L.N. & D.B., Writing, original draft preparation: W.W.L.N., Writing, review and editing:
D.B. & B.d.V., Supervision: B.d.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This publication is part of the ROBUST project with project number KICH3.LTP.20.006,
which is (partly) financed by the Dutch Research Council (NWO), GN Hearing, and the Dutch
Ministry of Economic Affairs and Climate Policy (EZK) under the program LTP KIC 2020-2023. This
project is also partly financed by Holland High Tech with PPS funding for the AUTO-AR project
RVO TKI2112P09.

Institutional Review Board Statement: Not applicable

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors want to thank the BIASlab team for the discussions and the testing
of the software, and the reviewers for their insightful comments.

Conflicts of Interest: Author Bert de Vries was employed by the company GN Hearing. The
remaining authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.

Appendix A. Additional Examples

In this appendix, we demonstrate some interesting additional examples of the Graph-
PPL.jl modeling language.

Appendix A.1. Recursive Generative Model

In this example, we demonstrate a Quadtree-like structure. A Quadtree is a data
structure that recursively divides a two-dimensional space into quadrants. Here, we write
a model in GraphPPL.jl inspired by a Quadtree to demonstrate the recursive capabilities of
GraphPPL.jl. In our model, we recursively use an aggregate function that combines the
intermediate variables of the four quadrants, where the base case is the leaves.

Here, the depth of the model is determined by the size of the input; an 8× 8 input
results in a model of depth 4, whereas a 128× 128 input results in a model of depth 8. At

Entropy 2024, 26, 890 18 of 20

every layer, we have the intermediate representation (i1, i2, i3, and i4), together with
all variables that reside in this model, which contains a coarse-grained representation of
the output. In this sense, a model like this can be seen as inspired by a Scale-Space [45]
method, where every layer represents a coarser, higher-level version of the input.� �
function aggregate end

@model function quadtree(intermediate, output)
asize = first(size(output))
subarray_size = div(asize, 2)
if subarray_size == 1

output[1, 1] ~ Normal(0, 1)
output[1, 2] ~ Normal(0, 1)
output[2, 1] ~ Normal(0, 1)
output[2, 2] ~ Normal(0, 1)
intermediate ~ aggregate(output[1, 1], output[1, 2], output[2, 1],

output[2, 2])
else

i1 ~ quadtree(output = output[1:subarray_size, 1:subarray_size])
i2 ~ quadtree(output = output[1:subarray_size, (subarray_size + 1):

asize])
i3 ~ quadtree(output = output[(subarray_size + 1):asize, 1:

subarray_size])
i4 ~ quadtree(output = output[(subarray_size + 1):asize, (

subarray_size + 1):asize])
intermediate ~ aggregate(i1, i2, i3, i4)

end
end� �

Code Block A1. Recursively defined generative model. Depth is determined by the input size.

Appendix A.2. Variational Autoencoder

A significant advantage of GraphPPL.jl is that submodels do not have a fixed genera-
tive direction in which to be used. This makes the modularity of GraphPPL.jl significantly
different from that of Turing.jl. In this example, we demonstrate that by using the neural net-
work architecture defined in Section 4.5, we can easily create a variational autoencoder [46]
by making two copies of our encoder–decoder submodel.� �

@model function enc_dec(input, out)
h1 ~ neural_network_layer(input = input, n = 256)
h2 ~ neural_network_layer(input = h1, n = 128)
h3 ~ neural_network_layer(input = h2, n = 64)
h4 ~ neural_network_layer(input = h3, n = 32)
out ~ neural_network_layer(input = h3, n = 16)

end� �
Code Block A2. Neural network used as both encoder and decoder in the variational autoencoder
example.

Materializing this model twice, once in the forward generative direction and once
mirrored, gives us a variational autoencoder. Using the modularity of GraphPPL.jl, we
can guarantee that the encoder and decoder of this network have the same architecture,
and if we change something in this model, we know the that changes will be reflected in
both places.� �

@model function vae(y, y_hat)
bottleneck ~ enc_dec(input = y)
y_hat ~ enc_dec(output = y_hat)

end� �
Code Block A3. A Variational autoencoder, with the decoder implemented as a mirrored version of
the encoder.

Entropy 2024, 26, 890 19 of 20

References
1. Phan, D.; Pradhan, N.; Jankowiak, M. Composable Effects for Flexible and Accelerated Probabilistic Programming in NumPyro.

arXiv 2019, arXiv:1912.11554.
2. Ge, H.; Xu, K.; Ghahramani, Z. Turing: A Language for Flexible Probabilistic Inference. In Proceedings of the Twenty-First

International Conference on Artificial Intelligence and Statistics, PMLR, Playa Blanca, Spain, 9–11 April 2018; pp. 1682–1690,
ISSN 2640-3498.

3. Semenova, E.; Williams, D.P.; Afzal, A.M.; Lazic, S.E. A Bayesian neural network for toxicity prediction. Comput. Toxicol. 2020,
16, 100133.

4. Da Silva, S.L.E.; Karsou, A.; Moreira, R.M.; Cetale, M. Bayesian weighted time-lapse full-waveform inversion using a receiver-
extension strategy. IEEE Trans. Geosci. Remote. Sens. 2024, 62, 5921522.

5. Griffiths, T.L.; Chater, N.; Kemp, C.; Perfors, A.; Tenenbaum, J.B. Probabilistic models of cognition: Exploring representations and
inductive biases. Trends Cogn. Sci. 2010, 14, 357–364.

6. Spiegelhalter, D.; Thomas, A.; Best, N.; Gilks, W. BUGS 0.5: Bayesian inference using Gibbs sampling manual (version ii). In
MRC Biostatistics Unit, Institute of Public Health; Citeseer: Cambridge, UK, 1996; pp. 1–59.

7. Gelman, A.; Lee, D.; Guo, J. Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization. J. Educ.
Behav. Stat. 2015, 40, 530–543. [CrossRef]

8. Cox, M.; van de Laar, T.; de Vries, B. ForneyLab. jl: Fast and flexible automated inference through message passing in Julia. In
Proceedings of the International Conference on Probabilistic Programming, Cambridge, MA, USA, 5–6 October 2018.

9. Luttinen, J. BayesPy: Variational Bayesian inference in Python. J. Mach. Learn. Res. 2016, 17, 1419–1424.
10. Bagaev, D.; Podusenko, A.; Vries, B.d. RxInfer: A Julia package for reactive real-time Bayesian inference. J. Open Source Softw.

2023, 8, 5161. [CrossRef]
11. Duane, S.; Kennedy, A.D.; Pendleton, B.J.; Roweth, D. Hybrid Monte Carlo. Phys. Lett. B 1987, 195, 216–222. [CrossRef]
12. Hoffman, M.D.; Gelman, A. The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo. arXiv 2011,

[CrossRef]
13. Bagaev, D.; de Vries, B. Reactive Message Passing for Scalable Bayesian Inference. arXiv 2021. [CrossRef]
14. S, enöz, İ. Message Passing Algorithms for Hierarchical Dynamical Models. Ph.D. Thesis, Eindhoven University of Technology,

Eindhoven, The Netherlands, 2022; ISBN 9789038655321.
15. Loeliger, H.A.; Dauwels, J.; Hu, J.; Korl, S.; Ping, L.; Kschischang, F.R. The Factor Graph Approach to Model-Based Signal

Processing. Proc. IEEE 2007, 95, 1295–1322. [CrossRef]
16. Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
17. Blei, D.M.; Kucukelbir, A.; McAuliffe, J.D. Variational Inference: A Review for Statisticians. J. Am. Stat. Assoc. 2017, 112, 859–877.

[CrossRef]
18. Heskes, T. Convexity Arguments for Efficient Minimization of the Bethe and Kikuchi Free Energies. J. Artif. Intell. Res. 2006,

26, 153–190. [CrossRef]
19. Chertkov, M.; Chernyak, V.Y. Loop calculus in statistical physics and information science. Phys. Rev. E 2006, 73, 065102. [CrossRef]
20. Pearl, J. Reverend Bayes on inference engines: A distributed hierarchical approach. In Proceedings of the AAAI National

Conference on AI, Pittsburgh, PA, USA, 18–20 August 1982; pp. 133–136.
21. Yedidia, J.S.; Freeman, W.; Weiss, Y. Constructing free-energy approximations and generalized belief propagation algorithms.

IEEE Trans. Inf. Theory 2005, 51, 2282–2312. [CrossRef]
22. Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-A Bayesian modelling framework: Concepts, structure, and

extensibility. Stat. Comput. 2000, 10, 325–337. [CrossRef]
23. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A

Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1. [CrossRef]
24. Goodman, N.; Mansinghka, V.; Roy, D.M.; Bonawitz, K.; Tenenbaum, J.B. Church: A language for generative models. arXiv 2014.

[CrossRef]
25. Pfeffer, A. IBAL: A Probabilistic Rational Programming Language. In IJCAI; Citeseer: Cambridge, UK, 2001.
26. Murray, L.M. Bayesian State-Space Modelling on High-Performance Hardware Using LibBi. arXiv 2013. [CrossRef]
27. Bingham, E.; Chen, J.P.; Jankowiak, M.; Obermeyer, F.; Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall, P.; Goodman,

N.D. Pyro: Deep Universal Probabilistic Programming. arXiv 2018. [CrossRef]
28. Mansinghka, V.; Selsam, D.; Perov, Y. Venture: A higher-order probabilistic programming platform with programmable inference.

arXiv 2014. [CrossRef]
29. Dillon, J.V.; Langmore, I.; Tran, D.; Brevdo, E.; Vasudevan, S.; Moore, D.; Patton, B.; Alemi, A.; Hoffman, M.; Saurous, R.A.

TensorFlow Distributions. arXiv 2017. [CrossRef]
30. Krapu, C.; Borsuk, M. Probabilistic programming: A review for environmental modellers. Environ. Model. Softw. 2019, 114, 40–48.

[CrossRef]
31. Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. arXiv 2015. [CrossRef]
32. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:

An Imperative Style, High-Performance Deep Learning Library. arXiv 2019. [CrossRef]

http://doi.org/10.3102/1076998615606113
http://dx.doi.org/10.21105/joss.05161
http://dx.doi.org/10.1016/0370-2693(87)91197-X
http://dx.doi.org/10.48550/arXiv.1111.4246
http://dx.doi.org/10.48550/arXiv.2112.13251
http://dx.doi.org/10.1109/JPROC.2007.896497
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1613/jair.1933
http://dx.doi.org/10.1103/PhysRevE.73.065102
http://dx.doi.org/10.1109/TIT.2005.850085
http://dx.doi.org/10.1023/A:1008929526011
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.48550/arXiv.1206.3255
http://dx.doi.org/10.48550/arXiv.1306.3277
http://dx.doi.org/10.48550/arXiv.1810.09538
http://dx.doi.org/10.48550/arXiv.1404.0099
http://dx.doi.org/10.48550/arXiv.1711.10604
http://dx.doi.org/10.1016/j.envsoft.2019.01.014
http://dx.doi.org/10.48550/arXiv.1411.1607
http://dx.doi.org/10.48550/arXiv.1912.01703

Entropy 2024, 26, 890 20 of 20

33. Şenöz, İ.; de Vries, B. Online Variational Message Passing in the Hierarchical Gaussian Filter. In Proceedings of the 2018 IEEE
28th International Workshop on Machine Learning for Signal Processing (MLSP), Aalborg, Denmark, 17–20 September 2018;
pp. 1–6, ISSN 1551-2541, [CrossRef]

34. Mathys, C.D. Hierarchical Gaussian filtering: Construction and variational inversion of a generic Bayesian model of individual
learning under uncertainty. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2012. [CrossRef]

35. Mathys, C.D.; Lomakina, E.I.; Daunizeau, J.; Iglesias, S.; Brodersen, K.H.; Friston, K.J.; Stephan, K.E. Uncertainty in perception
and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 2014, 8, 825. [CrossRef]

36. Martin, R.C. Agile Software Development: Principles, Patterns, and Practices; Pearson Education: Upper Saddle River, NJ, USA, 2003.
37. Bagaev, D.; van Erp, B.; Podusenko, A.; de Vries, B. ReactiveMP.jl: A Julia package for reactive variational Bayesian inference.

Softw. Impacts 2022, 12, 100299. [CrossRef]
38. Dauwels, J. On Variational Message Passing on Factor Graphs. In Proceedings of the IEEE International Symposium on

Information Theory, Nice, France, 24–29 June 2007; pp. 2546–2550. [CrossRef]
39. Winn, J.; Bishop, C. Variational Message Passing. J. Mach. Learn. Res. 2005, 6, 661–694.
40. Knill, D.C.; Pouget, A. The Bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci. 2004,

27, 712–719. [CrossRef]
41. Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [CrossRef]
42. Kirchhoff, M.; Parr, T.; Palacios, E.; Friston, K.; Kiverstein, J. The Markov blankets of life: Autonomy, active inference and the free

energy principle. J. R. Soc. Interface 2018, 15, 20170792. [CrossRef]
43. Annila, A.; Kuismanen, E. Natural hierarchy emerges from energy dispersal. Biosystems 2009, 95, 227–233. [CrossRef]
44. Dritsas, I. Stochastic Optimization: Seeing the Optimal for the Uncertain; BoD—Books on Demand: Norderstedt, Germany, 2011.
45. Koenderink, J.J. The structure of images. Biol. Cybern. 1984, 50, 363–370. [CrossRef]
46. Kingma, D.P.; Welling, M. Auto-Encoding Variational Bayes. arXiv 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/MLSP.2018.8517019
http://dx.doi.org/10.3929/ETHZ-A-007595146
http://dx.doi.org/10.3389/fnhum.2014.00825
http://dx.doi.org/10.1016/j.simpa.2022.100299
http://dx.doi.org/10.1109/ISIT.2007.4557602
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://dx.doi.org/10.1038/nrn2787
http://dx.doi.org/10.1098/rsif.2017.0792
http://dx.doi.org/10.1016/j.biosystems.2008.10.008
http://dx.doi.org/10.1007/BF00336961
http://dx.doi.org/10.48550/arXiv.1312.6114

	Introduction
	Background
	Bayesian Inference
	Factor Graphs
	Variational Inference
	Constrained Bethe Free Energy

	Related Works
	The GraphPPL.jl Engine
	Representing Graphical Models
	Language Philosophy
	The Model Specification Language
	Modular Definition and Usage of Models
	Example: Bayesian Neural Network
	Extensibility
	Constraint Specification

	Inference Example with the ReactiveMP.jl Backend
	Discussion
	Conclusions
	Additional Examples
	Recursive Generative Model
	Variational Autoencoder

	References

