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1. Introduction

Hearing loss is a serious and prevalent condition that
is characterized by a frequency-dependent loss of sen-
sitivity for acoustic stimuli. As a result, a tone that
is audible for a normal-hearing person might not be
audible for a hearing-impaired patient. The goal of a
hearing aid device is to restore audibility by amplifi-
cation and compressing the dynamic range of acoustic
inputs to the remaining audible range of the patient.
In practice, current hearing aids apply frequency- and
intensity-dependent gains that aim to restore normal
audibility levels for the impaired listener.

The hearing aid algorithm design problem is a diffi-
cult engineering issue with many trade-offs. Each pa-
tient has her own auditory loss profile and individual
preferences for processed audio signals. Yet, we can-
not afford to spend intensive tuning sessions with each
patient. As a result, there is a need for automating
algorithm design iterations based on in-situ collected
patient feedback.

This short paper summarizes ongoing work on a prob-
abilistic modeling approach to the design of personal-
ized hearing aid algorithms (van de Laar & de Vries,
2016). In this framework, we first specify a prob-
abilistic generative model that includes an explicit
description of the hearing loss problem. Given the
model, hearing aid signal processing relates to on-line
Bayesian state estimation (similar to Kalman filter-
ing). Estimation of the tuning parameters (known as
the ‘fitting’ task in hearing aid parlance) corresponds
to Bayesian parameter estimation. The innovative as-
pect of the framework is that both the signal process-
ing and fitting tasks can be automatically inferred from
the probabilistic model in conjunction with patient ap-
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praisals (the data). The architecture of our design loop
is shown in Fig. 1.

Figure 1. The iterative algorithm design loop, featuring the
interplay between signal processing (Eq.5) and parameter
estimation (Eq.6). Tuning parameters are designated by θ.
Figure adapted from (van de Laar & de Vries, 2016).

2. Model Specification

We describe the hearing loss compensation model for
one frequency band. In practice, a hearing aid would
apply the derived algorithms to each band indepen-
dently. For a given patient wearing hearing aids, we
define the received sound level as

rt = L(st + gt;φ) (1)

where st is the sound pressure level (in dB SPL) of the
input signal that enters the hearing aid, gt is the hear-
ing aid gain and L is a function with tuning param-
eters φ that models the patient’s hearing impairment
in accordance with (Zurek & Desloge, 2007).

Hearing loss compensation balances two simultaneous
constraints. First, we want restored sound levels to be
approximately experienced at normal hearing levels:

st|gt ∼ N (rt, ϑ) = N (L(st + gt;φ), ϑ) . (2)
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Secondly, in order to minimize acoustic signal distor-
tion, the compensation gain should remain as constant
as possible, which we model as

gt|gt−1 ∼ N (gt−1, ς) . (3)

The trade-off between conditions Eqs. 2 and 3 is con-
trolled by the noise variances ϑ and ς. The full gener-
ative model is specified by combining Eqs. 2 and 3:

p(g0:T , s1:T , ς, ϑ, φ) = (4)

p(g0) p(ς) p(ϑ) p(φ)

T∏
t=1

p(st|gt, φ, ϑ) p(gt|gt−1, ς) .

In this model, st is an observed input sequence, gt is
the hidden gain signal, and θ = {ς, ϑ, φ} are tuning
parameters.

3. Signal Processing and Fitting as
Probabilistic Inference

The signal processing and parameter estimation algo-
rithms follow by applying Bayesian inference to the
generative model. The hearing aid signal processing
algorithm is defined by estimating the current gain gt
from given past observations s1:t and given parameter
settings θ = θ̂. In a Bayesian framework, this amounts
to computing

p(gt|s1:t, θ̂) =

∫
·· ·

∫
p(g0:t, s1:t, θ̂) dg0 . . . dgt−1∫

·· ·
∫
p(g0:t, s1:t, θ̂) dg0 . . . dgt

. (5)

A suitable personalized parameter setting is vital to
satisfactory signal processing. Bayesian parameter es-
timation amounts to computing

p(θ|D) =
p(gk−1:n, sk:n, θ)∫
p(gk−1:n, sk:n, θ) dθ

. (6)

In this formula, we assume availability of a training
set of pairs D = {(gk−1:n, sk:n)}, where k and n > k
are positive indices. This training set can be obtained
from in-situ collected patient appraisals on the quality
of the currently selected hearing aid algorithm (Fig.1).
After the user casts a positive appraisal, we collect a
few seconds of both the hearing aid input signal and
corresponding gain signals and add these signal pairs
to the training database.

4. Inference Execution through
Message Passing

Equations (5) and (6) are very difficult to compute
directly. We have developed a software toolbox to au-
tomate these inference problems by message passing
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Figure 2. A Forney-style factor graph for one time step in
the generative model. The small numbered arrows indicate
a recursive message passing schedule for executing the sig-
nal processing task of Eq. 5. Figure adapted from (van de
Laar & de Vries, 2016).

in a Forney-style Factor Graph (FFG) (Forney, 2001).
In an FFG, nodes correspond to factors and edges rep-
resent variables. The FFG for the generative model of
Eq. 4 is depicted in Fig. 2. The arrows indicate the
message passing schedule that recursively executes the
signal processing inference problem of Eq. 5. Partic-
ular message passing update rules were derived in ac-
cordance with (Loeliger, 2007) and (Dauwels, 2007).

Simulations show that the inferred signal processing
algorithm exhibits compressive amplification behavior
that is similar to the manually designed dynamic range
compression circuits in hearing aids. Simulations also
verify that the parameter estimation algorithm is able
to recover preferred tuning parameters from a user-
selected training example.

Crucially, our algorithms for signal processing and fit-
ting can be automatically inferred from a given model
plus in-situ collected patient appraisals. Therefore, in
contrast to existing design methods, this approach al-
lows for hearing aid personalization by a patient with-
out need for human design experts in the loop.
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