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Abstract

This paper presents a partial state-feedback reduced-order switching predictive model designed to support
the next-generation lithography roadmap. The proposed approach addresses the trade-off between increas-
ing the number of measurements to improve overlay accuracy and the resulting challenges, including higher
measurement noise, reduced throughput and overlay/placement errors under uncertain operating conditions..
By minimizing (die-) placement errors and reducing unnecessary measurements, the method enhances sys-
tem performance and throughput. This solution employs a streamlined model with adaptive switching logic
to manage time-varying uncertainties induced by fluctuating operating conditions. The methodology is
implemented on a state-of-the-art lithographic scanner to mitigate the spatial-temporal dynamics of reticle
heating, serving as a representative industrial application. Reticle heating, which worsens with increased
throughput, introduces spatial-temporal distortions that directly degrade die placement accuracy. Experi-
mental results demonstrate significant improvements: placement errors are reduced by a factor of 2 — 3x,
and throughput is improved by 0.3seconds per wafer. Importantly, the method accounts for the fact that in-
creased throughput can exacerbate reticle heating, which directly impacts overlay performance. By actively
compensating for these thermomechanical effects, the proposed approach ensures that overlay accuracy
is maintained or improved — even under increased throughput conditions — highlighting its potential for
broader application in advanced lithographic systems, particularly in thermal and vibration control.
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1. INTRODUCTION

Current era is dominated by information tech-
nology, which is widely considered to have truly
begun with the creation of transistors followed
by the development of an integrated circuit (IC).
Since then, information technology has experi-
enced rapid exponential growth. Similarly, elec-
tronics has transitioned from using circuits made
of discrete components soldered to a printed circuit
board to ICs comprising billions of interconnected
transistors on a single chip. These chips provide al-
ternatives to traditionally large and costly discrete
optical devices and allow for new applications that
traditional techniques could not achieve. This ex-
pansion has been driven by exponential advances
in computing power, data storage, and communica-
tion. This remarkable growth is commonly referred
to as Moore’s law [1, 2], despite not being a physi-
cal law and serving more as an economic hypothe-
sis. For more than 50 years, Moore’s prediction has
acted as a guiding principle for the semiconductor
industry.

Photolithography is the most essential technique
in the entire semiconductor production process for
determining the scale at which chip elements can
be created. It is responsible for transferring the
layout of the circuit to the raw material, eventu-

ally transforming it into ICs using sophisticated

2Mobile number: +31 614611085
3Mobile number: +31 623016707

machines [3], as illustrated in Fig. 1. In pho-
tolithography, the illuminator generates a (deep/ex-
treme) ultraviolet light (DUV/EUV) beam, which
is manipulated through an optical system to inter-
act with a pattern on a quartz/zerodur plate, known
as the reticle, thus forming an image on a thin layer
of photosensitive material (resist) atop a circular
silicon substrate, the wafer. Typically, the mini-
mum feature size in this projection ranges from 3
[nm] to 500 [nm], achieving precision in the or-
der of subnanometers, commonly termed overlay
performance or placement errors [4]. Economi-
cally, high throughput is essential [5, 6, 7, 8], re-
quiring high operating speeds that introduce dis-
turbances that affect desired performance. To push
the limits in the lithography industry, a shift to-
ward model-based prediction and control has been
implemented to achieve high-performance goals
using raw data [9, 10, 11, 12]. However, these
systems can experience various disturbances that
cause non-linear behavior. The limitations of lin-
ear prediction and control, affected by the “water-
bed effect [13, 14, 15, 16],” have prompted a move-
ment towards nonlinear methods, including nonlin-
ear variable gain control [16], filters [15, 11, 10],
and switched controllers [13, 14]. While these
methods have improved time-domain performance,
they often neglect spatial-temporal dynamics that
are critical in lithography processes [11]. Despite

research in this field [17, 18], practical application
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Figure 1: An illustration showing an ASML Twinscan and the exposure process with a lens, reticle, and wafer from top to bottom
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of advanced models and control is limited due to
challenges such as system complexity and unpre-

dictability as mentioned below.

1. Mismatch between simulation assumptions
and real-time system behavior, such as the use

of full versus partial state feedback.

2. Sensitivity to uncertainties and external dis-
turbances, which can degrade control perfor-

mance.

3. Difficulty in ensuring global closed-loop sta-

bility during real-time operation.

4. Trade-offs between accurate physical model-
ing and model simplicity, which affect usabil-

ity and interpretability.

5. Concerns related to modularity, scalability,

and implementation cost, which impact the

feasibility of deployment.

The first three factors directly influence system
performance, specifically concerning overlay and
placement errors, while the fourth and fifth factors
serve as practical limitations that often restrict the
feasibility of suggested methods. Simply put, the
objective of this work is to attenuate placement er-
rors arising from these spatial-temporal behaviors
under a typical production situation (i.e., under un-
certainties), while simultaneously enhancing sys-
tem productivity.

Further to bridge the gap between theoreti-
cal control concepts and practical implementation
in lithography systems — while maintaining both
throughput and overlay performance — we propose
a partial state-feedback, reduced-order switching
predictive control approach. This method is de-

signed to effectively manage system uncertainties,



enhance performance, and remain globally stable,
computationally efficient, and intuitively imple-
mentable. The main contributions of this work are

as follows:

e To address challenges 1, 4, and 5, the use
of reduced-order linear time-invariant (LTT)
models derived from nominal large-scale sys-
tem dynamics (in this case a finite element
model) is proposed. By selectively de-

coupling only the essential spatial-temporal

dynamics, computational efficiency without

compromising model fidelity is ensured.

e To address challenge 2, a switching logic
mechanism is introduced that adapts to uncer-
tainties arising from physical effects, thereby

improving robustness.

e To address challenge 3, the proposed control
strategy is proven to ensure global uniform ul-
timate bounded asymptotic stability (GUAS),
supported by the small-gain theorem for non-

linear systems.

e To validate the proposed approach, it is im-
plemented on a state-of-the-art lithography
system, with a specific focus on mitigating
spatial-temporal distortions induced by reticle

heating.

The structure of this paper is organized as fol-
lows. Section 2 presents the problem formulation

and connects it to the key challenges outlined in the

Introduction regarding spatial-temporal dynamics
in lithography systems. Section 3 introduces the
proposed control methodology and analyzes its sta-
bility properties. Section 4 and 5 demonstrates the
effectiveness of the proposed approach through ex-
perimental validation on a state-of-the-art lithogra-
phy platform. Section 6 concludes the paper with
a summary of key findings, and Section 7 outlines

potential directions for future research.

2. Problem Formulation

As discussed in the Introduction, spatial-
temporal variations in optical lithography systems
can lead to sub-nanometer misalignments, which
directly degrade patterning precision. While mea-
suring these deformations during wafer exposure
can help mitigate their impact, doing so often re-
sults in reduced productivity. A critical example of
such deformation is reticle heating. Since the reti-
cle contains the mask that defines the chip layout,
any thermal-induced deformation of the reticle di-
rectly affects the accuracy of the pattern transferred
onto the wafer, thereby impacting the overall in-
tegrity of the integrated circuit (IC) production pro-
cess.

During standard production, light is absorbed
by the reticle as it progresses toward the lens, as
shown in Fig. 2. The reticle is usually positioned
on a clamp. The chrome absorber layer, which de-

lineates the pattern on the reticle, absorbs this light



during exposure, causing it to heat up; this phe-
nomenon is termed reticle heating (RH). Moreover,
depending on the specific layer that is exposed, the
reticle may feature a pellicle, serving as a protec-
tive barrier against contamination. In addition, heat
dissipation occurs from both the upper and lower
sides of the reticle to the surroundings, and there
is a cooling flow designed to mitigate the effects of
reticle heating. In typical manufacturing cycles, a
wafer batch is exposed using a reticle, commonly
referred to as a lot. Consequently, the reticle under-
goes frequent thermal cycling, as depicted in Fig.
3. During this process, the temperature of the ret-
icle rises upon exposure of each wafer (approxi-
mately tens of seconds), and it does not sufficiently
cool during the wafer exchange period (less than a
few seconds). This results in a significant temper-
ature gradient between the first and last wafers in
a lot. Overall, the global heating trend follows an
exponential progression over time, leading to dis-
tortions in the image projected onto the wafer. Ad-
ditionally, once a lot is fully processed, not only
do the wafers need replacement with a new batch,
but the reticles do as well. This replacement in-
volves unclamping and reclamping the reticle from
the reticle stage, introducing variability that alters
the thermomechanical boundary conditions of reti-
cle heating dynamics (RH). As shown in Fig. 3, RH
physics also demonstrates spatial-temporal charac-

teristics [19, 20, 21, 22]. The extent of these dom-

inant spatial-temporal distortions presents a sig-
nificant challenge, particularly for high-throughput
and high-performance systems. The primary focus
will be on placement/overlay errors in horizontal
direction and the vertical direction will be ignored

for simplicity.

2.1. Control Objective

Having discussed the background of the physical
system, in this subsection the control objective will
be discussed. Let x € R" represent the system state
(e.g., the predicted full reticle deformation, u, €
R™ denote the exogenous input (e.g., heat source),
and z € R? be the output associated with placement
error. The control objective is to minimize z, such

that

1. the predicted misalignment remains bounded

under uncertainties:

llzll < €, (e.g., sub-nanometer). (D

The measurements available, y € R, repre-
sent sparse sensor data collected (as shown in
Fig. 4) during alignment and the associated
feedback to the model as uy, typically avail-
able only at start of each wafer. This partial

feedback is used to estimate and update x.

2. measuring each alignment marks can take up
to 0.3 seconds. Therefore, an additional ob-
jective is to reduce measurement time by se-

lectively skipping measurements on selected
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Figure 3: Spatial-temporal dynamics of the reticle heating.

marker sets out of the full marker set in as
shown in Fig. 4 — this would include edge
markers but also includes skipping top and/or
bottom row. Further, using the models to pre-
dict the deformation based on partial feed-
back, while simultaneously improving place-

ment accuracy.

2.2. State-space formulation

Now that the sparse measurements from align-
ment sensors are taken in feedback and that the
model has to deal with uncertainties, the state-

space is formulated as follows:

Xi = Aix,' + Biue + Bfuf,

A

P =up =T()y, (2)

u; = C,'x,'.
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Figure 4: Exposure layout with varying alignment marks; ret-

icle is exposed in the image area.

where the index i depends on the selected model
per uncertainty classification. Associated variables

are defined as:
e x;: internal deformation state
e u,: external heating profile
e uy: feedback signal from alignment sensor
e z: actual placement error

e ['(.): converts sparse feedback measurements
into an appropriate dense layout in the same
density as z, using application-specific inputs

(like image-area etc.)

e y: sensor measurements available at runtime

(subset of z)

e y;: predicted placement error that acts as a
correction signal mimicking the physics (in

this case the reticle heating)

e A: is the uncertainty that occurs in a real-time
environment (due to changes in boundary /op-

erating conditions etc.)

e (;: represents the output mapping from x;
to u;. In the context of reticle heating ap-
plication, this mapping serves as a trans-
formation from temperature to deformation,
thereby, comprising the mechanical boundary

conditions.

and a description of such a system as shown in Fig.

5 falls under the generalised plant framework [23].

Figure 5: Simplified depiction of a partial state-feedback
model in a generalized plant framework. Note that the x de-

notes the LFT operator.

3. DESIGN OF STATE-
FEEDBACK REDUCED-ORDER
SWITCHING MODELS

PARTIAL

To address the problem of spatial-temporal be-
havior introduced in Section 2, this section begins
with a step-by-step design philosophy in Section
3.1 and covers the closed-loop dynamics stability

analysis in Section 3.2.



3.1. STRUCTURE OF THE PROPOSED
METHODOLOGY

To implement the proposed methodology in real

time, four main steps are required:

Step 1 — Integrating the Scheduler ® and Closing
the Feedback Loop. Examine the closed-loop con-
trol configuration depicted in Fig. 6, where the
plant # functions in response to an external in-
put u.. This input is affected by a time-dependent
uncertainty A through an uncertain input channel
up. The setup includes a reduced-order predictive
switching model 9 that uses partial state-feedback
based on measured events y and aims at the de-
sired result z. The predictive model also incorpo-
rates the scheduler @, which employs the history
describing current and previous events, represented
as 7 € {y,u.,up} YT € {0,...,1,}, to alternate be-
tween the applicable models. The primary focus is
on history-based switching, which selects the ap-
propriate models using available information from
Yy, Ue, Up, as opposed to variable-gain control based
that only changes the gain solely based on the mag-
nitude of the feedback signal [24, 25, 26, 16, 27]
or its product with the signal and its derivative
[28, 29, 30]. The information-based switching
strategy is used because of its event driven na-
ture [31, 32]. Adjusting the control based on other
means would complicate the design. Instead, his-
torical data .# is used which is always available

and its often inherent to physics of spatial-temporal

UA y
Ue P 4
U; y

Figure 6: Simplified depiction of a partial state-feedback
model with order reduction and switching in a closed-loop

system.

system, to guide model selection efficiently. In or-
der to incorporate this in the proposed scheme, the

scheduler @ is chosen as follows:
o = {M,Lﬁ (S %,‘Vi [S Z} 3)

Definition 3.1. An operating condition, referred to
as a regime &%, is defined by the integration of a
feedback signal y, an external signal «,, and uncer-
tainty us. The regime %; for i = 0 is identified as
the nominal regime and is associated with a nomi-
nal model M. Conversely, fori # 0, it is described
as the uncertain regime, which involves a set of un-

certain models M;cz\ (o).

Consider an example using (3) with two distinct
regimes: the nominal regime %y and its associ-
ated model My, and another regime %, identified
through .. In this scenario, within regime %, the
set {u., up} € 0. Initially, with model My, the tar-
get performance z is achieved optimally when the

system operates within regime %. However, if the



system transitions to regime %) due to the impact
of y, the optimal performance of z is not maintained
unless the scheduler ® engages model M, appro-
priate for regime Z;. It is important to note that
the choice of the nominal model greatly affects the
performance of z. Thus, by effectively configuring
the scheduler ® and selecting the nominal model
My, the advantages are combined to ensure opti-

mal nominal and robust performance.

Step 2 — Formulation of Nominal Reduced-
Order Model. Partial differential equations gov-
ern spatial-temporal systems, as noted in [33, 18,
34], and are typically derived using finite-element
models (FEM) or computational fluid dynamics
(CFD) models. These large-scale models are often
too complex for real-time application due to their
high dimensionality (often exceeding 1¢°) neces-
sary for precise accuracy [11]. As an illustration,
one method detailed in [35] runs a dynamic FEM
alongside the physical system, providing real-time
forecasts of the nominal spatial-temporal dynam-
ics. This approach presents numerous modeling
challenges, not only from theoretical and experi-
mental standpoints, but also in ensuring robust per-
formance.

To address this issue, model-order reduction
techniques have been introduced, such as Balanced
Truncation [36], Krylov’s Subspace Methods [37],
and the Proper Orthogonal Decomposition (POD)

method [38]. These techniques are prevalent in var-

ious engineering domains. However, even though
they decrease the dimensions of the FEM / CFD
models, they often lose physical interpretability
and continue to lack computational efficiency [18].
To achieve this, a parametric reduction is applied
leveraging a Krylov’s moment-matching method
[39] that maintains the original physical interpre-
tation of the reduced-order model. This approach

can be expressed as ,

X; = A;x; + Biu,,
M; = 4)
u; = Cix;.

Here, u; in (4) is the estimated behavior of the un-
derlying process, as shown in Fig. 6. The aim is
to ensure that ||z|]| — O and its also important to ob-
serve that in equation (3), M denotes the reduced-
order model corresponding to different regimes %
of operating conditions. Upon the scheduler’s de-
tection of a regime shift, the model is updated, and
the corresponding internal states are transferred

from M; to M.

Step 3 — Using the partial feedback signal y to en-
sure that the model M; is up-to-date. In industrial
settings, complete state feedback often demands
considerable time. Consequently, what is typically
available is partial feedback, characterized by be-
ing limited and generally representing only a sub-
set of the overall layout of physical effects. As a
result, models deployed in such scenarios must ac-

commodate these constraints. To integrate partial



state-feedback into the reduced-order models dis-
cussed in the previous section, (4) is enhanced as
in equation (2).

This is achieved by explicitly incorporating an
input channel By for feedback, with y represent-
ing the actual feedback measurements. In addi-
tion, in (2), a mapping function I'(.) is introduced.
This function is designed to convert sparse feed-
back measurements into a suitable dense layout,
using application-specific inputs. It is important to
note that the variable u; in (4) and (2) is intention-
ally defined as such. The key lies in the definition
of the information set .#, which is passed into the
functional @((le ). This set comprises the exoge-
nous input u,, the measured output y, and the un-
certainty term up. To reformulate the problem in
the 9-gang/generalized plant framework [23], the
partial output measurement y is incorporated into
the feedback loop, and the information set .# is
treated as a variable within the functional represen-

tation of P.

Step 4 — Transforming reduced-order models M; to
incorporate uncertainty. To efficiently manage un-
certainties as highlighted in Section 3.1, the frame-
work is divided into a nominal model, denoted
as My, alongside a collection of uncertain mod-
els, represented by M. By employing a center-

ing method [23], these models are expressed in the
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form:

P(D|.7) = My + My = My + Ap(DL.9),
(5)

where m = arg max ©.
m

Here, M, serves as the nominal model, while A,,(.)
represents the set of uncertain dynamical models.
It is apparent from the equation (5) that the col-
lection of models belongs to the category of Lur’e-
type systems [40], which integrate both a linear dy-
namical component and a nonlinear/uncertain one
(a Lur’e-type system description).

Furthermore, this approach ensures that the
uncertain dynamics is bounded, specifically
[1An(Dllo € R, and modulated by the scheduler ©
according to (3) [31, 32]. Finally, the scheduler

mechanism can explicitly defined as follows:
ieZ
Q= \if Zi(I) > R[(Ir), Vj € Loyt € Ra

F() € {y, ue, up}.

(6)

Considering the reticle heating application in
lithography system, the reticle transitions between
various subsystems — such as the exposure stage,
metrology station, and reticle handler. Each of
these locations introduces different thermal and
mechanical conditions due to variations in airflow,

illumination, and mechanical contact. These tran-

sitions affect the system’s behavior and, conse-



quently, the control strategy. In this context, the
regime Z# can be defined based on the historical
and real-time information .# € {y,u,,ua}. Here,
y is a measured artefacts and what is known from
sparse measurements, u, could be environmen-
tal or equipment-related inputs (e.g., stage veloc-
ity, chuck temperature), and finally ua can be de-
tected changes in system configuration or operat-
ing mode. For example, when the reticle is moved
from the exposure stage to a non-exposure zone
(e.g., for inspection or handling), the scheduler ®
may detect a shift in .#(.) and classify the system as
entering a new regime %,, prompting a switch to a
different model or control strategy. This allows the
system to adapt to location-specific boundary con-
ditions without requiring direct measurement at ev-
ery step [31, 32]. Therefore, The specific definition
of the regime Z is application-dependent and will
vary based on the context, objectives, and charac-
teristics of the input signals .#(.) € {y, u., up}. As
such, Z should be designed to reflect the perfor-
mance criteria or priorities relevant to the particular

system under consideration.

3.2. STABILITY ANALYSIS

To conduct a stability analysis of the dynamic
behavior influenced by the proposed approach,
Fig. 6, (2) and (5) is utilized, along with the
generalized-plant framework as defined in [23].

The the closed-loop system is transformed in to

a Lur’e-type system, illustrated in Fig. 7. The
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closed-loop dynamics can be minimally realized by
integrating the uncertainty with the nominal pre-
dictive model, employing upper and lower linear-
fractional-transformations (LFT) as outlined re-

spectively in [23]:

X
x| |A B, B B
Ue
=l o o ||| W
u
o e o oy ||
u;
;i = Ap(D15), (7b)
with the uncertainty defined as:
XA = AAX+ BAuf,
A= up = T()y, (8)

up = Cpaxp + DAI/tf.

U, Z
—

Ax P x M,

Figure 7: Schematics of the proposed methodology in a Lur’e-

type system.

Assumption 3.1. The closed-loop dynamics of the
actual plant, when compensated using the nomi-
nal reduced-order partial state-feedback denoted as
A x P * M,, fits within the category of globally
uniformly ultimately bounded asymptotically sta-

ble systems.



Let us consider x* to be the equilibrium point
of (7) such that ||z]|— 0. It is important to note
that x* is the sole equilibrium point with the prop-
erty that ||z]|= 0, because the minimum state-space
representation in (7) ensures observability. This
means that the observability matrix is of full rank,
and hence, the system of equations z = 0,9z/dt =
0,...,(0" '2)/(0" 1) = 0 yields a unique solution
x*, when ||z]|— 0. Using the small-gain theorem as
specified in [13, 24, 41] together with the stability
theorem presented in [16], the global uniform ulti-
mate bounded asymptotic stability can be guaran-
teed. As a result, under such conditions, it is possi-
ble to precisely forecast the dynamics of the plant,
which implies that ||z|]| will be reduced to zero for

all r € R.

4. LITHOGRAPHY SYSTEM APPLICA-
TION: RETICLE HEATING

In this section, the proposed methodology will
be implemented on a high-precision industrial op-
tical system, specifically an ASML Twinscan, as
shown in Fig. 1 for the reticle heating application
as shown in Fig. 2 in the problem formulation sec-
tion (see, Section 2). Before proceeding to discuss
the experimental results in Sections 4.2, first the
stability conditions are established in Section 3.2,

as detailed in Section 4.1.
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4.1. STABILITY CONDITIONS

The reticle is constructed from physical materi-
als and during its heating process, energy absorp-
tion results in deformations. Thus, reticle heat-
ing displaying unbounded dynamics is practically
unlikely. Applying similar reasoning, analogous
conclusions for the nominal model M,, is drawn
and the specific models that represent the uncer-
tain dynamics characterized by A,,(®|.#). Further-
more, utilizing the design methodology described
in Section 3.1, 3 moments are identified that de-
scribe both the nominal and uncertain reticle heat-
ing models. Consequently, it is reliable to say that
the dynamics of the actual system and the nominal
model in a closed loop, namely, A x P x M,,, com-
ply with the assumption 3.1. In addition, the uncer-
tain model definition given by (7) is also adopted.
Therefore, as demonstrated in Section 3.2, all nec-
essary conditions are met to ensure that the equilib-
rium point x* (where ||z|| = 0), reached by applying
the proposed method (7), is GUAS. B

4.2. EXPERIMENTAL RESULTS

To evaluate and measure how the proposed
method performs with respect to throughput and
overlay placement errors, a series of real-time mea-
surements is obtained, as depicted in Fig. 8. In this
experiment, initially, during the regime labeled as
R, the heating of the reticle shows standard behav-
ior (without uncertainty) and gradually heats up to

its saturation level. Subsequently, the reticle used



in R, is released, transitioning to a new regime Rj,
where different dynamics and boundary conditions
apply. Consequently, when the reticle returns for
a second series of exposures and is re-clamped,
it tends to display the dynamics characteristic of
R, due to the altered boundary conditions resulting

from the re-clamping process. Initially, through-

Re

e
o~

/

Deformations [a.u]

T

Time/Wafers [a.u]

Figure 8: Experiment triggering nominal and uncertain condi-

tions.

put performance is evaluated relative to the current
approach illustrated in Fig. 4, which utilizes top-
bottom-edge alignment marks as detailed in [17],
with measurements conducted for each wafer. Typ-
ically, additional alignments incur time costs as
a result of the requirement for physical measure-
ments. In this scenario, each measurement takes
approximately 0.3s per wafer. By adopting the
proposed methodology, a spatial-temporal predic-
tion model to characterize the RH across the en-
tire reticle is implemented. Leveraging this model

allows us to bypass the need for edge-alignment

marks, substituting measurements with predictive

13

estimates. Specifically, the measurements from
top-bottom alignment marks (see Fig. 4) is used
and combined with the models discussed in Section
3 to predict z and delineate the RH physics through-
out the reticle. Consequently, this approach saves
0.3s per wafer, which can lead to an increase of up
to 7 wafers per hour, a significant improvement for
throughput.

In Fig. 9, a comparative analysis of the over-
lay placement error performance is presented. This
analysis is not only conducted against the current
standard [17], but also against a linear version of
the proposed approach that solely relies on the
nominal model M, under all conditions. This lat-
ter comparison highlights the critical need for care-
ful application of model-based predictions in in-
dustrial scenarios, as misuse can lead to significant
performance drawbacks. Additionally, an experi-
ment detailed in Fig. 8 was conducted over 2 lots,
with each lot comprising of 16 wafers. It is ob-
servable that the placement error associated with
the proposed methodology exhibits greater stability
and improved accuracy in both the x — y direction
compared to the current method, under both nomi-
nal and uncertain conditions. Furthermore, the lin-
ear counterpart of the proposed technique experi-
ences up to 3x reduction in performance due to un-
known uncertainties. Notably, with the adoption of
the proposed approach, the performance of the first

2 wafers in the x — y direction shows a 2x improve-
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Figure 9: Placement error measurement in x — y to compare the status-quo (red) against the proposed methodology (black) and its

linear variant (blue).

ment over the conventional method. Additionally,
the proposed methodology achieves performance
that is either comparable or superior even with-
out the need for measuring additional alignment
marks. Consequently, while increasing throughput
by up to 7 wafers per hour, the overlay placement

errors remain stable and enhanced.

Remark 4.1. In the context of reticle heating, I" en-
codes the spatial relationship between alignment
mark coordinates and the predicted heating loca-
tions, effectively bridging the gap between partial
observations and the full-state input required for
control. This design enables the model to leverage
available feedback while accounting for the spatial
sparsity of the measurements. Given this choice, it
is good to note that the input channel By with re-
spect to u s reduces essentially to an identity matrix.
This reflects a direct mapping between the feed-

back input u; and the corresponding state compo-
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nents, which is appropriate given the structure of
the reduced-order model and the nature of the par-
tial feedback available in this application (with re-

spect to reticle heating)

Remark 4.2. In the proposed switching predic-
tive control framework, u is included as part of
the switching input set. However, in the specific
case of reticle heating, us represents a system-
generated signal associated with events such as ret-
icle reclamping. This signal is not directly mea-
sured; rather, its occurrence is inferred approxi-
mately based on system behavior. The timing of
such events is only known retrospectively and with
limited precision. Despite this, the framework is
designed to handle such uncertainty by leveraging
historical patterns using other signals from .# and
partial observations to infer the active regime, en-
suring robustness even when certain inputs like ua

are not explicitly available in real time.



S. DISCUSSIONS

In the context of customer interactions with
these system during IC production, users may not
exclusively utilize the image-area depicted in Fig.
4; they might opt for alternative image-areas as il-
lustrated in Fig. 10. The proposed approach is de-
signed to be robust and remains applicable without
the necessity for redesign or retuning despite these
on-the-fly layer changes. To demonstrate its effi-
cacy, when conducting the same experiment with a
reduced image-area, as illustrated in Fig. 10, Fig.
11 shows that the proposed methodology has im-
proved the performance of both the nominal and
uncertain regimes by a factor of 3x, while main-
taining consistency. In contrast, similar to the pre-
vious findings, the linear version of the proposed
method encounters significant challenges, leading
to a performance decline of 2 — 3x compared to
both the status quo and the proposed methodology.

This demonstrates that the proposed approach al-
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Figure 10: Schematic representation of small-exposure layout.
lows overlay placement errors to be comparable to

or better than existing methods, while simultane-

ously enhancing system throughput. Additionally,
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it illustrates how state-of-the-art technologies can
be integrated into industrial applications without
sacrificing resilience, simplicity, and effectiveness.
In conclusion, it is important to emphasize the in-
tuitive nature of the proposed methodology. Linear
and uncertain models can be employed via first-
principle-based FEM with model reduction and
data-driven system identification [42], respectively.
Importantly, there are no limitations on the order
of the prediction models considered, and only out-
put measurements are utilized. Furthermore, the
GUAS of the equilibrium point is ensured and is
naturally integrated into the design of the proposed

methodology.
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Figure 11: Placement error measurement in x — y for a smaller image area (see, Fig. 10).

6. CONCLUSIONS

In this study, a partial state-feedback reduced-
order switching predictive model is designed to
support the future lithography roadmap. This work
addresses the balance between the demand for in-
creased measurements, noise, and overlay errors
(both within and across multiple wafers) under un-
certain operating conditions. This approach aims
to navigate these trade-offs more effectively. This
is accomplished by employing reduced-order lin-
ear models that can transition among various mod-
els based on a scheduling logic derived from his-
torical data, thus handling time-varying uncertain-
ties triggered by operating conditions. To address
measurement configurations and maintain practical
relevance, a partial state-feedback framework up-
dates the model’s internal states using these mea-
surements. Sufficient criteria for global uniform ul-
timate bounded asymptotic stability through time-

regularization techniques is also introduced. A
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generic execution method automates machine-in-
the-loop initialization and execution of the method-
ology. The strategy is applied to a cutting-
edge lithography scanner to mitigate the spatial-
temporal dynamics of reticle heating. Experimen-
tally significant improvements are achieved, with
placement errors reduced by up to 2 — 3x and
throughput enhanced by 0.3 [s] per wafer in all
nominal and uncertain operating conditions. These
results are compared to the current standard and the

use of only the linear component of the proposed

method.

7. FUTURE OUTLOOK

As previously mentioned in this manuscript, the
relentless demand for high system productivity,
coupled with the requirement to maintain equiva-
lent or superior overlay accuracy and placement,
influences and imposes demands on the enabling

methodologies. These models must, in essence, be



resilient and capable of functioning in the midst of
uncertainties. There are several key components to
consider: 1) A unified predictive framework: al-
though the main focus has been the reticle-heating
subsystem, the entire assembly also experiences
spatial and temporal variations across both lenses
and wafers; 2) achieving enhanced throughput in-
volves identifying and removing unnecessary mea-
surements. Hence, a seamless integration of pre-
diction, learning, and intelligence can allow mea-
surement reductions without compromising over-
all system efficiency [43, 44, 45]; and lastly, 3)
making plausible assumptions is crucial for prac-
tical deployment in industrial settings. The greater
the disparity, the more challenging it becomes to
reconcile theoretical concepts with practical ap-
plications. Consequently, the need is effectively
summarized as the “development of approaches
and techniques for designing adaptable and robust
models for high-performance lithographic systems
functioning in uncertain conditions while main-
taining simplicity.” In conclusion, the authors an-
ticipate that the findings reported herein will moti-
vate further exploration and application of nonlin-
ear and/or learning models in real-time systems to
enhance performance and bridge the gap between

theoretical insights and practical implementation.
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