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Abstract: Bayesian state and parameter estimation are automated effectively in a variety of proba-
bilistic programming languages. The process of model comparison on the other hand, which still
requires error-prone and time-consuming manual derivations, is often overlooked despite its impor-
tance. This paper efficiently automates Bayesian model averaging, selection, and combination by
message passing on a Forney-style factor graph with a custom mixture node. Parameter and state
inference, and model comparison can then be executed simultaneously using message passing with
scale factors. This approach shortens the model design cycle and allows for the straightforward
extension to hierarchical and temporal model priors to accommodate for modeling complicated
time-varying processes.
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1. Introduction

The famous aphorism of George Box states that “all models are wrong, but some are
useful” [1]. It is the task of statisticians and data analysts to find a model which is most
useful for a given problem. The build, compute, critique and repeat cycle [2], also known
as Box’s loop [3], is an iterative approach for finding the most useful model. Any efforts in
shortening this design cycle increase the chances of developing more useful models, which
in turn might yield more reliable predictions, more profitable returns or more efficient
operations for the problem at hand.

In this paper, we choose to adopt the Bayesian formalism, and therefore we specify all
tasks in Box’s loop as principled probabilistic inference tasks. In addition to the well-known
parameter and state inference tasks, the critique step in the design cycle is also phrased as
an inference task, known as Bayesian model comparison, which automatically embodies
Occam’s razor (Ch. 28.1, [4]). As opposed to just selecting a single model in the critique
step, for different models, we better quantify our confidence about which model is best,
especially when data are limited (Ch. 18.5.1, [5]). The uncertainty arising from prior beliefs
p(m) over a set of models m and limited observations can be naturally included through

the use of Bayes’ theorem:
D|m)p(m

p(D) 7

which describes the posterior probabilities p(m | D) as a function of model evidences
p(D|m) and where p(D) = Y, p(D | m)p(m). Starting from Bayes’ rule, we can obtain
different comparison methods from the literature, such as Bayesian model averaging [6],
selection, and combination [7], which we formally introduce in Section 5. We use Bayesian
model comparison as an umbrella term for these three methods throughout this paper.

The task of state and parameter estimation was automated in a variety of tools,
e.g., [8-14]. Bayesian model comparison, however, is often regarded as a separate task,
whereas it submits to the same Bayesian formalism as state and parameter estimation.
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A reason for overlooking the model comparison stage in a modeling task is that the
computation of model evidence p(D | m) is, in most cases, not automated and therefore still
requires error-prone and time-consuming manual derivations, in spite of its importance
and the potential data representation improvement that can be achieved by, for example,
including a Bayesian model combination stage in the modeling process [7].

This paper aims to automate the Bayesian model comparison task and is positioned
between the mixture model and ‘gates” approaches of [15,16], respectively, which we will
describe in more detail in Section 2. Specifically, we specify the model comparison tasks
as a mixture model, similarly to that in [15], on a factor graph with a custom mixture
node for which we derive automatable message-passing update rules, which perform both
parameter and state estimation, and model comparison. These update rules generalize
the model comparison to arbitrary models submitting to exact inference, as the operations
of the mixture node are ignorant about the adjacent subgraphs. Additionally, we derive
three common model comparison methods from the literature (Bayesian model averaging,
selection, and combination) using the custom mixture node.

In short, this paper derives automated Bayesian model comparison using message
passing in a factor graph. After positioning our paper in Section 2 and after reviewing
factor graphs and message passing-based probabilistic inference in Section 3, we make the
following contributions:

1.  We show that the Bayesian model comparison can be performed through message
passing on a graph, where the individual model performance results are captured in a
single factor node as described in Section 4.1.

2. We specify a universal mixture node and derive a set of custom message-passing
update rules in Section 4.2. Performing probabilistic inference with this node in
conjunction with scale factors yields different Bayesian model comparison methods.

3. Bayesian model averaging, selection, and combination are recovered and consequently
automated in Sections 5.1-5.3 by imposing a specific structure or local constraints on
the model selection variable .

We verify our presented approach in Section 6.1. We illustrate its use for models with
both continuous and discrete random variables in Section 6.2.1, after which we continue
with an example of voice activity detection in Section 6.2.2, where we add temporal structure
on m. Section 7 discusses our approach, and Section 8 concludes the paper.

2. Related Work

This section discusses related work and aims at providing the clear positioning of this
paper for our contributions that follow in the upcoming sections.

The task of model comparison is widely represented in the literature [17], for example,
concerning hypothesis testing [18,19]. Bayesian model averaging [6] can be interpreted
as the simplest form of model comparison that uses the Bayesian formalism to retain the
first level of uncertainty in the model selection process [20]. Bayesian model averaging has
proven to be an effective and principled approach that converges with infinite data to the
single best model in the set of candidate models [21-23]. When the true underlying model
is not part of this set, the data is often better represented by ad hoc methods [24], such as
ensemble methods. In [7], the idea of Bayesian model comparison is introduced, which
basically performs Bayesian model averaging between mixture models comprising the
candidate models with different weights. Another ensemble method is proposed in [23,25],
which uses (hierarchical) stacking [26] to construct predictive densities whose weights are
data dependent.

Automating the model design cycle [2] under the Bayesian formalism has been the
goal of many probabilistic programming languages [8-14]. This paper focuses on message
passing-based approaches, which leverage the conditional independencies in the model
structure for performing probabilistic inference, e.g., [27-30], which will be formally intro-
duced in Section 3.2. Contrary to alternative sampling-based approaches, message passing
excels in modularity, speed and efficiency, especially when models submit to closed-form



Entropy 2023, 25, 1138

30f23

(variational) message computations. Throughout this paper, we follow the spirit of [31],
which shows that many probabilistic inference algorithms, such as (loopy) belief propaga-
tion [32,33], variational message passing [30,34], expectation maximization [35], and expec-
tation propagation [36] can all be phrased as a constrained Bethe free energy [37] minimiza-
tion procedure. Specifically, in Section 5, we aim to phrase different Bayesian model com-
parison methods as automatable message-passing algorithms. Not only does this have the
potential to shorten the design cycle but also to develop novel model comparison schemes.

The connection between (automatable) state and parameter inference, versus model
comparison was explored recently by [15,22], who frame the problem of model comparison
as a “mixture model estimation” task that is obtained by combining the individual models
into a mixture model with weights representing the model selection variable. The exposi-
tion in [15,22] is based on relatively simple examples that do not easily generalize to more
complex models for the model selection variable and for the individual cluster components.
In the current paper, we aim to generalize the mixture model estimation approach by an au-
tomatable message passing-based inference framework. Specifically, we build on the results
of the recently developed scale factors (Ch. 6, [38,39]), which we introduce in Section 3.3.
These scale factors support the efficient tracking of local summaries of model evidences,
thus enabling model comparison in generic mixture models; see Sections 4 and 5.

The approach we present in the current paper is also similar to the concept of ‘gates’,
introduced in [16]. Gates are factor nodes that switch between mixture components with
which we can derive automatable message-passing procedures. Mathematically, a gate
represents a factor node of the form f(s,m) = [T<_; fi(sx)™, where the model selection
variable m is a one-of-K coded vector defined as my € {0,1} subject to Zle my = 1. The
variables are s = Ule sk. Despite the universality of the Gates approach, the inference pro-
cedures in [16] focus on variational inference [30,34,40] and expectation propagation [36].
The mixture selection variable m is then updated based on “evidence-like quantities”. In
the variational message-passing case, these quantities resemble local Bethe free energy
contributions, which only take into account the performance around the gate factor node,
disregarding the performance contributions of other parts in the model. Because of the
local contributions, the message-passing algorithm can be very sensitive to its initialization,
which has the potential to yield suboptimal inference results.

In the current paper, we extend gates to models submitting to exact inference using
scale factors, which allows for generalizing and automating the mixture models of [15,22].
With these advances we can automate well-known Bayesian model comparison methods
using message passing, enabling the development of novel comparison methods.

3. Background Material

This section aims to provide a concise review of factor graphs and message-passing
algorithms, as we deem these concepts essential to appreciate our core contributions,
which we present in Sections 4 and 5. This review is intentionally not exhaustive; instead,
we provide references to works that help to obtain a deeper understanding about the
material covered here. In Section 3.1, we introduce factor graphs as a way to visualize
factorizable (probabilistic) models. Section 3.2 then describes how probabilistic inference
can be efficiently performed through message passing, utilizing the inherent factorization
of the model. The model evidence can be tracked locally with message passing, using scale
factors as described in Section 3.3. Finally, Section 3.4 introduces the variational free energy
as a bound on the model evidence.

3.1. Forney-Style Factor Graphs

A factor graph is a specific type of probabilistic graphical model. Here we use the
Forney-style factor graph (FFG) framework as introduced in [41] with notational conven-
tions adopted from [27] to visualize our probabilistic models. An FFG can be used to
represent a factorized function

f(s) =11 falsa), 2

aeV
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where s collects all variables in the function. The subset s, C s contains all argument
variables of a single factor f,. FFGs visualize the factorization of such a function as a
graph G = (V, &), where nodes V and edges £ C V x V represent factors and variables,
respectively. An edge connects to a node only if the variable associated with the edge is
an argument of the factor associated with the node. Nodes are indexed by the variables
a, b, and c, where edges are indexed by i and j unless stated otherwise. The set of edges
connected to node a € V is denoted by £(a), and the set of nodes connected to edge i € £
is referred to as V(7). As an example, consider the model f(sy, s, 53, 54) with factorization

f(s1,52,53,84) = fa(s1) fu(s1,52) fe(53) fa(s2,83,54) ®3)

The FFG representation of (3) is shown in Figure 1. For a more thorough review of factor
graphs, we refer the interested reader to [27,28].

51 52 54

fa fo fa

53

fe

Figure 1. A Forney-style factor graph representation of the factorized function in (3).

3.2. Sum-Product Message Passing
Consider the normalized probabilistic model

p(y,s) = Hfa(yarsa)f 4)

acy

with observed and latent sets of variables y and s, respectively. Note here that the subset
Ya € y can be empty, for example, when dealing with prior distributions. Upon ob-
serving the realizations {, the corresponding model p(y = 7, s) becomes unnormalized.
Probabilistic inference in this model then concerns the computation of the posterior dis-
tribution over the latent variables p(s|y = ) and of the model evidence p(y = 7) as
ply=17,s) =p(s|y =7)p(y = 7). Consider the global integration over all variables in (4),
except fors;as [ p(y = 7,s) ds\;. (Integrals are taken over the support over the variables.
If a variable is discrete valued, integral operators are replaced with summation operators.
For a consistent exposition of our work, we use integral operators throughout the paper.)
This large global integration can be performed through a set of smaller local computations
as a result of the assumed factorization in (4). These smaller local computations can be
considered to summarize the part of the graph that is being integrated over and are termed
messages, which graphically can be interpreted to propagate over the edges in the graph.
These messages are denoted by p and can be locally computed on the graph. The sum-—
product message jis, (s;) flowing out of the node fa(ya = ¥a, 54) with incoming messages
fls;(s;) is given by [29]

ﬁs]‘(sj) = /‘fﬂ(yﬂ = yAﬂ/Sﬂ)l;[ﬁSi (si) dsfi\]“ ®)
i#]

We represent edges in the graph by arbitrarily directed arrows in order to distinguish
between forward and backward messages propagating in or against the direction of an edge
sjas fis;(s;) and fis; (s;), respectively. Following this approach, the global integration reduces
to the product of the messages of the variable of interestas [ p(y = #,5)ds\; = fis; () s, (5})
for acyclic models.

Posterior distributions on edges and around nodes can then be computed according to
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ls; (5))Es; (5))

p(sily =19) (6)
/Vs] 5 ysj(s])ds]
and o
fa(Ya = Ja,8a) H fis; (si)
ic€(a
plsaly =) e , )
/fa Ya = ]/arsa) H ﬂsi(si) ds,
ie&(a)
respectively [31].

Derivations of the message-passing update rule in (5) by phrasing inference as a con-
strained Bethe free energy minimization procedure are presented in [31]. Through a similar
procedure, one can obtain alternative message-passing algorithms, such as variational
message passing [30,34,40], expectation propagation [36], expectation maximization [35]
and hybrid algorithms.

3.3. Scale Factors
The previously discussed integration [ p(y = 7,s) ds\ ; can be represented differently as

/P(J/ =7,s)ds\;=py=19) / p(sly=9)ds\;=ply=9)p(sily=19), ®8)

where p(sj|y = #) is the marginal distribution of s;. The implications of this result
are significant: the product of two colliding sum-product messages fis; (s;)fls; (s;) in an
acyclic graph results in the scaled marginal distribution p(y = §)p(sj|y = y) Because
of the normalization property of p(s; |y = 7), it is possible to obtain both the normalized
posterior p(s; |y = 77) as the model evidence p(y = ) on any edge and around any node
in the graph.

Theorem 1. Consider an acyclic Forney-style factor graph G = (V, £). The model evidence of the
corresponding model p(y = 1), s) can be computed at any edge in the graph as [ ji fis; (s7)fis; (s7) ds

forall j € € and at any node in the graph as [ fo(ya = Ja,5a) [Tice(a) s; (s )dsafor alla € V

Proof. See Appendix A.1. O

What enables this local computation of the model evidence is the scaling of the
messages resulting from the equality in (5). As a result, the messages fi;(s;) can be
decomposed as

ﬁsj(sj) = Esjﬁsj(sj)’ )
where ps; (sj) denotes the probability distribution representing the normalized functional

form of the message fis; (s;). The term BS]. denotes the scaling of the message jis, (s;), also
known as the scale factor (Ch. 6, [38,39]). Scale factors can be interpreted as local summaries
of the model evidence that are passed along the graph.

3.4. Variational Free Energy

In practice, however, the computation of the model evidence and, therefore, the
posterior distribution is intractable. Variational inference provides a generalized view
that supports probabilistic inference in these types of models by approximating the exact
posterior p(s |y = §7) with a variational posterior 4(s) that is constrained to be within a
family of distributions g € Q. Variational inference optimizes (the parameters of) the
variational distribution ¢(s) by minimizing the variational free energy (VFE) of a single
model, defined as

Fla) = By [In 5 2| —KLg(o) sy = )] ~lnpy=9), (10
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through, for example, coordinate or stochastic gradient descent.

The variational free energy can serve as a bound to the model evidence in (1) for
model comparison (Ch. 10.1.4, [42—-44]). It is important to emphasize that the VFE not only
encompasses the model evidence but also the Kullback-Leibler (KL) divergence between
the variational and exact posterior distributions obtained from the inference procedure.

4. Universal Mixture Modeling

This section derives a custom factor node that allows for performing model comparison
as an automatable message-passing procedure in Section 5. In Section 4.1, we specify a
variational optimization objective for multiple models at once, where the optimization of
the model selection variable can be rephrased as a probabilistic inference procedure on a
separate graph with a factor node encapsulating the model-specific performance metrics.
Section 4.2 further specifies this node and derives custom message-passing update rules
that allow for jointly computing (1) and for performing state and parameter inference.

Before continuing our discussion, let us first describe the notational conventions
adopted throughout this section. In Section 3, only a single model is considered. Here, we
cover K normalized models, selected by the model selection variable m, which comprises a
1-of-K binary vector with elements 1 € {0,1} constrained by Y'X_  m; = 1. The individual
models p(y, sk | my = 1) are indexed by k, where y; and s; collect the observed and latent
variables in that model.

4.1. A Variational Free Energy Decomposition for Mixture Models
Consider the normalized joint model

K
p(y,s,m) = p(m) [T pye s | me = 1)" (11)
k1

specifying a mixture model over the individual models p(yy, s | mx = 1), with a prior p(m)
on the model selection variable m and where y = U]Ile yyand s = Ule sk. Based on this
joint model, let us define its variational free energy F as

q(s,m) ]
o [0 2|
e )[ Py =3,5,m)

q(m)

(12)
= Eq(m) [1“ p(m)] + g (m)

11 <ka>’“k],

in which the joint variational posterior q(s, 1) factorizes as q (s, m) = q(m) TT<_; q(s¢ | my = 1)™,
and where Fj denotes the variational free energy of the k-th model. This decomposition
is obtained by noting that m is a 1-of-K binary vector. Furthermore, derivations of this
decomposition are provided in Appendix B.1.

This definition also appeared in a similar form in (Ch.10.1.4, [42]) and in the reinforce-
ment learning and active inference community as an approach to policy selection (Section
2.1, [45]). From this definition, it can be noted that the VFE for mixture models can also be
written as

Fll = By [ m o 2 13)
where p
fn(m) = kljleXP(—Fk[’ﬂ)mk/ (14)

as shown in Appendix B.1. This observation implies that the obtained VFEs of the in-
dividual submodels can be combined into a single factor node f;;, representing a scaled
categorical distribution, which terminates the edge corresponding to m as shown in Figure 2.
The specification of f,, allows for performing inference in the overcoupling model follow-
ing existing inference procedures, similar to that for the individual submodels. This is
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in line with the validity of Bayes’ theorem in (1) for both state and parameter inference,
and model comparison. Importantly, the computation of the VFE in acyclic models can
be automated [31]. Therefore, model comparison itself can also be automated. For cyclic
models, one can resort to approximating the VFE with the Bethe free energy [31,37].

&A
Y ——
e
Figure 2. Subgraph containing model selection variable m. The node f;,; terminates the subgraph and
is defined in (14).

fm

In practice, the prior model p(m) might have hierarchical or temporal dynamics,
including additional latent variables. These can be incorporated without loss of generality
due to the factorizable structure of the joint model, supported by the modularity of factor
graphs and the corresponding message-passing algorithms, as shown in Figure 2.

4.2. A Factor Graph Approach to Universal Mixture Modeling: A General Recipe

In this subsection, we present the general recipe for computing the posterior distri-
butions over the variables s and model selection variable m in universal mixture models.
Section 4.3 provides an illustrative example that aids the exposition in this section. The
order in which these two section are read is a matter of personal preference.

In many practical applications, distinct models p(yx, sk | my = 1) partly overlap in
both structure and variables. These models may, for example, just differ in terms of priors
or likelihood functions. Let f,(y,,5,) be the product of factors which are present in all
different factorizable models p(y, si | my = 1), with overlapping variables s, = N&_; s¢
and y, = ﬂ,lle Yk Based on this description, we define a universal mixture model as in [15]
encompassing all individual models as

K
p(y,s,m) = p(m) [ | pye s | me = 1)
k=1

~ o(m T PWsi | my =1)\™
= plmfatynso) [T (P25 =) 15)

with model selection variable m. Here, the overlapping factors are factored out from the
mixture components. Figure 3 shows a visualization of the transformation from K distinct
models into a single mixture model. With the transformation from the different models
into a single mixture model presented in Figure 3, it becomes possible to include the model
selection variable m into the same probabilistic model.

In these universal mixture models, we are often interested in computing the posterior
distributions of (1) the overlapping variables s, marginalized over the distinct models and
of (2) the model selection variable m. Given the posterior distributions (s, | my = 1) over
variables s, in a single model m;, we can compute the joint posterior distribution over all
overlapping variables 4(s,) as

5](50) = IE:q(m)

K
[Ta(so|m= 1)’”"] , (16)

k=1

marginalized over the different models m. In the generic case, this computation follows
a three-step procedure. First, the posterior distributions g(si | my = 1) are computed in
the individual submodels through an inference algorithm of choice. Then, based on
the computed VFE Fi[g] of the individual models, the variational posterior q(m) can be
calculated. Finally, the joint posterior distribution g(s,) can be computed using (16).
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Here, we restrict ourselves to acyclic submodels. We show that the previously de-
scribed inference procedure for computing the joint posterior distributions can be per-
formed jointly with the process of model comparison through message passing with scale
factors. In order to arrive at this point, we combine the different models into a single
mixture model inspired by [15,22]. Our specification of the mixture model, however, is
more general compared to that of [15,22], as it does not constrain the hierarchical depth of
the overlapping or distinct models and also works for nested mixture models.

Table 1 introduces the novel mixture node, which acts as a switching mechanism
between different models, based on the selection variable m. It connects the model selection
variable m and the overlapping variables s; | m; = 1 for the different models my, to the
variable s; marginalized over m. Here, the variables s; connect the overlapping to the
non-overlapping factors.

1T T e \ 1T ‘ silm =1 sj|my=1 sj|mg =1
T s ‘ ‘ ‘
I ] : I ] : I ] : I I I
I I | I I | I I |

I I | I I | I I |

I | X I | X I | X

! I ! I ! I

! I ! I ! I

! I ! I ! I

! I ! I ! I

! I ! I ! I

! I ! I ! I

! I ! I ! I

! I ! I ! I

RN ER RER

1 L ! 1 !

mp =1 my =1 mg =1

Figure 3. (left) Overview of the traditional process of model comparison. Here, inference is performed
in a set of K models, after which the models are compared. These models may partially overlap in
both variables as in structure. Specifically, in this example, the variables s; connect the overlapping
factors f, to the non-overlapping factors. The notation s; | n; = 1 denotes the variable s; in the k-th
model. (right) Our approach to model comparison based on mixture modeling. The different models
are combined into a single graph representing a mixture model, where the model selection variable m
specifies the component assignment. The variable s; without conditioning implies that it has been
marginalized over the different models m.

The messages in Table 1 are derived in Appendices B.2 and B.3, and can be intuitively
understood as follows. The message ji;, () represents the unnormalized distribution over
the model evidence corresponding to the individual models. Based on the scale factors of
the incoming messages, the model evidence can be computed. The message ﬁsj me=1(5})
equals the incoming message from the likelihood fi;,(s;). It will update s; [ my = 1 as if
the k-th model is active. The message fis; (sj) represents a mixture distribution over the
incoming messages fis; (s;), where the weightings are determined by the message ji;: (1)
and the scale factors of the messages ﬁs]_ |m=1(5j)- This message can be propagated as
a regular message over the overlapping model segment yielding the marginal posterior
distributions over all variables in the overlapping model segment.

Theorem 2. Consider multiple acyclic FFGs. Given the message jis; (sj) in Table 1 that is marginal-

ized over the different m models, propagating this message through the factor f;(Ya,sa), which
overlaps for all models with s; € s,, yields again messages which are marginalized over the
different models.

Proof. See Appendix A.2. [
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Table 1. Table containing (top) the Forney-style factor graph representation of the mixture node.
(bottom) The derived outgoing messages for the mixture node. It can be noted that the backward
message towards m resembles a scaled categorical distribution and that the forward message towards
sj represents a mixture distribution. Derivations of the messages ji;(m) and jis; (s;) are presented in
Appendices B.2 and B.3, respectively.

Factor Node
S]'|TTZ1:1 S]'|m2:1 S]'|mK:1
\l/ ﬁsj\mlzl \l/ ﬁs/\mzzl \l/ ﬁs,-\szl
_>
m —
Wm
Messages Functional form
K my
fin () T im0 G50,
k;l
ﬁS/(S]’) Z ﬁWI(mk = 1)ﬁs]-\mk:1 (S]')
k=1
;”Tsj|mk:1 (S]) ﬁS]' (S])

4.3. A Factor Graph Approach to Universal Mixture Modeling: An lllustrative Example

Consider the two probabilistic models

p(y,s|my =1)=p(yls)p(s|m =1), (17)
p(y,s|my=1)=p(yls)p(s|my=1), (18)

which share the same likelihood model with a single observed and latent variable y and s,
respectively. The model selection variable m is subject to the prior

p(m) = Ber(m | ) = 7™ (1 — )™, (19)

with 7t denoting the success probability. This allows for the specification of the mixture model
2

p(y,s,m) = p(m) p(y|s) [Tp(s[me =1)", (20)
k=1

which we visualize in Figure 4.

Suppose we are interested in computing the posterior probabilities p(s|y = 1),
marginalized over the distinct models, and p(m |y = 7). The model evidence of both
models can be computed using scale factors locally on the edge corresponding to s as

Py =g1m =1) = [ fiy1©)iils)ds = [ pls|m = 1) p(y = 7]5)ds,

P =91m=1) = [ fpr(&)iis)ds = [ p(s|ma=1)ply = 71s)ds,
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which takes place inside the mixture node for computing 1, (m). Together with the forward
message over edge m, we obtain the posterior

Fim (m) fim (m) _ pm)ply =g[m) 1)
Y2 fim(my = V)itu(me =1) ply=19)

p(mly=79) =

The posterior distribution over s for the first model can be computed as

ﬁs\m1:1(5>ﬁ5(5)
ply=9[m =1)

pisly=9m =1)=

From (16), we can then compute the posterior distribution over s marginalized over
both models as
psly=9)=plm =1ly=9)p(sly = §,m =1)
+plmy =1y =9)p(s|y =g,m =1),
_pm =)ply=g|m =1) Hem=1(5)fis(s)

ply=19) ply=79[m =1)
L pm=1Dpy=glmy=1) Fm=1(5)iis(s)
ply=19) ply = ylmzzl)
(PO = Dy =1(5) + plmz = Vg, (5) ) (s
a p(y =79)

p(s|my=1) p(s|mpy=1)

s|mp =1 s|mp =1

T m .
[ | Ber Mixture

p(yls)

y

Figure 4. Factor graph visualization of (20) in the example sketched in Section 4.3.

5. Model Comparison Methods

In this section, we introduce three Bayesian model comparison methods from the
literature: model averaging [6], selection and combination [7]. For each of these methods,
we describe how to automate them using message passing with the mixture node in Table 1.
The factor graph approach here aids the intuitive understanding of the different approaches,
as their distinctions are sometimes obscure in the literature. As we will show, each method
describes an inference procedure on a slightly different model for the model selection
variable m, possibly with different variational constraints as visualized in Figure 5.
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Figure 5. Schematic overview of (a) Bayesian model averaging, (b) selection and (c) combination as
specified in Sections 5.1-5.3. This overview explicitly visualizes the structural differences between
the prior distributions and form constraints imposed on the model selection variable m. The edges
crossing the plates are implicitly connected through equality nodes.

5.1. Bayesian Model Averaging

Bayesian model averaging (BMA) can be considered the simplest form of model
comparison and is therefore mentioned in many works, e.g., (Ch. 14.1, [6,42]). BMA
completes the model specification by specifying a categorical prior distribution over the
models m as

p(m) = Cat(m | ), 22)

where 71 denotes the vector of event probabilities. BMA then aims at computing the
posterior distribution over the models (). Given a set of possible models, or hypotheses,
with BMA, the posterior distribution q(m) converges with infinite data to a Kronecker delta
function that selects the single model which is the most likely given the observed set of
data [15,21]. Figure 5a provides a visual representation of Bayesian model averaging.

5.2. Bayesian Model Selection

Bayesian model selection (BMS) is a further specification of BMA as illustrated in
Figure 5b, which selects the model out of a group of models that is the maximum a posteriori
(MAP) estimate of m, e.g., (Ch. 5.3, [46]). Where BMA returns a posterior probability over
the models m, BMS only returns the most probable model. In addition to the specification
of the model prior of (22), BMS can be interpreted to enforce a form constraint [31] on the
variable m. Specifically, we constrain the posterior distribution g(m) to be a Kronecker
delta function 4(-), centered around the MAP estimate of m as

g(m) = 6(m —ey), s.t. k = arg max jiy, (my = 1)t (m = 1), (23)
k

where ¢; represents the k-th Euclidean standard basis vector. Figure 5b visualizes this
constraint by the encircled J on the edge corresponding to the variable m. This form
constraint will effectively interrupt the flow of the messages y,, and instead propagate the
computed marginal distribution g(m) back to the connected nodes (Theorem 3, [31]). As a
result g(m) will be substituted for i, (m) in the message fi; (s;) in Table 1, which performs
a selection of the incoming messages for the outgoing message as fi; (sj)) = ﬁsj\mk=1 (s))-

5.3. Bayesian Model Combination

Contrary to what some consider its naming to imply, BMA does not find the best
possible weighted set of models that explains the data and is therefore often subject to
misinterpretation [21]. Instead, it performs a soft selection of the most probable model
from the set of candidate models [7,21]. With infinite data, BMA converges to the single
best model of the group of possible models [15]. In the case that the true model is inside
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the subset of models to evaluate, this will correctly identify the true model. However,
often, the true underlying model is not within this subset and, therefore, a suboptimal
model is selected. In this case, there might actually exist a specific weighted combination of
models that represents the observed data better in terms of model evidence than the single
best model [21].

Bayesian model combination (BMC) [7] was introduced to find the best possible
weighted set of models, whilst retaining uncertainty over this weighting. The founding
work of [7] presents two approaches for BMC: (1) by performing an extensive search over a
discretized subspace of model weightings, and (2) by sampling from a Dirichlet distribution
that extends the regular categorical model prior. Here, we illustrate the latter approach
using a Dirichlet prior on 7t because inference in this model can be executed efficiently
using message passing.

Contrary to the previous subsection, every (set of) observation(s) is now assumed to
be modeled by a distinct model m, from the set of candidate models, where n indexes the
observation. Each variable m, comprises a 1-of-K binary vector with elements m,,; € {0,1}
constrained by ZkK=1 myr = 1. We specify the prior distribution

p(my | ) = Cat(m, | ), (24)
where the event probabilities 71 now appears as a random variable, which is modeled by
p(m) = Dir(m | a), (25)

where « is the concentration parameters. Intuitively, the variable 7t is shared among all
observations, whereas 1, is specific to a single observation as shown in Figure 5c.

Probabilistic Inference for Bayesian Model Combination

The exact inference in this model is intractable because the posterior over 7 resembles
a mixture of Dirichlet distributions with a number of components that scales exponentially
with the number of observations. As a result, previous works in the literature presented
approximate algorithms for performing probabilistic inference in this model, such as
sampling [7]. Here, we present two alternative approaches for performing approximate
inference in this model.

The first approach concerns constraining the posterior distributions over m, to be
Kronecker delta functions 4(+), similar to that shown in Section 5.2 as

g(my) = 6(my —ep), s.t. k = argmax fiy, (M = 1), (my = 1). (26)
k

Here, we choose the approximate posterior g(,) to be centered around the MAP estimate
of m,; however, alternative centers can also be chosen, for example, by sampling from
Hm, (Mg = 1)fim, (my = 1). Using this constraint, the backward message ji,(7r) towards
7t can be computed analytically (Appendix A.5, [47]). Batch or offline processing can
be performed by an iterative message-passing procedure, similar to variational message
passing [30,34,40], which requires the initialization of messages jiy, (,) or marginals
g(my) in order to break circular dependencies between messages and marginals in the
model. However, this approach also lends itself toward an online setting with streaming
observations. In the online setting, however, the results are heavily influenced by prior
p(m) if chosen uninformatively as we detail in Section 6.1. In Section 6.1, we also describe
an approach to cope with this initialization problem.

An alternative approach to performing approximate inference in an offline manner
is obtained by variational message passing [30,34,40]. The true posterior distribution
p(m,my,...,my| D) is, in this case, approximated by the variational posterior distribution
q(rt,my, ..., my), being subject to naive mean-field factorization as

N
p(rt,my, ..., my| D) = q(rt,my, ..., my) = q(m) [ ] a(ma), (27)
n=1
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where the individual variational distributions are constrained to have the functional forms
q(rr) = Dir(m | &), (28a)

q(my) = Cat(my | 7tn), (28b)

where the ~ accent is used to indicate the parameters of the variational posterior distribu-
tions. Variational message passing minimizes the variational free energy by iterating the
computation of variational messages and posteriors until convergence. The corresponding
variational message-passing update rules are derived in (Appendix A.5, [47]).

6. Experiments

In this section, a set of experiments is presented for the previously presented message
passing-based model comparison techniques. Section 6.1 verifies the basic operations of the
inference procedures for model averaging, selection and combination for data generated
from a known mixture distribution. In Section 6.2, the model comparison approaches are
validated on application-based examples.

All experiments were performed using the scientific programming language Julia [48]
with the state-of-the-art probabilistic programming package RxInfer. j1 [9]. The mixture
node specified in Section 4.2 was integrated in its message-passing engine
ReactiveMP.jl [49,50]. Aside from the results presented in the upcoming subsections,
interactive Pluto. j1 notebooks are available online (all experiments are publicly available
at https://github.com/biaslab/AutomatingModelComparison, (accessed on 9 June 2023)),
allowing the reader to change hyperparameters in real time.

6.1. Verification Experiments

For verification of the mixture node in Table 1, N = {1, 5,10, 100,1000} observations
Yn are generated from the mixture distribution

p(yn) = 02N (yn| —3,14+0%) +05N (v |0,14+0) + 03N (v, |4,1+0%), (29

where N (v, | 1,0?) represents a normal distribution with mean y and variance ¢?. ¢?

represents the additional observation noise variance. For the obtained data, we construct
the probabilistic model

plxn|m) =N(xy| —3,1)" N (x,|0,1)"2N (x,, | 4,1)", (30a)
pYn | %) = N(yn | x0,07), (30b)

which is completed by the structures imposed on m as introduced in Section 5. Depending
on the comparison method as outlined in Sections 5.1-5.3, we add an uninformative
categorical prior on z or an uninformative Dirichlet prior on the event probabilities 7r
that model z. The aim is to infer the marginal (approximate) posterior distributions over
component assignment variable z, for model averaging and selection, and over event
probabilities 7, for model combination.

The Bayesian model combination preliminary experiments show that the results relied
significantly on the initial prior p(7) in the online setting. Choosing this term to be unin-
formative, i.e., o << 1Vkand a; = & j Vi, j,led to a posterior distribution which became
dominated by the inferred cluster assignment of the first observation. As a result, the
predictive class probability approached a delta distribution, centered around the class label
of the first observation, leading to all consecutive observations being assigned to the same
cluster. This observation is as expected, as the concentration parameters & of the posterior
distribution g(7r) after the first model assignment mq, = 1 were updated as & = a + my,
with prior concentration parameters . When the entries of a are small, this update will
have a significant effect of the updated prior distribution over 7 and consecutively over

the prior belief over the model assignment i, (m,) = Cat (mn |/ Z,Ile zx). To remedy

this undesirable behavior, the prior p(71) was chosen to prefer uniformly distributed class
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labels, i.e., o >> 1Vkand a; = & Vi,j. Although this prior yields the same forward mes-
sage jim, (my), consecutive forward messages will be less affected by the selected models
my,. After the inference procedure was completed, the informativeness of this prior was
removed using Bayesian model reduction [43,44], where the approximate posterior over 7r
was recomputed based on an alternative uninformative prior.

Figure 6 shows the inferred posterior distributions of z or the predictive distributions
for z obtained from the posterior distributions g(7r), for an observation noise variance
0% = 5. From the results, it can be observed that Bayesian model averaging converges with
increasing data to a single cluster as expected. This selected cluster corresponds to the
cluster inferred by Bayesian model selection, which also corresponds to the cluster with
the highest mixing weight in (29). Contrary to Bayesian model selection, the alternative
event probabilities obtained with Bayesian model averaging are non-zero. Both Bayesian
model combination approaches do not converge to a single cluster assignment as expected.
Instead, they better recover the data-generating mixing weights in the data-generating
distribution. It can be seen that the variational approach to model combination is better
capable of retrieving the original mixing weights, despite the high noise variance of ¢> = 5.
The online model combination approach is less capable of retrieving the original mixing
weights. This is also as expected since the online approach performs an approximate
filtering procedure, contrary to the approximate smoothing procedure of the variational
approach. For smaller values of the noise variance, we observe in our experiments that the
online model combination strategy approaches the variational strategy.

6.2. Validation Experiments

Aside from verifying the correctness of the message-passing implementations of
Section 5 using the mixture node, this section further illustrates its usefulness in a set of
validation experiments, covering real-world problems.

6.2.1. Mixed Models

In order to illustrate an application of the mixture node from Table 1, we show how it
can be used in a mixed model, where it connects continuous to discrete variables. Consider
the hypothetical situation, where we wish to fit a mixture with fixed components but
unknown mixing coefficients to some set of observations. To highlight the generality of the
mixture node, the mixture components are chosen to reflect shifted product distributions,
where the possible shifts are limited to a discrete set of values. The assumed probabilistic
model of a single observation y is given by

P(ﬂ) =N(a]05,1), (31a)
p(b) =N(b|0,1), (31b)

(c | 2) = 6(c+0.2)"5(c + 1.8)26(c — 0.9)3, (31¢)
p(z) = Cat(z|13/3), (31d)
p(ylab,c) =d(y— (ab+c)). (3le)

The variables a and b are latent variables defining the product distribution. c specifies the
shift introduced on this distribution, which is picked by the selector variable z, comprising
a 1-of-3 binary vector with elements z; € {0,1} constrained by Zi’:l zr = 1. 1g denotes
a vector of ones of length K. The goal is to infer the posterior distribution of z and to,
therefore, fit this exotic mixture model to some set of data.

We perform offline probabilistic inference in this model using Bayesian model averag-
ing and Bayesian model combination. For the latter approach, we extend the prior on z
with a Dirichlet distribution following Section 5.3 and by assuming a variational mean-field
factorization. The shifted product distributions do not yield tractable closed-form messages;
therefore, these distributions are approximated following [51]. Figure 7 shows the obtained
data fit on a data set of 1500 observations drawn from a standard normal distribution. This
distribution does not reflect the used model in (31) on purpose to illustrate its behavior
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when the true underlying model is not one of the components. As expected, model averag-
ing converges to the most dominant component, whereas model combination attempts to
improve the fit by combining the different components with fixed shifts.

Model averaging Model selection Model combination =~ Model combination

(online) (variational)
| | | | | |

04 = 0.4

0.2

0.2

1 F
N 0.6 06
P4
— = [ g &
I < 5] l|q|0457 = B
Z, Il 2 = =
N = = =
0 0 0 0
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Figure 6. Visualization of the verification experiments as specified in Section 6.1. The indi-
vidual plots show the (predictive) posterior distributions for the assignment variable in (29)
for N ={1,5,10,100,1000} observations as computed using the different methods outlined
in Sections 5.1-5.3.
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Figure 7. Inference results of the mixed model as described in Section 6.2.1. The inference procedure
is performed by (left) Bayesian model averaging and (right) Bayesian model combination under
a variational mean-field factorization. (top) The posterior estimate for the shift c. (bottom) The
predictive posterior distribution for new observations in blue with underlying components in red.

6.2.2. Voice Activity Detection

In this section, we illustrate a message-passing approach to voice activity detection in
speech that is corrupted by additive white Gaussian noise using the mixture node from
Table 1. We model speech signal s; as a first-order auto-regressive process as

p(st|si—1) = N (st | psi—1,0%), (32)

with auto-regressive parameter p and process noise variance ¢2. The absence of speech is
modeled by independent and identically distributed variables 7¢, which are enforced to be
close to 0 as

p(nt) = N (ny|0,0.01). (33)

We model our observations by the mixture distribution, where we include the corruption
from the additive white Gaussian noise as
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p(ye|se, ne,ze) = N (ye | s1,0.5)*0N (y | ng, 0.5)%2. (34)

Here, z; indicates the voice activity of the observed signal as a 1-of-2 binary vector with
elements z; € {0,1} constrained by Y7_, z; = 1. Because periods of speech are often
preceded by more speech, we add temporal dynamics to z; as

p(zt|zi-1) = Cat(z | Tz 1), (35)

where the transition matrix is specified as T = [0.99999,107°;107>,0.99999).

Figure 8 shows the clean and corrupted audio signals. The audio is sampled with
a sampling frequency of 16 kHz. The corrupted signal is used for inferring z;, which is
presented in the bottom plot. Despite the corruption inflicted on the audio signal, this
presented simple model is capable of detecting voice effectively as illustrated in the bottom
plot of Figure 8.

clean signal
(=]

corrupted signal
(=}

speech|[%)]

0 t t I b b b b ! t —
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time [sec]

Figure 8. Results of the voice activity detection experiment as specified in Section 6.2.2. The figure
shows (top) the clean signal, (middle) the clean signal corrupted by additive white Gaussian noise
and (bottom) the inferred speech probability.

7. Discussion

The unifying view between probabilistic inference and model comparison as presented
by this paper allows us to leverage the efficient message-passing schemes for both tasks.
Interestingly, this view allows for the use of belief propagation [32], variational message
passing [30,34,40] and other message passing-based algorithms around the subgraph con-
nected to the model selection variable m. This insight gives rise to a novel class of model
comparison algorithms, where the prior on the model selection variable is no longer con-
strained to be a categorical distribution but where we now can straightforwardly introduce
hierarchical and/or temporal dynamics. Furthermore, a consequence of the automatability
of the message-passing algorithms is that these model comparison algorithms can easily
and efficiently be implemented, without the need for error-prone and time-consuming
manual derivations.

Although this paper solely focused on message passing-based probabilistic inference,
we envision interesting directions for alternative probabilistic programming packages,
such as Stan [14], Pyro [11], Turing [10], UltraNest [12], and PyMC [13]. Currently, only
the PyMC framework allows for model comparison through their compare () function.
However, often these packages allow for estimating the (log-)evidence through sampling,
or for computing the evidence lower bound (ELBO), which resembles the negative VFE of
(10), which is optimized using stochastic variational inference [52]. An interesting direction
of future research would be to use these estimates to construct the factor node f(m) in (14),
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with which novel model comparison algorithms can be designed, for example, where the
model selection variables becomes observation dependent as in [25].

The presented approach is especially convenient when the model allows for the
use of scale factors (Ch.6, [38,39]). In this way, we can efficiently compute the model
evidence as shown in [39]. The introduced mixture node in Table 1 consecutively enables a
simple model specification as illustrated in the Supplementary Materials source code of
our experiments (all experiments are publicly available at https:/ /github.com/biaslab/
AutomatingModelComparison, (accessed on 9 June 2023)).

A limitation of the scale factors is that they can only be efficiently computed when the
model submits to exact inference [39]. Extensions of the scale factors towards a variational
setting would allow the use of the mixture node with a bigger variety of models. If this lim-
itation is resolved, then the introduced approach can be combined with more complicated
models, such as, for example, Bayesian neural networks, whose performance is measured
by the variational free energy, see, e.g., [53,54]. This provides a novel solution to multi-task
machine learning problems, where the number of tasks is not known beforehand [55]. Each
Bayesian neural network can then be trained for a specific task, and additional components
or networks can be added if appropriate.

The mixture nodes presented in this paper can also be nested on top of each other.
As a result, hierarchical mixture models can be realized, which can quickly increase the
complexity of the nested model. The question quickly arises as to where to stop. An answer
to this question is provided by Bayesian model reduction [43,44]. Bayesian model reduction
allows for the efficient computation of the model evidence when parts of the hierarchical
model are pruned. This approach allows for the pruning of hierarchical models in an effort
to bound the complexity of the entire model.

8. Conclusions

This paper bridges the gap between probabilistic inference for states and parameters,
and for model comparison, allowing for the simultaneous automation of both tasks. It is
shown that model comparison can be performed by message passing on a graph terminated
by a node that captures the performance results of the different submodels as motivated
from a variational free energy perspective. In the case where the model submits to exact
inference, we can efficiently implement model comparison using our newly proposed
mixture node, which leverages the efficiently computed scale factors. Based on this node
description, we show how to automate Bayesian model averaging, selection, and com-
bination by changing the (hierarchical) prior and posterior constraints on the selection
variable.

Supplementary Materials: Source code and experiments are available at https://github.com/
biaslab/ AutomatingModelComparison (accessed on 9 June 2023).
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Appendix A. Proofs
Appendix A.1. Proof of Theorem 1

This proof follows a similar recipe as that in Appendix D.3 of [31]. Consider the
induced subgraph in Figure Al. The node-local and edge-specific marginals g,(s,;) and

q;(s;), respectively, obtained by belief propagation or sum-product message passing as the
f1xed points of (5), are given by

1 . -

a(8a) = foﬂ@ = 1,54) H fis; (si), (Ala)
a ic&(a)
1 .

9j(sj) = —- s () is;(s7), (Alb)
]

as shown in Theorem 1 in [31], with node-local and edge-specific normalization constants
Zg = /fa y=10,5) [ Fs(s:)dsa, (A2a)
ic&(a)
Zy= [ s (5))it (57) ;. (A2b)

As shown in Appendix D.3 in [31], the normalization constants are equal to Z, = Z;. As
this holds for all variables s; € s,, we can deduce that Z; = Z;Vi,j € £ (a) also holds.
Similarly, this property remains valid for adjacent nodes, allowing us to write

Zy =17 staeV,jef. (A3)
This property stipulates that the normalization constants of all (joint) marginal distributions
are equal if the solutions correspond to the fixed points of (5) under sum-product message
passing. As the normalization constant equals the model evidence, we can compute
the model evidence on any edge and around any node in our graph. The fixed-point

assumption is only violated in the case of the cyclic graph, where we perform loopy belief
propagation [33].

\f v -
. a b
e

Figure A1. Visualization of a subgraph.

Appendix A.2. Proof of Theorem 2
The arbitrary outward message jis, (sx) from the node f,(y = 7,s,) can be computed

using the sum—product message-passing update rule in (5). Substitution of the definition
of jis; (sj) of (A9) in this update rules yields
fis () = [ i () [T (5 faly = Yo) e
i#]
ik

K
:/<2 ﬁm( ﬂs]|mk 1 > fll y= ylsﬂ)dsu\k/
k=1

l

i (A4)
mk = 1 /Vs]|mk 1 H fﬂ y= ylsﬂ)dsa\k/

‘ﬁl

L

K
Z mk - 1 ‘usk|mk 1(Sk)
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where we identify the same form as compared to jis; (s))-

Appendix B. Derivations
Appendix B.1. Derivation of Variational Free Energy Decomposition for Mixture Models
The following is the derivation of (12):

[ q(s,m) ]
om) | IN ———————
96m) [ ply = g,5,m)

r K
q(m) [ T asi|my =1)"
k=1

Flg] =E

In

K
p(m) [ Tre = G sic | mye = 1)

k
= By (om) _ln (mm)] +Eqs,m) [i mkln(p( q(sk | my =1) )]
|

Yk = Pk Sk | mp = 1)

K m
q(sk [ m =1) ¢
+ B m) (ln W = Jo s e = 1)
k=1 P\Yk = Yk Sk | Mk

K I |m = 1) "k
p(m) L1 Erto = e =) ]
q(m) K My
IE:q(m) [ln P(Wl)] + IE:q(m) Il;Il (Fk[q]) ‘|

The step from the third to fourth line is the result of the variable m being one-hot coded.
As aresult, only a single m equals 1, and all others are constrained to be 0. Therefore, we
can obtain the identity
K K K
1_[ a,’?" = Z myay, s.t. mp = 1 and my € {O, 1} Vk
k=1 k=1 k=1

which one might recognize as the different representations of the probability mass function
of a categorical distribution.
The factor f,,(m) in (14) can be derived from the above result as

[T (Felal)™ | = Eqeu) }“‘(eXP <_,f[1 (Fk[q])mk»]

k=1
1
=E In
(m) p
T exp (=TI (Blg)) k)]

Egom)

[ 1
=E In m
10 7T exp(—Filg]) 1

The step from the second to third line again uses the fact that the variable m is one-hot
coded. As a result, we can obtain the identity

K K K
exp <— 11 oc,T") =] Jexp(—ap)™. st ) mg=1andm e {0,1}Vk
k=1 k=1 k=1

One can validate this expression by considering a realization of m and expanding the identity.
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Appendix B.2. Derivation of Message jiy, (m)

Consider the variable Sj € So in the context of Table 1, where we wish to compute
the backwards message ji,, (1) towards m. As shown in [45], the posterior g(m) can be
obtained through the functional optimization of (12). Following the approach stipulated
in [31], the solution for g(m) follows the form of (6) as

q(m) o< iy (m)jim (m) = fim(m) f (m), (A5)

where ji,,(m) denotes the message towards m, not originating from f (m).
Under the assumptions of acyclicity and tractability,

exp(—Fk[q]) =7 = /ﬁs]-|mk:1 (S]')]’Tsj\mkzl (Sj) dS]' (A6)

holds, from which we obtain the message
K my
k=1

where the substitution of (A6) into the definition of f(m) in (14) yields the message i, (1)
in Table 1. Here, we leverage scale factors inside the mixture node to compute the normal-
ization constants of the different models.

Appendix B.3. Derivation of Message jis;(s;)

Consider again the variable s; € s,, whose posterior distribution ¢(s;) we now wish to
compute. The substitution of g(s; | m; = 1) in (6) and i, (m) in (A7) mto (16) yields

K
[Tatsl mk)mk],
k=1

=1
i ﬁm(mk =1 ]Im(mk =1 ﬁsj\mk (Sj)ﬁsj\mkzl(sj) (A8)
=1 Yy B (me = 1) i (mge = 1) [ Fis; =1 (87) s =1 (57) s
1 K ﬁs~\mk:1(sj)ﬁs'|mk:1(sj)
i (mye = 1) i (my = 1) —L—— ! ,
o = Do = 1) 2 0 = D = D=2 060 23

where Z,, = YK | jim(my = 1)fim(my = 1). Furthermore, as a result of the assumption
Sj € so being located in the overlapping model section, one of the sum—product mes-
sages towards s; is independent of the model my, i.e., either ji [ 1(sj) = His;(sj) o
ys/|mk_1 (sj) = iis; (s]) holds. In the situation sketched in Figure 3, we assume the latter In
this case, we obtain the identity

K
Zmd( S] <2 fim (m Vs]|mk 1(S])> }"TS/(S]’)/ (A9)

k=1

fis; (5)

from which the message jis; (s;) in Table 1 can be identified.



Entropy 2023, 25,1138 22 of 23

References

1.  Box, G.E.P. Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics; Launer, R.L., Wilkinson, G.N., Eds.;
Academic Press: Cambridge, MA, USA, 1979; pp. 201-236.

2. Blei, D.M. Build, Compute, Critique, Repeat: Data Analysis with Latent Variable Models. Annu. Rev. Stat. Its Appl. 2014,
1,203-232. [CrossRef]

3. Box, G.E.P. Science and Statistics. J. Am. Stat. Assoc. 1976, 71, 791-799. [CrossRef]

4. MacKay, D.J.C. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.

5. Koller, D.; Friedman, N. Probabilistic Graphical Models: Principles and Techniques; Adaptive computation and machine learning;
MIT Press: Cambridge, MA, USA, 2009.

6. Hoeting, ].A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian Model Averaging: A Tutorial. Stat. Sci. 1999, 14, 382—401.

7. Monteith, K.; Carroll, J.L.; Seppi, K.; Martinez, T. Turning Bayesian model averaging into Bayesian model combination. In
Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July-5 August 2011; pp.
2657-2663. [CrossRef]

8.  Cox, M,; van de Laar, T,; de Vries, B. A factor graph approach to automated design of Bayesian signal processing algorithms. Int.
J. Approx. Reason. 2019, 104, 185-204. [CrossRef]

9.  Bagaev, D.; Podusenko, A.; De Vries, B. RxInfer: A Julia package for reactive real-timeBayesian inference. . Open Source Softw.
2023, 8, 5161. [CrossRef]

10. Ge, H.; Xu, K,; Ghahramani, Z. Turing: A Language for Flexible Probabilistic Inference. In Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics, PMLR, Playa Blanca, Spain, 9-11 April 2018; pp. 1682-1690.

11.  Bingham, E.; Chen, ].P; Jankowiak, M.; Obermeyer, F; Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.,; Horsfall, P.; Goodman, N.D.
Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 2018, 20, 973-978. [CrossRef]

12.  Buchner, J. UltraNest—A robust, general purpose Bayesian inference engine. arXiv 2021. [CrossRef]

13. Salvatier, J.; Wiecki, T., Fonnesbeck, C. Probabilistic Programming in Python using PyMC. arXiv 2015,
arXiv.1507.08050. [CrossRef]

14. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P; Riddell, A. Stan: A
Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1-32. [CrossRef]

15. Kamary, K.; Mengersen, K.; Robert, C.P.; Rousseau, J. Testing hypotheses via a mixture estimation model. arXiv 2018,
arXiv:1412.2044.

16. Minka, T.; Winn, J. Gates. In Advances in Neural Information Processing Systems 21; Curran Associates, Inc.: Red Hook, NY, USA,
2009; pp. 1073-1080.

17.  Fragoso, T.M.; Neto, FL. Bayesian model averaging: A systematic review and conceptual classification. Int. Stat. Rev. 2018,
86, 1-28. [CrossRef]

18. Stephan, K.E.; Penny, W.D.; Daunizeau, J.; Moran, R.J.; Friston, K.J. Bayesian model selection for group studies. Neurolmage 2009,
46,1004-1017. [CrossRef]

19. Rigoux, L.; Stephan, K.; Friston, K.; Daunizeau, J. Bayesian model selection for group studies—Revisited. Neurolmage 2014,
84,971-985. [CrossRef]

20. Schmitt, M.; Radev, S.T.; Biirkner, P.C. Meta-Uncertainty in Bayesian Model Comparison. arXiv 2023, arXiv:2210.07278.

21. Minka, T.P. Bayesian Model Averaging Is Not Model Combination. 2000. Available online: http://www.stat.cmu.edu/minka/
papers/bma.html (accessed on 9 June 2023 ).

22. Keller, M.; Kamary, K. Bayesian model averaging via mixture model estimation. arXiv 2018, arXiv:1711.10016.

23.  Yao, Y.; Vehtari, A.; Simpson, D.; Gelman, A. Using Stacking to Average Bayesian Predictive Distributions (with Discussion).
Bayesian Anal. 2018, 13, 917-1007. [CrossRef]

24. Domingos, P. Bayesian Averaging of Classifiers and the Overfitting Problem. In Proceedings of the Seventeenth International
Conference on Machine Learning, ICML ’00, San Francisco, CA, USA, 29 June-2 July 2000; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 2000; pp. 223-230.

25. Yao, Y,; Pir§, G.; Vehtari, A.; Gelman, A. Bayesian Hierarchical Stacking: Some Models Are (Somewhere) Useful. Bayesian Anal.
2022, 17, 1043-1071. [CrossRef]

26. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241-259. [CrossRef]

27.  Loeliger, H.A. An introduction to factor graphs. IEEE Signal Process. Mag. 2004, 21, 28-41. . [CrossRef]

28. Loeliger, H.A,; Dauwels, J.; Hu, J.; Korl, S.; Ping, L.; Kschischang, ER. The Factor Graph Approach to Model-Based Signal
Processing. Proc. IEEE 2007, 95, 1295-1322. [CrossRef]

29. Kschischang, F.; Frey, B.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 2001, 47, 498-519.
[CrossRef]

30. Dauwels, J. On Variational Message Passing on Factor Graphs. In Proceedings of the 2007 IEEE International Symposium on
Information Theory, Nice, France, 24-29 June 2007; pp. 2546-2550. [CrossRef]

31. Senoz, L; van de Laar, T.; Bagaev, D.; de Vries, B. Variational Message Passing and Local Constraint Manipulation in Factor
Graphs. Entropy 2021, 23, 807. [CrossRef]

32. Pearl, ]J. Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach. In Proceedings of the American Association

for Artificial Intelligence National Conference on Al, Pittsburgh, PA, USA, 18-20 August 1982; pp. 133-136.


http://doi.org/10.1146/annurev-statistics-022513-115657
http://dx.doi.org/10.1080/01621459.1976.10480949
http://dx.doi.org/10.1109/IJCNN.2011.6033566
http://dx.doi.org/10.1016/j.ijar.2018.11.002
http://dx.doi.org/10.21105/joss.05161
http://dx.doi.org/10.48550/arXiv.1810.09538
http://dx.doi.org/10.21105/joss.03001
http://dx.doi.org/10.48550/ arXiv.1507.08050
http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1111/insr.12243
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
http://dx.doi.org/10.1016/j.neuroimage.2013.08.065
http://www. stat.cmu.edu/minka/papers/bma.html
http://www. stat.cmu.edu/minka/papers/bma.html
http://dx.doi.org/10.1214/17-BA1091
http://dx.doi.org/10.1214/21-BA1287
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1109/MSP.2004.1267047
http://dx.doi.org/10.1109/JPROC.2007.896497
http://dx.doi.org/10.1109/18.910572
http://dx.doi.org/10.1109/ISIT.2007.4557602
http://dx.doi.org/10.3390/e23070807

Entropy 2023, 25,1138 23 of 23

33.

34.
35.

36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

49.
50.

51.
52.
53.
54.

55.

Murphy, K.; Weiss, Y.; Jordan, M.I. Loopy Belief Propagation for Approximate Inference: An Empirical Study. In Proceedings of
the Fifteenth Conference on Uncertainty in Artificial Intelligence, Stockholm, Sweden, 30 July-1 August 1999.

Winn, J.M. Variational Message Passing and Its Applications. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2004.
Dauwels, J.; Korl, S.; Loeliger, H.A. Expectation maximization as message passing. In Proceedings of the International Symposium
on Information Theory (ISIT), Adelaide, Australia, 4-9 September 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 583-586. [CrossRef]
Minka, T.P. Expectation Propagation for Approximate Bayesian Inference. In Proceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence, Seattle, WA, USA, 2-5 August 2001; Morgan Kaufmann Publishers Inc.: San Francisco, CA,
USA, 2001; pp. 362-369.

Yedidia, J.S.; Freeman, W.T.; Weiss, Y. Generalized Belief Propagation. Adv. Neural Inf. Process. Syst. 2000, 13, 689-695.

Reller, C. State-Space Methods in Statistical Signal Processing: New Ideas and Applications. Ph.D. Thesis, ETH Zurich, Zurich,
Switzerland, 2013.

Nguyen, HM.; van Erp, B.; Senoz, 1.; de Vries, B. Efficient Model Evidence Computation in Tree-structured Factor Graphs. In
Proceedings of the 2022 IEEE Workshop on Signal Processing Systems (SiPS), Rennes, France, 2-4 November 2022; pp. 1-6.
[CrossRef]

Winn, J.; Bishop, C.M. Variational Message Passing. |. Mach. Learn. Res. 2005, 6, 661-694.

Forney, G. Codes on graphs: Normal realizations. IEEE Trans. Inf. Theory 2001, 47, 520-548. [CrossRef]

Bishop, C.M. Pattern Recognition and Machine Learning; Information science and statistics; Springer: New York, NY, USA, 2006.
Friston, K.; Penny, W. Post hoc Bayesian model selection. Neurolmage 2011, 56, 2089-2099. [CrossRef]

Friston, K.; Parr, T.; Zeidman, P. Bayesian model reduction. arXiv 2019, arXiv:1805.07092.

Parr, T.; Friston, K.J. Generalised free energy and active inference. Biol. Cybern. 2019, 113, 495-513. [CrossRef]

Murphy, K.P. Machine Learning: A Probabilistic Perspective; Adaptive computation and machine learning series; MIT Press:
Cambridge, MA, USA, 2012.

van de Laar, T. Automated Design of Bayesian Signal Processing Algorithms. Ph.D. Thesis, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands, 2019.

Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A Fresh Approach to Numerical Computing. SIAM Rev. 2017, 59, 65-98.
[CrossRef]

Bagaev, D.; de Vries, B. Reactive Message Passing for Scalable Bayesian Inference. Sci. Program. 2023, 2023, 6601690. [CrossRef]
Bagaev, D.; van Erp, B.; Podusenko, A.; de Vries, B. ReactiveMP jl: A Julia package for reactive variational Bayesian inference.
Softw. Impacts 2022, 12, 100299. [CrossRef]

Cui, G,; Yu, X,; Iommelli, S.; Kong, L. Exact Distribution for the Product of Two Correlated Gaussian Random Variables. IEEE
Signal Process. Lett. 2016, 23, 1662-1666. [CrossRef]

Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic Variational Inference. J. Mach. Learn. Res. 2013, 14, 1303-1347.
Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight Uncertainty in Neural Networks. arXiv 2015, arXiv:1505.05424.
Haussmann, M.; Hamprecht, F.A.; Kandemir, M. Sampling-Free Variational Inference of Bayesian Neural Networks by Variance
Backpropagation. arXiv 2019. [CrossRef]

Ruder, S. An Overview of Multi-Task Learning in Deep Neural Networks. arXiv 2017, arXiv:1706.05098.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1109/ISIT.2005.1523402
http://dx.doi.org/10.1109/SiPS55645.2022.9919250
http://dx.doi.org/10.1109/18.910573
http://dx.doi.org/10.1016/ j.neuroimage.2011.03.062
http://dx.doi.org/10.1007/s00422-019-00805-w
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1155/2023/6601690
http://dx.doi.org/10.1016/j.simpa.2022.100299
http://dx.doi.org/10.1109/LSP.2016.2614539
http://dx.doi.org/10.48550/arXiv.1805.07654

	Introduction
	Related Work
	Background Material
	Forney-Style Factor Graphs
	Sum-Product Message Passing
	Scale Factors
	Variational Free Energy

	Universal Mixture Modeling
	A Variational Free Energy Decomposition for Mixture Models
	A Factor Graph Approach to Universal Mixture Modeling: A General Recipe
	A Factor Graph Approach to Universal Mixture Modeling: An Illustrative Example

	Model Comparison Methods
	Bayesian Model Averaging
	Bayesian Model Selection
	Bayesian Model Combination

	Experiments
	Verification Experiments
	Validation Experiments
	Mixed Models
	Voice Activity Detection


	Discussion
	Conclusions
	Appendix A. Proofs
	Appendix A.1. Proof of Theorem 1
	Appendix A.2. Proof of Theorem 2

	Appendix B. Derivations
	Appendix B.1. Derivation of Variational Free Energy Decomposition for Mixture Models
	Appendix B.2. Backward Message towards m
	Appendix B.3. Forward Message Towards s

	References

