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Abstract

This paper presents a partial state-feedback reduced-order switching predictive model designed to support

the next-generation lithography roadmap. The proposed approach addresses the trade-off between increas-

ing the number of measurements to improve overlay accuracy and the resulting challenges, including higher

measurement noise, reduced throughput and overlay/placement errors under uncertain operating conditions..

By minimizing (die-) placement errors and reducing unnecessary measurements, the method enhances sys-

tem performance and throughput. This solution employs a streamlined model with adaptive switching logic

to manage time-varying uncertainties induced by fluctuating operating conditions. The methodology is

implemented on a state-of-the-art lithographic scanner to mitigate the spatial-temporal dynamics of reticle

heating, serving as a representative industrial application. Reticle heating, which worsens with increased

throughput, introduces spatial-temporal distortions that directly degrade die placement accuracy. Experi-

mental results demonstrate significant improvements: placement errors are reduced by a factor of 2 − 3x,

and throughput is improved by 0.3seconds per wafer. Importantly, the method accounts for the fact that in-

creased throughput can exacerbate reticle heating, which directly impacts overlay performance. By actively

compensating for these thermomechanical effects, the proposed approach ensures that overlay accuracy

is maintained or improved – even under increased throughput conditions – highlighting its potential for

broader application in advanced lithographic systems, particularly in thermal and vibration control.
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1. INTRODUCTION

Current era is dominated by information tech-

nology, which is widely considered to have truly

begun with the creation of transistors followed

by the development of an integrated circuit (IC).

Since then, information technology has experi-

enced rapid exponential growth. Similarly, elec-

tronics has transitioned from using circuits made

of discrete components soldered to a printed circuit

board to ICs comprising billions of interconnected

transistors on a single chip. These chips provide al-

ternatives to traditionally large and costly discrete

optical devices and allow for new applications that

traditional techniques could not achieve. This ex-

pansion has been driven by exponential advances

in computing power, data storage, and communica-

tion. This remarkable growth is commonly referred

to as Moore’s law [1, 2], despite not being a physi-

cal law and serving more as an economic hypothe-

sis. For more than 50 years, Moore’s prediction has

acted as a guiding principle for the semiconductor

industry.

Photolithography is the most essential technique

in the entire semiconductor production process for

determining the scale at which chip elements can

be created. It is responsible for transferring the

layout of the circuit to the raw material, eventu-

ally transforming it into ICs using sophisticated

2Mobile number: +31 614611085
3Mobile number: +31 623016707

machines [3], as illustrated in Fig. 1. In pho-

tolithography, the illuminator generates a (deep/ex-

treme) ultraviolet light (DUV/EUV) beam, which

is manipulated through an optical system to inter-

act with a pattern on a quartz/zerodur plate, known

as the reticle, thus forming an image on a thin layer

of photosensitive material (resist) atop a circular

silicon substrate, the wafer. Typically, the mini-

mum feature size in this projection ranges from 3

[nm] to 500 [nm], achieving precision in the or-

der of subnanometers, commonly termed overlay

performance or placement errors [4]. Economi-

cally, high throughput is essential [5, 6, 7, 8], re-

quiring high operating speeds that introduce dis-

turbances that affect desired performance. To push

the limits in the lithography industry, a shift to-

ward model-based prediction and control has been

implemented to achieve high-performance goals

using raw data [9, 10, 11, 12]. However, these

systems can experience various disturbances that

cause non-linear behavior. The limitations of lin-

ear prediction and control, affected by the “water-

bed effect [13, 14, 15, 16],” have prompted a move-

ment towards nonlinear methods, including nonlin-

ear variable gain control [16], filters [15, 11, 10],

and switched controllers [13, 14]. While these

methods have improved time-domain performance,

they often neglect spatial-temporal dynamics that

are critical in lithography processes [11]. Despite

research in this field [17, 18], practical application
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Figure 1: An illustration showing an ASML Twinscan and the exposure process with a lens, reticle, and wafer from top to bottom

[3].

of advanced models and control is limited due to

challenges such as system complexity and unpre-

dictability as mentioned below.

1. Mismatch between simulation assumptions

and real-time system behavior, such as the use

of full versus partial state feedback.

2. Sensitivity to uncertainties and external dis-

turbances, which can degrade control perfor-

mance.

3. Difficulty in ensuring global closed-loop sta-

bility during real-time operation.

4. Trade-offs between accurate physical model-

ing and model simplicity, which affect usabil-

ity and interpretability.

5. Concerns related to modularity, scalability,

and implementation cost, which impact the

feasibility of deployment.

The first three factors directly influence system

performance, specifically concerning overlay and

placement errors, while the fourth and fifth factors

serve as practical limitations that often restrict the

feasibility of suggested methods. Simply put, the

objective of this work is to attenuate placement er-

rors arising from these spatial-temporal behaviors

under a typical production situation (i.e., under un-

certainties), while simultaneously enhancing sys-

tem productivity.

Further to bridge the gap between theoreti-

cal control concepts and practical implementation

in lithography systems – while maintaining both

throughput and overlay performance – we propose

a partial state-feedback, reduced-order switching

predictive control approach. This method is de-

signed to effectively manage system uncertainties,
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enhance performance, and remain globally stable,

computationally efficient, and intuitively imple-

mentable. The main contributions of this work are

as follows:

• To address challenges 1, 4, and 5, the use

of reduced-order linear time-invariant (LTI)

models derived from nominal large-scale sys-

tem dynamics (in this case a finite element

model) is proposed. By selectively de-

coupling only the essential spatial-temporal

dynamics, computational efficiency without

compromising model fidelity is ensured.

• To address challenge 2, a switching logic

mechanism is introduced that adapts to uncer-

tainties arising from physical effects, thereby

improving robustness.

• To address challenge 3, the proposed control

strategy is proven to ensure global uniform ul-

timate bounded asymptotic stability (GUAS),

supported by the small-gain theorem for non-

linear systems.

• To validate the proposed approach, it is im-

plemented on a state-of-the-art lithography

system, with a specific focus on mitigating

spatial-temporal distortions induced by reticle

heating.

The structure of this paper is organized as fol-

lows. Section 2 presents the problem formulation

and connects it to the key challenges outlined in the

Introduction regarding spatial-temporal dynamics

in lithography systems. Section 3 introduces the

proposed control methodology and analyzes its sta-

bility properties. Section 4 and 5 demonstrates the

effectiveness of the proposed approach through ex-

perimental validation on a state-of-the-art lithogra-

phy platform. Section 6 concludes the paper with

a summary of key findings, and Section 7 outlines

potential directions for future research.

2. Problem Formulation

As discussed in the Introduction, spatial-

temporal variations in optical lithography systems

can lead to sub-nanometer misalignments, which

directly degrade patterning precision. While mea-

suring these deformations during wafer exposure

can help mitigate their impact, doing so often re-

sults in reduced productivity. A critical example of

such deformation is reticle heating. Since the reti-

cle contains the mask that defines the chip layout,

any thermal-induced deformation of the reticle di-

rectly affects the accuracy of the pattern transferred

onto the wafer, thereby impacting the overall in-

tegrity of the integrated circuit (IC) production pro-

cess.

During standard production, light is absorbed

by the reticle as it progresses toward the lens, as

shown in Fig. 2. The reticle is usually positioned

on a clamp. The chrome absorber layer, which de-

lineates the pattern on the reticle, absorbs this light
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during exposure, causing it to heat up; this phe-

nomenon is termed reticle heating (RH). Moreover,

depending on the specific layer that is exposed, the

reticle may feature a pellicle, serving as a protec-

tive barrier against contamination. In addition, heat

dissipation occurs from both the upper and lower

sides of the reticle to the surroundings, and there

is a cooling flow designed to mitigate the effects of

reticle heating. In typical manufacturing cycles, a

wafer batch is exposed using a reticle, commonly

referred to as a lot. Consequently, the reticle under-

goes frequent thermal cycling, as depicted in Fig.

3. During this process, the temperature of the ret-

icle rises upon exposure of each wafer (approxi-

mately tens of seconds), and it does not sufficiently

cool during the wafer exchange period (less than a

few seconds). This results in a significant temper-

ature gradient between the first and last wafers in

a lot. Overall, the global heating trend follows an

exponential progression over time, leading to dis-

tortions in the image projected onto the wafer. Ad-

ditionally, once a lot is fully processed, not only

do the wafers need replacement with a new batch,

but the reticles do as well. This replacement in-

volves unclamping and reclamping the reticle from

the reticle stage, introducing variability that alters

the thermomechanical boundary conditions of reti-

cle heating dynamics (RH). As shown in Fig. 3, RH

physics also demonstrates spatial-temporal charac-

teristics [19, 20, 21, 22]. The extent of these dom-

inant spatial-temporal distortions presents a sig-

nificant challenge, particularly for high-throughput

and high-performance systems. The primary focus

will be on placement/overlay errors in horizontal

direction and the vertical direction will be ignored

for simplicity.

2.1. Control Objective

Having discussed the background of the physical

system, in this subsection the control objective will

be discussed. Let x ∈ Rn represent the system state

(e.g., the predicted full reticle deformation, ue ∈

Rm denote the exogenous input (e.g., heat source),

and z ∈ Rp be the output associated with placement

error. The control objective is to minimize z, such

that

1. the predicted misalignment remains bounded

under uncertainties:

‖z‖ ≤ ε, (e.g., sub-nanometer). (1)

The measurements available, y ∈ Rq, repre-

sent sparse sensor data collected (as shown in

Fig. 4) during alignment and the associated

feedback to the model as u f , typically avail-

able only at start of each wafer. This partial

feedback is used to estimate and update x.

2. measuring each alignment marks can take up

to 0.3 seconds. Therefore, an additional ob-

jective is to reduce measurement time by se-

lectively skipping measurements on selected
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Figure 2: Artistic impression of reticle heating physics.
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Figure 3: Spatial-temporal dynamics of the reticle heating.

marker sets out of the full marker set in as

shown in Fig. 4 — this would include edge

markers but also includes skipping top and/or

bottom row. Further, using the models to pre-

dict the deformation based on partial feed-

back, while simultaneously improving place-

ment accuracy.

2.2. State-space formulation

Now that the sparse measurements from align-

ment sensors are taken in feedback and that the

model has to deal with uncertainties, the state-

space is formulated as follows:

P̂ :=


ẋi = Aixi + Biue + B f u f ,

u f = Γ(.)y,

ui = Cixi.

(2)
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Figure 4: Exposure layout with varying alignment marks; ret-

icle is exposed in the image area.

where the index i depends on the selected model

per uncertainty classification. Associated variables

are defined as:

• xi: internal deformation state

• ue: external heating profile

• u f : feedback signal from alignment sensor

• z: actual placement error

• Γ(.): converts sparse feedback measurements

into an appropriate dense layout in the same

density as z, using application-specific inputs

(like image-area etc.)

• y: sensor measurements available at runtime

(subset of z)

• ui: predicted placement error that acts as a

correction signal mimicking the physics (in

this case the reticle heating)

• ∆: is the uncertainty that occurs in a real-time

environment (due to changes in boundary /op-

erating conditions etc.)

• Ci: represents the output mapping from xi

to ui. In the context of reticle heating ap-

plication, this mapping serves as a trans-

formation from temperature to deformation,

thereby, comprising the mechanical boundary

conditions.

and a description of such a system as shown in Fig.

5 falls under the generalised plant framework [23].

∆ ? P

P̂

zue

yui

Figure 5: Simplified depiction of a partial state-feedback

model in a generalized plant framework. Note that the ? de-

notes the LFT operator.

3. DESIGN OF PARTIAL STATE-

FEEDBACK REDUCED-ORDER

SWITCHING MODELS

To address the problem of spatial-temporal be-

havior introduced in Section 2, this section begins

with a step-by-step design philosophy in Section

3.1 and covers the closed-loop dynamics stability

analysis in Section 3.2.
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3.1. STRUCTURE OF THE PROPOSED

METHODOLOGY

To implement the proposed methodology in real

time, four main steps are required:

Step 1 – Integrating the Scheduler Φ and Closing

the Feedback Loop. Examine the closed-loop con-

trol configuration depicted in Fig. 6, where the

plant P functions in response to an external in-

put ue. This input is affected by a time-dependent

uncertainty ∆ through an uncertain input channel

u∆. The setup includes a reduced-order predictive

switching model P̂ that uses partial state-feedback

based on measured events y and aims at the de-

sired result z. The predictive model also incorpo-

rates the scheduler Φ, which employs the history

describing current and previous events, represented

as I ∈ {y, ue, u∆} ∀T ∈ {0, . . . , tn}, to alternate be-

tween the applicable models. The primary focus is

on history-based switching, which selects the ap-

propriate models using available information from

y, ue, u∆, as opposed to variable-gain control based

that only changes the gain solely based on the mag-

nitude of the feedback signal [24, 25, 26, 16, 27]

or its product with the signal and its derivative

[28, 29, 30]. The information-based switching

strategy is used because of its event driven na-

ture [31, 32]. Adjusting the control based on other

means would complicate the design. Instead, his-

torical data I is used which is always available

and its often inherent to physics of spatial-temporal

P

P̂(Φ|I )

zue

∆

y

yu∆

ui

Figure 6: Simplified depiction of a partial state-feedback

model with order reduction and switching in a closed-loop

system.

system, to guide model selection efficiently. In or-

der to incorporate this in the proposed scheme, the

scheduler Φ is chosen as follows:

Φ = {Mi|I ∈ Ri∀i ∈ Z} (3)

Definition 3.1. An operating condition, referred to

as a regime R, is defined by the integration of a

feedback signal y, an external signal ue, and uncer-

tainty u∆. The regime Ri for i = 0 is identified as

the nominal regime and is associated with a nomi-

nal modelM0. Conversely, for i , 0, it is described

as the uncertain regime, which involves a set of un-

certain modelsMi∈Z\{0}.

Consider an example using (3) with two distinct

regimes: the nominal regime R0 and its associ-

ated modelM0, and another regime R1, identified

through I . In this scenario, within regime R1, the

set {ue, u∆} ∈ ∅. Initially, with modelM0, the tar-

get performance z is achieved optimally when the

system operates within regime R0. However, if the
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system transitions to regime R1 due to the impact

of y, the optimal performance of z is not maintained

unless the scheduler Φ engages modelM1, appro-

priate for regime R1. It is important to note that

the choice of the nominal model greatly affects the

performance of z. Thus, by effectively configuring

the scheduler Φ and selecting the nominal model

M0, the advantages are combined to ensure opti-

mal nominal and robust performance.

Step 2 – Formulation of Nominal Reduced-

Order Model. Partial differential equations gov-

ern spatial-temporal systems, as noted in [33, 18,

34], and are typically derived using finite-element

models (FEM) or computational fluid dynamics

(CFD) models. These large-scale models are often

too complex for real-time application due to their

high dimensionality (often exceeding 1e6) neces-

sary for precise accuracy [11]. As an illustration,

one method detailed in [35] runs a dynamic FEM

alongside the physical system, providing real-time

forecasts of the nominal spatial-temporal dynam-

ics. This approach presents numerous modeling

challenges, not only from theoretical and experi-

mental standpoints, but also in ensuring robust per-

formance.

To address this issue, model-order reduction

techniques have been introduced, such as Balanced

Truncation [36], Krylov’s Subspace Methods [37],

and the Proper Orthogonal Decomposition (POD)

method [38]. These techniques are prevalent in var-

ious engineering domains. However, even though

they decrease the dimensions of the FEM / CFD

models, they often lose physical interpretability

and continue to lack computational efficiency [18].

To achieve this, a parametric reduction is applied

leveraging a Krylov’s moment-matching method

[39] that maintains the original physical interpre-

tation of the reduced-order model. This approach

can be expressed as ,

Mi :=


ẋi = Aixi + Biue,

ui = Cixi.

(4)

Here, ui in (4) is the estimated behavior of the un-

derlying process, as shown in Fig. 6. The aim is

to ensure that ‖z‖ → 0 and its also important to ob-

serve that in equation (3),M denotes the reduced-

order model corresponding to different regimes R

of operating conditions. Upon the scheduler’s de-

tection of a regime shift, the model is updated, and

the corresponding internal states are transferred

fromMk toMk+1.

Step 3 – Using the partial feedback signal y to en-

sure that the modelMi is up-to-date. In industrial

settings, complete state feedback often demands

considerable time. Consequently, what is typically

available is partial feedback, characterized by be-

ing limited and generally representing only a sub-

set of the overall layout of physical effects. As a

result, models deployed in such scenarios must ac-

commodate these constraints. To integrate partial
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state-feedback into the reduced-order models dis-

cussed in the previous section, (4) is enhanced as

in equation (2).

This is achieved by explicitly incorporating an

input channel B f for feedback, with y represent-

ing the actual feedback measurements. In addi-

tion, in (2), a mapping function Γ(.) is introduced.

This function is designed to convert sparse feed-

back measurements into a suitable dense layout,

using application-specific inputs. It is important to

note that the variable ui in (4) and (2) is intention-

ally defined as such. The key lies in the definition

of the information set I , which is passed into the

functional P̂(Φ|I ). This set comprises the exoge-

nous input ue, the measured output y, and the un-

certainty term u∆. To reformulate the problem in

the 9-gang/generalized plant framework [23], the

partial output measurement y is incorporated into

the feedback loop, and the information set I is

treated as a variable within the functional represen-

tation of P̂.

Step 4 – Transforming reduced-order modelsMi to

incorporate uncertainty. To efficiently manage un-

certainties as highlighted in Section 3.1, the frame-

work is divided into a nominal model, denoted

as M0, alongside a collection of uncertain mod-

els, represented by M∆. By employing a center-

ing method [23], these models are expressed in the

form:

P̂(Φ|I ) =Mn +M∆ =Mn + ∆m(Φ|I ),

where m = arg max
m

Φ.
(5)

Here,Mn serves as the nominal model, while ∆m(.)

represents the set of uncertain dynamical models.

It is apparent from the equation (5) that the col-

lection of models belongs to the category of Lur’e-

type systems [40], which integrate both a linear dy-

namical component and a nonlinear/uncertain one

(a Lur’e-type system description).

Furthermore, this approach ensures that the

uncertain dynamics is bounded, specifically

‖∆m(.)‖∞ ∈ R, and modulated by the scheduler Φ

according to (3) [31, 32]. Finally, the scheduler

mechanism can explicitly defined as follows:

Φ :=


i ∈ Z

if Ri(It) ≥ R j(It−), ∀ j ∈ Z\{0}, t ∈ R≥0

I (.) ∈ {y, ue, u∆}.

(6)

Considering the reticle heating application in

lithography system, the reticle transitions between

various subsystems — such as the exposure stage,

metrology station, and reticle handler. Each of

these locations introduces different thermal and

mechanical conditions due to variations in airflow,

illumination, and mechanical contact. These tran-

sitions affect the system’s behavior and, conse-
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quently, the control strategy. In this context, the

regime R can be defined based on the historical

and real-time information I ∈ {y, ue, u∆}. Here,

y is a measured artefacts and what is known from

sparse measurements, ue could be environmen-

tal or equipment-related inputs (e.g., stage veloc-

ity, chuck temperature), and finally u∆ can be de-

tected changes in system configuration or operat-

ing mode. For example, when the reticle is moved

from the exposure stage to a non-exposure zone

(e.g., for inspection or handling), the scheduler Φ

may detect a shift in I (.) and classify the system as

entering a new regime Rn, prompting a switch to a

different model or control strategy. This allows the

system to adapt to location-specific boundary con-

ditions without requiring direct measurement at ev-

ery step [31, 32]. Therefore, The specific definition

of the regime R is application-dependent and will

vary based on the context, objectives, and charac-

teristics of the input signals I (.) ∈ {y, ue, u∆}. As

such, R should be designed to reflect the perfor-

mance criteria or priorities relevant to the particular

system under consideration.

3.2. STABILITY ANALYSIS

To conduct a stability analysis of the dynamic

behavior influenced by the proposed approach,

Fig. 6, (2) and (5) is utilized, along with the

generalized-plant framework as defined in [23].

The the closed-loop system is transformed in to

a Lur’e-type system, illustrated in Fig. 7. The

closed-loop dynamics can be minimally realized by

integrating the uncertainty with the nominal pre-

dictive model, employing upper and lower linear-

fractional-transformations (LFT) as outlined re-

spectively in [23]:
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Cy O D
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Cz O Dz
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z
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x

ue

u f

ui


,

ui = ∆m(Φ|I ),

(7a)

(7b)

with the uncertainty defined as:

∆ :=


ẋ∆ = A∆x + B∆u f ,

u f = Γ(.)y,

u∆ = C∆x∆ + D∆u f .

(8)

∆ ? P ?Mn

∆m(Φ|I )

zue

yui

Figure 7: Schematics of the proposed methodology in a Lur’e-

type system.

Assumption 3.1. The closed-loop dynamics of the

actual plant, when compensated using the nomi-

nal reduced-order partial state-feedback denoted as

∆ ? P ?Mn, fits within the category of globally

uniformly ultimately bounded asymptotically sta-

ble systems.
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Let us consider x? to be the equilibrium point

of (7) such that ‖z‖→ 0. It is important to note

that x? is the sole equilibrium point with the prop-

erty that ‖z‖= 0, because the minimum state-space

representation in (7) ensures observability. This

means that the observability matrix is of full rank,

and hence, the system of equations z = 0, ∂z/∂t =

0, . . . , (∂n−1z)/(∂tn−1) = 0 yields a unique solution

x?, when ‖z‖→ 0. Using the small-gain theorem as

specified in [13, 24, 41] together with the stability

theorem presented in [16], the global uniform ulti-

mate bounded asymptotic stability can be guaran-

teed. As a result, under such conditions, it is possi-

ble to precisely forecast the dynamics of the plant,

which implies that ‖z‖ will be reduced to zero for

all t ∈ R.

4. LITHOGRAPHY SYSTEM APPLICA-

TION: RETICLE HEATING

In this section, the proposed methodology will

be implemented on a high-precision industrial op-

tical system, specifically an ASML Twinscan, as

shown in Fig. 1 for the reticle heating application

as shown in Fig. 2 in the problem formulation sec-

tion (see, Section 2). Before proceeding to discuss

the experimental results in Sections 4.2, first the

stability conditions are established in Section 3.2,

as detailed in Section 4.1.

4.1. STABILITY CONDITIONS

The reticle is constructed from physical materi-

als and during its heating process, energy absorp-

tion results in deformations. Thus, reticle heat-

ing displaying unbounded dynamics is practically

unlikely. Applying similar reasoning, analogous

conclusions for the nominal model Mn is drawn

and the specific models that represent the uncer-

tain dynamics characterized by ∆m(Φ|I ). Further-

more, utilizing the design methodology described

in Section 3.1, 3 moments are identified that de-

scribe both the nominal and uncertain reticle heat-

ing models. Consequently, it is reliable to say that

the dynamics of the actual system and the nominal

model in a closed loop, namely, ∆?P?Mn, com-

ply with the assumption 3.1. In addition, the uncer-

tain model definition given by (7) is also adopted.

Therefore, as demonstrated in Section 3.2, all nec-

essary conditions are met to ensure that the equilib-

rium point x? (where ‖z‖ = 0), reached by applying

the proposed method (7), is GUAS. �

4.2. EXPERIMENTAL RESULTS

To evaluate and measure how the proposed

method performs with respect to throughput and

overlay placement errors, a series of real-time mea-

surements is obtained, as depicted in Fig. 8. In this

experiment, initially, during the regime labeled as

Ra, the heating of the reticle shows standard behav-

ior (without uncertainty) and gradually heats up to

its saturation level. Subsequently, the reticle used

12



in Ra is released, transitioning to a new regime Rb,

where different dynamics and boundary conditions

apply. Consequently, when the reticle returns for

a second series of exposures and is re-clamped,

it tends to display the dynamics characteristic of

Rc due to the altered boundary conditions resulting

from the re-clamping process. Initially, through-

Ra Rb Rc

Time/Wafers [a.u]

D
ef

or
m

at
io

ns
[a

.u
]

Figure 8: Experiment triggering nominal and uncertain condi-

tions.

put performance is evaluated relative to the current

approach illustrated in Fig. 4, which utilizes top-

bottom-edge alignment marks as detailed in [17],

with measurements conducted for each wafer. Typ-

ically, additional alignments incur time costs as

a result of the requirement for physical measure-

ments. In this scenario, each measurement takes

approximately 0.3s per wafer. By adopting the

proposed methodology, a spatial-temporal predic-

tion model to characterize the RH across the en-

tire reticle is implemented. Leveraging this model

allows us to bypass the need for edge-alignment

marks, substituting measurements with predictive

estimates. Specifically, the measurements from

top-bottom alignment marks (see Fig. 4) is used

and combined with the models discussed in Section

3 to predict z and delineate the RH physics through-

out the reticle. Consequently, this approach saves

0.3s per wafer, which can lead to an increase of up

to 7 wafers per hour, a significant improvement for

throughput.

In Fig. 9, a comparative analysis of the over-

lay placement error performance is presented. This

analysis is not only conducted against the current

standard [17], but also against a linear version of

the proposed approach that solely relies on the

nominal modelMn under all conditions. This lat-

ter comparison highlights the critical need for care-

ful application of model-based predictions in in-

dustrial scenarios, as misuse can lead to significant

performance drawbacks. Additionally, an experi-

ment detailed in Fig. 8 was conducted over 2 lots,

with each lot comprising of 16 wafers. It is ob-

servable that the placement error associated with

the proposed methodology exhibits greater stability

and improved accuracy in both the x − y direction

compared to the current method, under both nomi-

nal and uncertain conditions. Furthermore, the lin-

ear counterpart of the proposed technique experi-

ences up to 3x reduction in performance due to un-

known uncertainties. Notably, with the adoption of

the proposed approach, the performance of the first

2 wafers in the x− y direction shows a 2x improve-
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Figure 9: Placement error measurement in x − y to compare the status-quo (red) against the proposed methodology (black) and its

linear variant (blue).

ment over the conventional method. Additionally,

the proposed methodology achieves performance

that is either comparable or superior even with-

out the need for measuring additional alignment

marks. Consequently, while increasing throughput

by up to 7 wafers per hour, the overlay placement

errors remain stable and enhanced.

Remark 4.1. In the context of reticle heating, Γ en-

codes the spatial relationship between alignment

mark coordinates and the predicted heating loca-

tions, effectively bridging the gap between partial

observations and the full-state input required for

control. This design enables the model to leverage

available feedback while accounting for the spatial

sparsity of the measurements. Given this choice, it

is good to note that the input channel B f with re-

spect to u f reduces essentially to an identity matrix.

This reflects a direct mapping between the feed-

back input u f and the corresponding state compo-

nents, which is appropriate given the structure of

the reduced-order model and the nature of the par-

tial feedback available in this application (with re-

spect to reticle heating)

Remark 4.2. In the proposed switching predic-

tive control framework, u∆ is included as part of

the switching input set. However, in the specific

case of reticle heating, u∆ represents a system-

generated signal associated with events such as ret-

icle reclamping. This signal is not directly mea-

sured; rather, its occurrence is inferred approxi-

mately based on system behavior. The timing of

such events is only known retrospectively and with

limited precision. Despite this, the framework is

designed to handle such uncertainty by leveraging

historical patterns using other signals from I and

partial observations to infer the active regime, en-

suring robustness even when certain inputs like u∆

are not explicitly available in real time.
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5. DISCUSSIONS

In the context of customer interactions with

these system during IC production, users may not

exclusively utilize the image-area depicted in Fig.

4; they might opt for alternative image-areas as il-

lustrated in Fig. 10. The proposed approach is de-

signed to be robust and remains applicable without

the necessity for redesign or retuning despite these

on-the-fly layer changes. To demonstrate its effi-

cacy, when conducting the same experiment with a

reduced image-area, as illustrated in Fig. 10, Fig.

11 shows that the proposed methodology has im-

proved the performance of both the nominal and

uncertain regimes by a factor of 3x, while main-

taining consistency. In contrast, similar to the pre-

vious findings, the linear version of the proposed

method encounters significant challenges, leading

to a performance decline of 2 − 3x compared to

both the status quo and the proposed methodology.

This demonstrates that the proposed approach al-

y
x

Image area

Top marks

Bottom marks

Figure 10: Schematic representation of small-exposure layout.

lows overlay placement errors to be comparable to

or better than existing methods, while simultane-

ously enhancing system throughput. Additionally,

it illustrates how state-of-the-art technologies can

be integrated into industrial applications without

sacrificing resilience, simplicity, and effectiveness.

In conclusion, it is important to emphasize the in-

tuitive nature of the proposed methodology. Linear

and uncertain models can be employed via first-

principle-based FEM with model reduction and

data-driven system identification [42], respectively.

Importantly, there are no limitations on the order

of the prediction models considered, and only out-

put measurements are utilized. Furthermore, the

GUAS of the equilibrium point is ensured and is

naturally integrated into the design of the proposed

methodology.
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Figure 11: Placement error measurement in x − y for a smaller image area (see, Fig. 10).

6. CONCLUSIONS

In this study, a partial state-feedback reduced-

order switching predictive model is designed to

support the future lithography roadmap. This work

addresses the balance between the demand for in-

creased measurements, noise, and overlay errors

(both within and across multiple wafers) under un-

certain operating conditions. This approach aims

to navigate these trade-offs more effectively. This

is accomplished by employing reduced-order lin-

ear models that can transition among various mod-

els based on a scheduling logic derived from his-

torical data, thus handling time-varying uncertain-

ties triggered by operating conditions. To address

measurement configurations and maintain practical

relevance, a partial state-feedback framework up-

dates the model’s internal states using these mea-

surements. Sufficient criteria for global uniform ul-

timate bounded asymptotic stability through time-

regularization techniques is also introduced. A

generic execution method automates machine-in-

the-loop initialization and execution of the method-

ology. The strategy is applied to a cutting-

edge lithography scanner to mitigate the spatial-

temporal dynamics of reticle heating. Experimen-

tally significant improvements are achieved, with

placement errors reduced by up to 2 − 3x and

throughput enhanced by 0.3 [s] per wafer in all

nominal and uncertain operating conditions. These

results are compared to the current standard and the

use of only the linear component of the proposed

method.

7. FUTURE OUTLOOK

As previously mentioned in this manuscript, the

relentless demand for high system productivity,

coupled with the requirement to maintain equiva-

lent or superior overlay accuracy and placement,

influences and imposes demands on the enabling

methodologies. These models must, in essence, be
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resilient and capable of functioning in the midst of

uncertainties. There are several key components to

consider: 1) A unified predictive framework: al-

though the main focus has been the reticle-heating

subsystem, the entire assembly also experiences

spatial and temporal variations across both lenses

and wafers; 2) achieving enhanced throughput in-

volves identifying and removing unnecessary mea-

surements. Hence, a seamless integration of pre-

diction, learning, and intelligence can allow mea-

surement reductions without compromising over-

all system efficiency [43, 44, 45]; and lastly, 3)

making plausible assumptions is crucial for prac-

tical deployment in industrial settings. The greater

the disparity, the more challenging it becomes to

reconcile theoretical concepts with practical ap-

plications. Consequently, the need is effectively

summarized as the “development of approaches

and techniques for designing adaptable and robust

models for high-performance lithographic systems

functioning in uncertain conditions while main-

taining simplicity.” In conclusion, the authors an-

ticipate that the findings reported herein will moti-

vate further exploration and application of nonlin-

ear and/or learning models in real-time systems to

enhance performance and bridge the gap between

theoretical insights and practical implementation.
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