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1. Introduction

The most common way to quantify hearing loss is by
means of the hearing threshold. This threshold corre-
sponds to the lowest sound intensity that the person
in question can still perceive, and it is a function of
frequency. The typical process of measuring the hear-
ing threshold is known as pure-tone audiometry (Yost,
1994), and it usually consists of incrementally estimat-
ing the threshold value at a set of standard frequencies
ranging from 125 Hz to 8 kHz using a staircase “up 5
dB – down 10 dB” approach.

A recent line of work in the field of machine learn-
ing has focused on improving the efficiency of hear-
ing loss estimation by taking a probabilistic modeling
perspective (Gardner et al., 2015b; Song et al., 2015;
Gardner et al., 2015a). This approach assumes that
the hearing threshold of a person is drawn from some
prior probability distribution. Under this assumption,
the estimation problem reduces to a (Bayesian) infer-
ence task. Since the resulting posterior distribution
describes both the estimated threshold and its uncer-
tainty, it is possible to select the ‘optimal’ next test
tone based on information-theoretic criteria. The so-
called active learning loop (Cohn et al., 1996) of re-
peatedly selecting the best next experiment and up-
dating the probabilistic estimate, significantly reduces
the total number of required test tones (Gardner et al.,
2015b).

The success of the probabilistic approach hinges
on the selection of a suitable hearing loss model.
Presently, the Gaussian process (GP) model is the
best-performing model of the hearing threshold as a
function of frequency (Gardner et al., 2015b). A GP
can be viewed as a probability distribution over the
space of real-valued functions (Rasmussen & Williams,
2006).

In this abstract we introduce a prior distribution for
hearing thresholds learned from a large database con-

taining the hearing thresholds, ages and genders of
around 85,000 people. Almost all existing work is
based on very simple and/or uninformative GP priors;
simply selecting a suitable type of kernel that assumes
the threshold curve to be smooth is already sufficient
to yield a well working system. However, by fitting
a slightly more complex model to a vast database of
measured thresholds, we obtain a prior that is more
informative and empirically justified.

2. Probabilistic hearing loss model

The hearing threshold is a (continuous) function of
frequency, denoted by t : R → R. The goal is to
specify an appropriate prior distribution p(t|a, g) con-
ditioned on age a ∈ N and gender g ∈ {female,male}.
We choose p(t|a, g) to be a Gaussian process mixture
model in which the mixing weights depend on age and
gender:

p(t|a, g) =

K∑
k=1

πk(a, g)GP(t|θk). (1)

All K GPs have independent mean functions and ker-
nels, parametrized by hyperparameter vectors {θk}.
In our experiments we use third-order polynomial
mean functions and the squared exponential kernel,
which enforces a certain degree of smoothness on the
threshold function, depending on its length-scale pa-
rameter. We do not fix mixing function π(·, ·) to a
specific parametric form, but use a nearest neighbor
regression model.

The main idea behind the choice for a mixture model is
that it seems reasonable to assume that hearing thresh-
olds can roughly be classified into several types. These
types would correspond to different degrees of overall
hearing loss severity, as well as hearing loss resulting
from different causes, i.e. natural ageing versus exten-
sive exposure to loud noises. The audiology literature
indeed describes sets of “standard audiograms” to this
end (Bisgaard et al., 2010).
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3. Model fitting and evaluation

We fit the model parameters – GP hyperparameters
θ1 through θK and mixing function π(a, g) – to a
database containing roughly 85k anonymized records
from the Nordic countries. Each record contains the
age and gender of the person in question, together with
the hearing thresholds of both ears measured at (a sub-
set of) the standard audiometric frequencies. The total
set of 170k threshold measurement vectors is randomly
split into a training set (80%) and a test set (20%) for
performance evaluation.

The inference algorithm consists of two parts. Since all
threshold measurement vectors correspond to a fixed
set of frequencies, the GP mixture reduces to a mixture
of multivariate Gaussians. Therefore, in the first part
we fit a Gaussian mixture model to the training set
using the expectation maximization algorithm (Moon,
1996). In the second part, we find the optimal GP
hyperparameter values by minimizing the Kullback-
Leibler divergence between the GP mixture and the
multivariate Gaussian mixture using gradient descent.

Figure 2 visualizes the fitted prior conditioned on dif-
ferent ages. The means of the mixture components
indicate that different components indeed capture dif-
ferent types of threshold curves. Moreover, condition-
ing the prior on age has a clearly visible impact. This
impact is quantified in Figure 1, which shows the aver-
age log-likelihood of hearing thresholds in the test set.
It also shows that the GP mixture priors outperform
the empirically optimized single GP prior in terms of
predictive accuracy.
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Figure 1. Predictive performance of the fitted priors on the
test set. The one mixture component case corresponds to
a standard GP prior with empirically optimized hyperpa-
rameters. Conditioning on age and/or gender consistently
improves the predictive accuracy.
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(a) p(t|a = 40)

0.125 0.25 0.5 0.75 1 1.5 2 3 4 6 8
Frequency [kHz]

20

0

20

40

60

80

100

120

H
e
a
ri

n
g
 t

h
re

sh
o
ld

 [
d
B

-H
L]

(b) p(t|a = 80)

Figure 2. Visualization of the learned prior for K = 6
mixture components, conditioned on different ages. Blue
dashed lines indicate the means of the mixture components.
The gray lines are samples from the conditional priors. A
value of 0 dB-HL corresponds to no hearing loss.

4. Conclusions

We obtained a prior for hearing loss by fitting a GP
mixture model to a vast database. Evaluation on a
test set shows that the mixture model outperforms the
(empirically optimized) GP prior used in existing work
(Gardner et al., 2015b), even without conditioning on
age and gender. If age and gender are observed, the
prior consistently becomes more informative. The ben-
efit of adding more components to the mixture tapers
off after about eight components.
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